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Abstract— In the paper, the new force control, which is called
the D’Alambertian force Error based Force Integral Control
(DEFIC), is proposed based on the force integral control by
considering the ability of the system input. From the system
input point of view, the external force and system acceleration
cannot be distinguished from each other. Thus, the best solution
is to handle those quantities together. DEFIC is motivated
from this observation. The external disturbance robustness
and the plant/model mismatch compensation of DEFIC are
explained based on the passivity-based control and Disturbance
OBserver(DOB). Furthermore, it is illustrated how DEFIC can
be extended to n-DOF manipulator control. The performance
of DEFIC is verified with simulations, and the conclusion is
followed directly.

I. INTRODUCTION

Many robotic tasks involve interactions between the robot

end-effector and the environment. Necessary to the perfor-

mance of these tasks are the basic capabilities of pushing,

grinding, polishing, twisting, etc. The development of suc-

cessful strategies and implementations for force control is

seen as a crucial step in enabling robots to perform such

tasks. Several researches have been studied in this field [1]

[2] [3]. Some of them focuses on the compensation for

the uncertainties in both robot dynamics and the environ-

ment(position and stiffness) by using the impedance control

[4], and others are designed to implement force regulation

or accurately force tracking based on the integral action [5]

[6]. In this paper, we focus on the latter.

The objective of the force regulation is to make the ex-

ternal force applying to the system follow the desired value.

It seems to be relatively easy because the external force can

be measured and the system input be generated from lots of

novel force control algorithms developed so far. However,

when the system dynamics is involved in the analysis, the

problem is not easy as expected. Because the system input,

the external force, and the system inertial force(e.g. the

inertial force due to the system acceleration) are coupled in

the system dynamics, the system input cannot figure out the

external force itself from them. In other words, the external

force on the system dynamics cannot be controllable by the

system input port when the system is in dynamic situation.

Therefore, the best thing we can do seems to control the

sum of the external force and the system inertial force. So,

a force control algorithm, i.e., DEFIC based on the ability
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of the system input will be proposed and the property and

meaning of DEFIC will be illustrated by comparing it with

other force controls developed so far.

This paper is organized as follow. In section II, the tra-

ditional force integral control and DEFIC will be explained

for a single DOF system. Section III discusses the robustness

of DEFIC with the passivity-based control structure and

DOB and the meaning of the integral gain. In section IV,

the meaning of the active damping will be reinterpreted by

comparing DEFIC with the force integral control with an

active damping. Section V extends DEFIC to the n-DOF

manipulator control. In section VI, simulation results and

analysis are given to verify the proposed method. Finally,

section VII concludes the paper.

II. THE CONCEPT OF CONTROL USING A SINGLE DOF

SYSTEM MODEL

In this section, a aingle DOF system will be used to

illustrate the basic concept of the force integral control and

DEFIC. In the model as mentioned in Fig. 1, f , fext, m, ẍ

means the control input, the measurable external force, the

system inertia, and the system acceleration in order. Thus,

the system dynamics will be expressed as follows:

f + fext = mẍ (1)

A. The Force Integral Control

The force integral control has been commonly used in the

explicit force control [1] [5] [6]. To control the external force,

the following integral control with feedforward command

will be applied to the system:

εF = fdes − fext

fref = fdes + KI

∫
εF dt

f = −fref, (2)

where fref is an intermediate reference force and the fdes is

a desired force which fext is to be followed to.

Fig. 1. The 1 DOF system model
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This type of control has been widely used in the force

regulation field due to it’s simple structure, good control

performance, and disturbance rejection property [7] [8].

However those features may not be maintained as the system

dynamics becomes important. Suppose that the force integral

control is applied to the system. Then, the closed loop dy-

namics will be given as follows (by combining (1) with(2)):

εF + KI

∫
εF dt = −mẍ (3)

From (3), it is easily expected that the force error, εF ,

cannot be zero when the system acceleration is not vanished,

i.e., the system moves dynamically. Therefore, the force

integral control will have some limit and may lead to an

unstable system response under the dynamic situation. To

overcome it, an active damping term is usually added to the

controller [1].

B. The Concept Of DEFIC

From observing the system dynamics, it is obvious that the

external force fext itself is not controllable with the system

input f . Suppose that the single DOF system dynamics is

transformed as follows:

f = − (fext − mẍ)

From the system input point of view, f cannot access to

fext without altering mẍ whether fext is measurable or not.

This means that f cannot control the external force itself

directly. Thus, the best thing under this system dynamics is

to control the summation quantity, fext − mẍ1, to a desired

level. Hence, with the redefined force error,

εD , fdes − (fext − mẍ) ,

the force control is calculated as follows:

fref = fdes + KI

∫
εD dt

= fdes + KI

∫
(fdes − fext) dt + KImẋ

f = −fref (4)

This is the basic structure of DEFIC. It is noticeable that

the linear momentum is fed back to the system. Applying

(4) to the system, the system closed-loop dynamics is trans-

formed to the following form:

f + fext =

{
−fdes − KI

∫
(fdes − fext) dt − KImẋ

}
+ fext

= − (fdes − fext) − KI

∫
(fdes − fext + mẍ) dt = mẍ

∴ (fdes − fext + mẍ) + KI

∫
(fdes − fext + mẍ) dt

= εD + KI

∫
εD dt = 0 (5)

Hence, the integral equation is maintained whether the

acceleration exists or not. Due to the structure of the integral

1this means a D’Alambertian force of the system driven by fext.

equation, the system closed-loop dynamic will be described

eventually as fext − fdes = mẍ as time goes to infinity.

III. THE EFFECT AND MEANING OF THE INTEGRAL GAIN

KI

Since DEFIC is based on the force integral control, the

performance is tuned only by adjusting KI . By increasing the

KI properly, not only the integrand convergent rate gets more

faster but also the robustness with respect to the external

disturbance rejection and model uncertainty are guaranteed

as illustrated below.

A. The Robustness aganinst the External Disturbance

From (5), it is expected that the closed-loop system dy-

namics without the external disturbance is finally expressed

as fext − fdes = mẍ. In this section, we will check how the

closed-loop dynamics changes when the external disturbance

is applied to the system. In the last of the section, it is verified

that the stability of the closed-loop dynamics is guaranteed

whether the bounded external disturbance is applied to the

system or not by increasing the integral gain KI properly.

To consider the effect of the disturbance to the system,

suppose that the system (1) is modified as follows:

f + fext + fw = mẍ, (6)

where fw represents the external unmeasurable disturbance

force. To handle fw, an auxiliary input fu is added to (4) as

given below:

fref = fdes + KI

∫
εD dt − fu

f = −fref (7)

When (6) and (7) are substituted, the closed loop dynamics

is expressed as follows:

(fdes − fext + mẍ) + KI

∫
(fdes − fext + mẍ) dt

= Ṡ + KI S = fu + fw, (8)

where S =
∫

(fdes − fext) dt + mẋ. As you can see in (8),

this form of the system is strictly passive about the (S, fw)
pair. Thus, we can move S to zero by using fu properly as

in the passivity based control [9].

The Lyapunov function candidate is defined about the state

s as given below2:

V =
1

2
ST S > 0, ∀s 6= 0

By considering the strictly passive property, the auxiliary

input fu will be defined as given below:

fu = −

(
1

γ2

)
S,

where γ is related to L2 gain of the system.

2In this example, the dimension of s is one. But, the analysis illustrated
in this section can be extended to the multi-dimensional system as well.
So the state s will be treated as a multi-dimensional vector in the stability
analysis.
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Then, the time derivative of Lyapunov function candidate

is calculated as follows:

V̇ = ST Ṡ = ST (−KIS + fu + fw) = −KIS
T S + ST fu + ST fw

= −KI ST S −
1

γ2
ST S + ST fw

= −KI ST S −
1

γ2

{
ST S − γ2ST fw +

γ4

4
fT

w fw

}
+

γ2

4
fT

w fw

= −KI ST S −
1

γ2

∥∥∥∥S −
γ2

2
fw

∥∥∥∥
2

+
γ2

4
‖fw‖

2

< −KI ST S +
γ2

4
‖fw‖

2
≤ −γ1(‖S‖) + γ2(‖fw‖),

where γ1(·) and γ2(·) are the class K∞ functions. Since

the RHS of the above equation is an unbounded function

for s and fw, the closed-loop system using DEFIC with the

auxiliary input is disturbance input-to-state stable(ISS). Thus,

we expect that when unknown bounded disturbances exist on

systems, the behavior of the system will remain bounded, and

when the set of inputs, including the control and disturbance,

goes to the zero, the behavior of system moves toward the

equilibrium point(s = 0) [9].

Now, consider the derived control input to overcome the

disturbance. DEFIC with the auxiliary input (7) will be

summarized as follows:

fref = fdes + KI

∫
εD dt +

(
1

γ2

)
S

= fdes +

(
KI +

1

γ2

) ∫
εD dt

(∵

∫
εD dt =

∫
(fdes − fext) dt + mẋ = s)

f = −fref

Therefore, the disturbance can be rejected with the same

controller as (4) by just increasing the integral gain. This is

the good property of DEFIC.

B. The Plant/Model mismatch compensation

When DEFIC is expressed as a block diagram, it will be

expressed as Fig. 2. After some block diagram operation,

Fig. 2 can be transformed to Fig. 3. As you can see in

Fig. 3, DEFIC is essentially the same structure as the DOB.

Compare to the traditional DOB [10], the only difference is

that the desired input is entered with negative sign, and the

external force is added and subtracted in the middle of the

diagram. Thus, by using DEFIC, low frequency disturbances

are canceled and plant/model mismatch is compensated in

the low frequency range. It is note that the equivalent Q(s)
filter used in the control is the first-order one. That is,

Q(s) =
R(s)

1 + R(s)
=

KI

s

1 + KI

s

=
KI

s + KI

=
1

1

KI

s + 1
(9)

It is quite interesting that the integral gain KI of DEFIC

is directly related to the cut-off frequency of the Q(s)
filter of the DOB. The region which Q(s) remains unity

will be wider and wider as KI is increased more and

Fig. 2. Block diagram of the modified force control

Fig. 3. Block diagram transformed to the DOB like form

more. So, DEFIC becomes more robust to wide frequency

disturbance signals and it will appears as the disturbance

robustness property becomes enhanced when increasing KI .

The disturbance robustness property illustrated in section III-

A can be explained in such a different way.

Another important feature of DOB is plant/model mis-

match compensation. Because DEFIC is equivalent to DOB,

the compensation is also realized naturally. The nominal

model implemented in Fig. 3 can be summarized as given

below:

fext − fdes = m̂ẍ, (10)

where m̂ represents the nominal/estimated value of the

inertia of the system. In fact, the control represented in

(4) is not desirable to implement because the feedback

momentum term cannot be defined a priori due to the lack

of information of the system inertia. This ambiguity is now

removed since DOB tends to compensate the mismatch

between the real inertia and the nominal one in the low

frequency range(Q(s) ≈ 1). Thus, all the quantity in (4)

is available so that DEFIC can be realized without difficulty.

Through this, the system dynamics converges to the nominal

system dynamics and the force regulation will be executed

with the nominal plant.

IV. REINTERPRETATION OF FORCE INTEGRAL CONTROL

WITH ACTIVE DAMPING

After applying DEFIC, the system moves according to

(10). In (10), the external force will follow the desired

force when the system acceleration decreases to zero (e.g.

grinding, deburring, polishing, etc), and a force error will
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occur when the system acceleration exists during the opera-

tion. This does not seem to be different from the traditional

force integral control case. However, there is some difference

between them.

Consider (4) with nominal inertia as follows:

fref = fdes + KI

∫
εF dt + (KIm̂)ẋ

= fdes + KI

∫
εF dt + KV ẋ

f = −fref (11)

In many cases, the force integral control is used with an

active damping term to suppress the rapid velocity change

[1]. It is note that the force integral control with active

damping is the same form as (11). From this observation, we

can guess the following two interesting things. Fist, DEFIC

has the active damping naturally which is not intended at the

control design step. Due to this damping factor, the system

performance is more stable than that of the traditional force

integral control3. Second, this is more important than the

former, the method used so far for the active damping seems

to alter the system inertia rather than to add the damping

effect to the system. The velocity gain KV is directly related

to the system nominal inertia so that the effect of changing

KV will appear in the change of the system inertia. In

the physical sense, the larger the system inertia is, the less

sensitive to the force variation the system is. The slow motion

due to the enlarged inertia seems to be interpreted that the

active damping is added more and more to the system when

KV increases. This is also supported with the fact that a

velocity bound of the system is not observed. If the damping

exists in the system, the velocity bound such as the terminal

velocity of free-falling in the air should be observed. As

discussed in section VI later, however, the velocity bound

is not observed by changing KV . In summary, the active

damping term in (11) can be reinterpreted with the system

inertia increasing concept.

Above discussion suggests that another method will be

needed if the system requires a damping effect. In this

case, the desired closed-loop dynamics may be expressed

as follows:

fext − fdes = m̂ ẍ + b̂ ẋ,

where b̂ represents the nominal damping coefficient. To

obtain the above closed-loop dynamics, the controller in (4)

should be changed as given below:

f ′

des = fdes + b̂ẋ

εDA = f ′

des − (fext − m̂ẍ)

fref = f ′

des + KI

∫
εDA dt

= fdes + KI

∫
εF dt + (KIm̂ + b̂) ẋ + (KI b̂)x

3This will be discussed in detail in section VI.

= fdes + KI

∫
εF dt + KDẋ + KP x

f = −fref (12)

In (12), the position feedback as well as the velocity

feedback is required to implement the active damping to

the system. The position feedback gain KP and velocity

feedback gain KD will be set as in (12). This type of control

is also known as the position-based force/torque control [11]

[12]. With the control, the closed-loop dynamics has the

active damping in operation.

V. APPLYING TO THE MANIPULATION CONTROL

In this section, the outline of how to apply DEFIC to the

n-DOF manipulator will be illustrated.

The dynamic equation of motion for an n-DOF manipu-

lator can be expressed in the following form [13]:

τ + JT (q)fext = M(q)q̈ + C(q, q̇)q̇ + g(q), (13)

where q is the n × 1 vector of joint coordinates, M(q) is

the n × n inertial matrix, C(q, q̇) is the n × 1 vector of

torques due to centripetal and Coriolis effects, g(q) is an

n×1 vector of gravitational torques, τ is the n×1 vector of

joint input torques, J(q) is the m×n Jacobian matrix from

the n× 1 joint space to the m× 1 task space, and fext is the

m × 1 external force/moment vector.

This equation is now transformed to define the

D’Alambertian force error as in the following form:

τ = −
{
JT (q)fext − g(q) − (M(q)q̈ + C(q, q̇)q̇)

}

Hence, the control input τ cannot access to fext di-

rectly without compensating the dynamics so that the

D’Alambertian force error should be defined by considering

it. Before further discussion, we assume that the gravity

compensation is executed a priori without loss of generality4.

Also, assume that the plant/model mismatch is not consid-

ered in this step. We will discuss this problem at the end of

this section.

Then, the error is defined as given below:

ετ , τ des −
{
JT (q)f ext − M(q)q̈ − C(q, q̇)q̇

}
(14)

Then, DEFIC will be derived automatically as given

below:

τ ref = τ des + KI

∫
ετ dt

= τ des + KI

∫ (
τ des − JT (q)f ext

)
dt

+ KI

∫
(M(q)q̈ + C(q,q̇)q̇) dt

τ = −τ ref (15)

In (15), most of the terms except for the joint acceleration

q̈ are available. Thus, the second integral in (15) should be

4It is also interpreted that the desire torque contains the gravity term so
that the gravity is eliminated eventually in the closed-loop dynamics. In any
case, the gravity compensation is not hard to perform.

3589



modified properly to realize the control. With the property

of the manipualtor [13],

C (q, q̇) = Ṁ (q, q̇) −
1

2

[
∂M

∂qT
q̇

]

the second integration in (15) can be calculated by using the

integration by parts as follows:
∫

(M(q)q̈ + C(q, q̇)q̇) dt =

∫
M(q)q̈ dt +

∫
C(q, q̇)q̇ dt

=

{
M(q)q̇ + M −

∫
Ṁ(q)q̇ dt

}
+

∫
C(q, q̇)q̇ dt

= M(q)q̇ + M −

∫ (
Ṁ(q)q̇ − C(q, q̇)q̇

)
dt

= M(q)q̇ + M −
1

2

∫ ([
∂M

∂qT
q̇

]
q̇

)
dt

= M(q)q̇ + M −
1

2

∫ (
Ṁ (q, q̇) q̇

)
dt,

where M = M (q(0)) q̇(0).
Now, quantities in the above equation are all available so

that (15) can be summarized as given below:

τ ref = τ des + KI

∫ (
τ des − JT (q)f ext

)
dt

+ KI

{
M(q)q̇ −

1

2

∫ (
Ṁ (q, q̇) q̇

)
dt

}

τ = −τ ref (16)

Note that the integral constant term M is omitted in (16)

for simplicity since the plant/model mismatching compensa-

tion property of DEFIC will finally eliminate this constant

term.

When applying (16) to n-DOF manipulator (13), the

closed-loop dynamics will be transformed to the following

form:

JT (q)f ext − τ des = JT (q) (fext − fdes)

= M(q)q̈ + C(q, q̇)q̇ (17)

Then, the external force/moment vector will be tracking

the desired force/moment according to (17) when applying

fdes or τ des to the control. Note that the dynamical coeffi-

cient matrices M(q) and C(q, q̇) can be replaced with the

nominal ones. Due to the property as DOB, the manipulator

will behave the nominal manipulator model. The matrices

M(q) and Ṁ (q, q̇) can be selected according to its purpose.

For example, the inertia matrix M(q) can be just set to

the diagonal matrix to decouple the joint variables [14], or

the precisely defined inertia model to handle the nonlinear

dynamics of the system [15]. In both case, the same control

algorithm can be applied.

VI. SIMULATION RESULTS

DEFIC was simulated with 1 DOF system as shown in

Fig. 4. In the configuration, the inertia slid along the guide

rail without friction. A F/T sensor was equipped at the right

side of the inertia and the distance between the tip of the

F/T sensor and the wall was 0.28[m]. The rigid contact

Fig. 4. the system configuration of the simulation

TABLE I

SIMULATION PARAMETERS

Parameters Values

m̂ 5.0[kg]

b̂ 25.0

KI 115.0

fdes -5.0[N]

e(Coeff. Of Restitution) 0.5970

dT 0.001[sec]

was assumed but the relative coefficient of restitution(e)

was set by referring the values of metal. Parameters used

in the simulation is summarized in Table I. The simulation

was executed with the RoboticsLab simulator which is the

articulated multi-body system simulation software platform

[16]. The simulation results will be presented in this section.

A. Force Integral Control vs. DEFIC

In section IV, It is mentioned both the force integral

control and DEFIC have excellent performance of force

regulation when in contact with the static wall but the

behavior of DEFIC is more stable due to its natural damping

term. This expectation will be verified in Fig.5. As you can

see in Fig. 5, both can control the external force to the desired

force, fdes = −5[N ].
Whereas the motion produced by using the force integral

control has some bounces until at rest, there is little bounce

motion when applying DEFIC. It is understood that the

inertia used in the simulation is large (5kg) so that the

rapid motion changes were suppressed naturally in motion.

Therefore, we can conclude that the previous discussion is

correct.

B. DEFIC With And Without The Active Damping

In section IV, DEFIC with active damping was proposed.

the simulation results of the original control and the one

with active damping is illustrated in Fig. 6. As mentioned in

section IV, there will exist a velocity bound in free motion

when the system damping force is balanced on the applied

force to the system. The terminal velocity of free-falling is

an example of such phenomena. This is well illustrated in

Fig. 6. Note that the velocity of the system produced by

(4) increased until the inertia hit the wall while the velocity

produced by (12) converged a limit before collision with the

wall. Therefore, we can conclude that the active damping is

actually added to the system as in (12).

It is also noticeable that DEFIC with active damping

can suppress the peak actuator force as a damper. Since

(4) produce the unbound motion with heavy inertia, the
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Fig. 6. Simulation results of DEFIC with and without the active damping

control input required tends to increase drastically as in Fig

5 and Fig. 6 when the system collides. This behavior is

not advantageous to actual implementation of DEFIC. As

in Fig. 6, active damping proposed in (12) can control the

peak torque below a desired level.

VII. CONCLUSIONS AND FUTURE WORKS

In the paper, the new force control algorithm was pro-

posed by considering the ability of the system input. From

the system input point of view, the external force cannot

be handled without affecting the system dynamics so that

controlling the external force itself without compensation

of the system dynamics with the system input is actually

impossible. Hence, the best thing using the system input may

be to control those quantities together. In this reason, the

D’Alambertian force error was defined and the new force

integral control using it was proposed.

It was also verified that DEFIC is a kind the of passivity-

based control and DOB. As a result, the robustness of the

external disturbance and the plant/model mismatch com-

pensation was accomplished automatically as increasing the

integral gain. It was illustrated as well that the momentum

feedback loop contained in the control contributes the stable

motion performance during operation. Related to it, the

different version of control was proposed to add the active

damping explicitly. Finally, DEFIC was applied to the control

of the n-DOF manipulator to show that DEFIC can be

extended to a multi-DOF system, if its closed-form dynamics

is known.

Simulations were also performed to support the discus-

sions mentioned in the paper. In the future, experiments will

be executed to verify the performance of the proposed control

for a single DOF and n-DOF system.
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