
Hybrid Hessians for Flexible Optimization of Pose Graphs

Matthew Koichi Grimes Dragomir Anguelov Yann LeCun

Abstract—We present a novel ”hybrid Hessian” six-degrees-
of-freedom simultaneous localization and mapping (SLAM)
algorithm. Our method allows for the smooth trade-off of
accuracy for efficiency and for the incorporation of GPS
measurements during real-time operation, thereby offering
significant advantages over other SLAM solvers.

Like other stochastic SLAM methods, such as SGD and
TORO, our technique is robust to local minima and eliminates
the need for costly relinearizations of the map. Unlike other
stochastic methods, but similar to exact solvers, such as iSAM,
our technique is able to process position-only constraints,
such as GPS measurements, without introducing systematic
distortions in the map.

We present results from the Google Street View database, and
compare our method with results from TORO. We show that
our solver is able to achieve higher accuracy while operating
within real-time bounds. In addition, as far as we are aware,
this is the first stochastic SLAM solver capable of processing
GPS constraints in real-time.

I. INTRODUCTION

In mobile robotics, the ability to self-localize is a criti-
cal prerequisite to many higher-level functions. SLAM can
be described as the iterative process of localizing oneself
relative to previously explored locations, and mapping new
locations relative to oneself.
A popular formulation of this problem is to model it as

a graph of nodes, representing robot poses to be solved for,
and edges, representing sensor readings. Each edge defines
an energy function of the nodes it connects. This function
penalizes deviations between the nodes’ relative pose, and
the relative pose as measured by a sensor. By minimizing
the sum of these constraint energies with respect to the pose
variables, we solve for the maximum a posteriori values of
all poses given all sensor readings.
In this paper, we draw inspiration from two divergent

approaches to minimizing this energy: full linearized solvers,
and stochastic relaxation. Full solvers are mathematically
equivalent to the well-known Gauss-Newton method, though
with better numerical stability and much-improved speed.
These methods linearize the total constraint energy E around
the current value of the poses z, then solve the resulting
linear equation for an update dz that minimizes E(z + dz)
in a least-squares sense. Sparse solving techniques can
incrementally solve for this update in real time, but once
the update becomes too large, the map must be relinearized
from a new linearization point and solved from scratch, an
expensive process. Furthermore, like Gauss-Newton, these
methods are susceptible to becoming stuck in local minima.
By contrast, stochastic relaxation relaxes one constraint at

a time without need of a fixed linearization point. Like the
stochastic gradient descent techniques popular in machine
learning, stochastic relaxation converges more quickly than
performing full Newton steps, and is more robust to local
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minima. To minimize oscillation between competing con-
straints, stochastic relaxation encodes nodes in a hierarchical
pose tree, where each pose is defined relative to its parent
(see fig. 1). For each constraint, there is a difference r
between a pose and a constraint’s desired value for that
pose. Stochastic relaxation minimizes this difference by
accumulating −αir into the node’s ancestors ni in the tree
(the coefficients αi are chosen to sum to one), which has
the effect of shifting the node by −r. While efficient, this
can introduce a systematic distortion into the map, known
as the “dog-leg problem” [1]. As shown in fig. 2, this arises
when a constraint has a large error in position but little error
in rotation, which may happen by chance, or because the
constraint only acts on position, as is the case with GPS.
In this paper, we present a method that performs stochastic

relaxation, but which does so by solving a set of linear
equations. This eliminates the dog-leg problem. It also allows
the user to smoothly transition between stochastic and exact
updates at run-time, flexibly trading off cost for accuracy as
needed.

II. RELATED WORK

Early SLAM algorithms, such as Smith and Cheeseman’s
EKF SLAM [2], incorporated new observations into an
extended Kalman filter (EKF), which tracked the pose of
the robot and any landmarks. The approach is used to this
day, such as with Davison’s monocular visual SLAM [3],
and Kim and Sukkarieh’s GPS-augmented SLAM for flying
vehicles [4]. Unfortunately, EKF-based SLAM requires a
full inversion of a dense N-by-N matrix with each new
observation, where N is the size of the state vector containing
all tracked landmark and robot poses. This O(N3) operation
scales poorly with the size of the map. It can be mitigated
by selective sparsification of the information matrix [5], [6],
but reconstructing the map from this matrix remains costly.
The “full SLAM problem” solves for the entire history of

robot poses, not just the most recent. This paper concerns
itself with the pose graph formulation of this problem. As
described in section I, two recent approaches to this have

been full linear solvers, as in
√

SAM [7] and iSAM [8], and
stochastic relaxation, as used by SGD [9] and TORO [10].

The
√

SAM method and its descendants speed up this linear
solve through column reordering [7] and incremental factor-
ization [8], arriving at the same exact answer as the Gauss-
Newton method in much shorter time. Drawbacks include
the computational cost of relinearizations, and susceptibility
to local minima.
SGD [9] performs stochastic relaxation in two dimensions

by parametrizing each pose in the pose hierarchy as an addi-
tion onto the pose of its parent. This allows a constraint to be
relaxed efficiently by simply adding fractions of its residual
into the constrained pose’s ancestors. TORO [10] extends this
into three dimensions by updating translation and rotation
separately to work around the non-commutativity of rotations
in 3D. Both methods are highly robust to large residuals and
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Fig. 1. Pose tree terminology The image on the left shows a
small pose graph, with odometry-based constraints, and a loop-
closing constraint. We use a hierarchical tree-based representation
of pose, where each pose is defined relative to its parent. The tree
is a spanning tree of the pose graph, using a subset of its edges.
Such a tree is shown in the center. The right figure illustrates the
constraint terminology used in the paper. A constraint’s domain
is the set of poses whose values affect the constraint energy. The
constraint’s root is the topmost node in the path from one node of
the constraint to the other. It is not part of the constraint domain.

local minima, but both suffer from dog-leg distortions as
described in section I.
Some authors have proposed solving for only those poses

in the pose graph that are near the current pose. This can
help SLAM adapt to dynamic environments [11], or save
on-board cost by leaving the task of creating a globally
consistent map to an off-board computer [12]. Our work can
be easily adapted to solve for local poses only (see section
III-E and III-F)). However, storing the map in a single global
coordinate frame can have many advantages to real-time
tasks. For example, it can facilitate detecting loop-closures,
by allowing the robot to only compare the current frame
against those thought to be nearby in the global coordinate
frame. A global coordinate system can likewise help align
multiple maps in collaborative mapping, or help register a
map in progress against satellite imagery or other geolocated
data. For these reasons, we have chosen to focus on real-time,
globally consistent SLAM.

III. ALGORITHM

In this section, we first describe our parametrization,
introducing relevant terminology. We review the mathematics
of performing a full linearized update to the poses, then
introduce our stochastic approach in terms of this formalism.
We describe methods of reducing the cost of expensive
updates, and of solving more than one constraint at a time,
for stable processing of GPS constraints. We then present the
algorithm in summary.

A. Pose Trees

Like [10], we represent our poses by initially growing a
spanning tree out of a node in the pose graph, and defining
each pose relative to its parent in the tree. Fig. 1 shows a pose
graph, and one possible tree ordering. In this parametrization,
the energy of a constraint connecting nodes a and b can only
be affected by nodes in the path through the tree from a to b,
excluding the node with the smallest tree depth. We call this
topmost node the constraint’s “root”, and all other nodes in
the path the constraint’s “domain”. The root is excluded from
the domain, since translating or rotating the root translates
and rotates its entire sub-tree, leaving the relative pose from a

Fig. 2. The dog-leg problem occurs when an error in position is
corrected by position updates only, without also updating rotations.
Here we see a relaxation of the red constraint, with and without
the dog-leg problem.

to b unchanged. Likewise, minimizing a constraint’s residual
only changes nodes in its domain. The node from which
this tree is grown becomes the root of the entire tree. We
allow for the use of GPS and other constraints that operate in
“absolute” coordinates, by using a root node that represents
the earth’s frame. GPS readings can then be represented as
relative position constraints between the earth and a pose.
Because the earth node is the root of the tree, it is outside
of any constraint’s domain, and is thus appropriately left
unchanged by the pose graph optimization.
We initialize the poses using the tree constraints, by

concatenating their desired relative poses down from the
root node. Using noisy constraints in the tree, such as GPS
constraints, can lead to poor initial poses. For this reason,
it is important to prefer high-stiffness edges (corresponding
to low-noise sensors) when building the spanning tree. An
MST algorithm that maximizes the total stiffness of tree
edges is one option. The results in this paper come from a
simple breadth-first traversal, modified to avoid GPS edges
whenever possible.

B. Linearized updates

We represent our poses as 7-dimensional vectors com-
posed of a position vector and quaternion (quaternions are
re-normalized after each update). We collect all poses in a
single vector z. For a constraint c connecting poses a and b,
Let fc(z) be a function of the relative pose between a and
b. We define the constraint energy Ec as a quadratic penalty
on the difference between fc(z) and its desired value kc,
weighted by distance matrix Sc:

Ec(z) = (fc(z)− kc)
T Sc(fc(z)− kc) (1)

For example, (1) may represent a relative position constraint
by having fc(z) be the relative position of b in the frame of
a, and having kc be this relative position as measured by a
sensor, such as a wheel encoder. Likewise, (1) may model
a relative rotation constraint by setting fc(z) = qc(z)w−1

c

and kc = qI , where qc(z) is the relative rotation of b in
the frame of a, wc is the relative rotation as measured by a
sensor, and qI is the identity rotation. In EKF terminology,
fc is the prediction function, kc is the “observation”, and Sc

is the inverse of the sensor covariance matrix.
The total energy is the sum of constraint energies:

E =
∑

c

Ec(z) (2)

We linearize fc around z̄, the current value of z, using the
substitution z = z̄ + x, where x is the parameter update we
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will solve for. We also take the Cholesky decomposition of
the stiffness matrices Sc:

fc(z) ≈ fc(z̄) + ∂f
∂z

∣

∣

∣

z̄
x (3)

Sc = LcL
T
c (4)

We plug (3) and (4) into (1) and (2) to get:

E =
∑

c

∥

∥

∥
LT

c

(

fc(z̄) + ∂f
∂z

∣

∣

∣

z̄
x− kc

)

∥

∥

∥

2

(5)

Let Jc = LT
c

∂f
∂z

∣

∣

∣

z̄
and rc = LT

c (kc − fc(z̄)) to get:

E =
∑

c

‖Jcx− rc‖2 (6)

= ‖Jx− r‖2 (7)

Here matrix J and column vector r are simply the individual
constraints’ Jc and rc stacked vertically:

J =
[

JT
o , . . . , JT

M−1

]T
, r =

[

rT
o , . . . , rT

M−1

]T
(8)

We arrive at a linear least-squares problem

x = min
x
‖Jx− r‖2, (9)

which can be solved using one of two standard methods:
normal equations and orthogonal decomposition. The normal
equations are obtained by taking the derivative of E in (7)
and setting it equal to zero:

2JT (Jx− r) = 0 (10)

Hx = JT r, (11)

where H denotes JT J , as it is the approximated Hessian
from the Gauss-Newton method. Equation 11 may be upper-
triangularized by the Cholesky decomposition H = RT R,
followed by one back-substitution:

RT Rx = JT r (12)

Rx = b (back-substituted) (13)

With another back-substitution, we solve for x. Using or-
thogonal decomposition, we also arrive at 13 by setting

Jx− r = ~0 and QR-factorizing J :

Jx = r (14)

QRx = r (15)

Rx = QT r (16)

Rx = b (17)

When J is nearly upper-triangular, orthogonal decomposition
can take O(N2) time to solve compared to O(N3) for
the normal equations, a fact we exploit in section III-D to
efficiently solve for stochastic updates. Having solved for
update x, we add it to pose parameters z:

z ← z + x (18)

This is followed by normalizing the quaternions in z.

Algorithm 1 OptimizePoseGraph

Grow a spanning pose tree through the pose graph.
Sort constraints C in increasing order of root depth.
G ← {} ⊲ an empty set
for c in C do

if ||G|| > gps batch size then
BatchUpdate(G, Dmax)
G ← {}

end if
if c is a GPS constraint then

Add c to G
else

BatchUpdate(G, Dmax) ⊲ no-op if G is empty
Update(c, Dmax)

end if
end for

C. Stochastic Updates

The update x described above is expensive to evaluate,
since it is calculated using all constraints in the graph. An
alternative is to inexpensively calculate one approximate
update xc from each constraint c. Such “stochastic” updates
have a long history in machine learning[13], as they can
converge much more quickly than exact updates, and pro-
vide some robustness to local minima. Oscillations due to
the inexactness of these updates are mitigated by using a
decaying learning rate, as will be discussed in section III-H.
In this section we derive our expression for xc.
Plugging (8) into the right-hand-side of (11) gets:

Hx =
∑

c

JT
c rc (19)

Note that we may express the total update x as a sum
x =

∑

c xc of constraint-specific updates xc, where:

xc = H−1JT
c rc (20)

In practice, we compute xc by solving the linear system:

Hxc = JT
c rc (21)

In stochastic relaxation, the parameters z are updated by
one xc at a time, rather than by their sum, x. In many appli-
cations, this converges quicker, and typically computation is
saved by not recalculating H =

∑

c JT
c Jc from scratch after

each constraint update.
Our goal is to speed up solving for xc and make it real-

time. One can use an approach similar to second-order back-
propagation in neural networks [14], where H is reduced to a
diagonal by zeroing all off-diagonal elements. Unfortunately,
while this makes solving for xc linear in the number of non-
zeros in vector JT

c rc, it can prevent convergence. The reason
is that this can greatly reduce the matrix norm ‖H‖, making
the resulting update xc very large. Large updates to the poses,
particularly to the rotations, can easily prevent convergence,
since rotating a node rotates its entire sub-tree. In [9], Olson
prevents this by using an approximation to Jc where each
nonzero block is replaced by a constant diagonal matrix. This
eliminates any large derivatives it may contain, and removes
the need to calculate any derivatives. While the resulting
algorithm is very fast, it erases the correlation between
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(a) Initial pose tree, detail (b) After convergence (c) Underconstrained loop (d) Same loop with GPS

(e) Dog-legged path, after convergence with TORO (f) Same path, after convergence with our method

Fig. 3. Paris1 dataset A posegraph taken from a section of Paris, with 27093 nodes and 27716 constraints. Fig. 3a shows a section
of the pose tree in its initial state. Stretched constraints can be seen as red lines. Fig. 3b is the same section after 10 iterations of our
method, using a maximum problem size of Dmax = 200, and no GPS constraints. The stretched constraints of 3a have collapsed; the
runs that remain separated are those without constraints tying them together. Fig. 3c shows a severely under-constrained intersection, with
few loop-closing constraints connecting adjacent runs. Such intersections can happen due to the difficulty in identifying loop closures in
dynamic urban environments. While optimizing the posegraph, parallel paths with no cross-connections can become separated. Fig. 3d
shows the same intersection when GPS constraints are added to one out of every 100 nodes. The GPS’ residual vectors are visible as
blue line segments. Unlike loop-closing constraints, GPS constraints are easy to come by, limit drift in large loops, and prevent separation
of nearby unconnected runs. Fig. 3e shows a portion of the Paris posegraph after convergence with TORO. The dog-leg problem has
caused the vehicle poses to not point along the direction of travel. No GPS constraints were used. Fig. 3f shows the same portion, after
convergence with our method.

rotation parameters and position residuals, causing the “dog-
leg problem”. TORO [10] employs a similar simplification
in 3D, with the same problem.

D. Hybrid Hessians

We now describe our approximation to H , which is easy
to invert, avoids the dog-leg problem, and does not produce
overly large updates. We approximate H in (21) by a
“hybrid Hessian” Hc specific to constraint c. Note that H
is composed of N by N blocks, where N is the number of
poses. We define Hc as the full Hessian H =

∑

i(J
T
i Ji)

with all of the off-diagonal blocks zeroed except those of
JT

c Jc, namely

Hc = JT
c Jc + Bc (22)

where Bc is the block-diagonal approximation to the hessian
built from all constraints except for constraint c:

Bc = B(H) −B
(

JT
c Jc

)

(23)

Here B is an operator which zeros any off-diagonal blocks.
In practice, these blocks are never calculated in the first
place, so that B(JT

c Jc) is calculated in O(d) time, where d is
the number of nonzero blocks in Jc. Instead of recalculating
B(H) =

∑

c B(JT
c Jc) at each constraint relaxation, we

update the approximation in O(d) time by:

B(H)← B(H) −B(JT
c Jc)old + B(JT

c Jc) (24)

where B(JT
c Jc)old denotes the value of B(JT

c Jc) calculated
in the previous relaxation of constraint c.
We obtain our stochastic update xc by replacing H in (21)

with Hc, and solving for xc:

(JT
c Jc + Bc)xc = JT

c rc (25)

This yields a solution to the following least-squares problem:

min
xc

(

‖Jcxc − rc‖2 + ‖Γcxc‖2
)

(26)

where Γc is the upper triangle of the Cholesky factorization:

Bc = ΓT
c Γc (27)

Without ‖Γcxc‖2, (26) would be an under-constrained mini-
mization problem for a single constraint c. We have regular-
ized it using the block-diagonals of the full hessian, both to
make it solvable, and also to prevent each constraint update
from simply satisfying constraint c without regard to all other
constraints.
Only the poses in constraint c’s domain Dc affect c’s

energy, as seen in fig. 1. We can therefore solve a reduced-
dimension version of (25) by omitting all rows and columns
that do not correspond to poses in Dc. We denote this
omission using hats (ˆ), as in:

(ĴT
c Ĵc + B̂c)x̂c = ĴT

c rc (28)

One could solve this dense normal equation using Cholesky
factorization. But since this is cubic in the size of Dc, it
may be unacceptably expensive for real-time performance,
because constraints near the bottom of large pose trees can
have large constraint paths. Instead, we solve (26) using the
following orthogonal decomposition:

[

Ĵc

Γ̂c

]

x̂c =

[

rc

~0

]

(29)

Note that left-multiplying both sides of (29) by [ ĴT
c Γ̂T

c ]
recovers (28). Equation 29 is a Tikhonov regularization of the

under-constrained problem Ĵcx̂c− r̂c = 0, with the Tikhonov

matrix Γ̂c constructed from diagonal blocks of the hessian
H .
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Fig. 4. Subsampling a constraint path Subsampling a path by
omitting node p, parent of b. Node b is now acted on by a temporary
constraint β instead of α. The block corresponding to node b
in the block-diagonal hessian approximation B must be updated
accordingly, using equation 31. Constraint β is constructed from
constraints γ and α.

Denoting the i’th block of Ĵc as J i
c and the i’th block of

the block-diagonal matrix Γ̂c as Γi
c we rewrite (29) as

















J0

c J1

c J2

c . . . Jd−1

c

Γ0

c

Γ1

c

Γ2

c

. . .

Γd−1

c

















x̂c =

















rc

0
0
0
...
0

















(30)

Here, d is the size of domain Dc. Each block is 7 by 7, since
7 is the number of dimensions in a single pose or residual.
Equation 30 is therefore nearly upper-triangular. This allows
us to fully upper-triangularize it (using Givens rotations) in
O(d2) time, not the usual O(d3) for dense matrices. The
subsequent back-substitution to solve for x takes O(d2) time
as well. Updating Bc is O(d). The total cost of relaxing a
constraint is therefore O(d2). For a relatively balanced tree,
we can estimate the expected path length for a constraint as
de = O(log(N)), where N is the total number of poses.
This is because the domain size d of a constraint c is one
less than the length of the tree path connecting the two nodes
constrained by c. The expected running time for a single
iteration through all M constraints is therefore O(Md2

e), or
O(Mlog(N)2).

E. Interpolated solving

In large pose trees with low branching factor (such as
urban pose trees), the path length for some constraints can
get into the thousands, making even O(d2) too costly for
real-time operation on a single processor. Fortunately, it is
possible to solve for an approximation to xc within a user-
chosen computational cost budget which can range from
O(d) to O(d2). This is done by solving for a subset Sc

of the nodes in the path Dc, then distributing these updates
over the remaining nodes.
1) Merging constraints: in (28), we solved for only the

nodes in Dc by omitting from (25) the rows and columns
corresponding to other nodes. We take the same approach
here, solving for only the nodes in Sc ∈ Dc by omitting rows
and columns in (28). When omitting nodes from the path,
we are replacing chains of constraints between unomitted
nodes with single constraints. This change affects Bc =
∑

i6=c B(JT
i Ji). Consider a pair of nodes a and b in Sc,

where a is b’s closest ancestor in Sc, or if none exists, the
constraint root (fig. 4). We replace a chain of constraints
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Fig. 5. Log-energy vs time, Valencia dataset The average
constraint energy vs time (in seconds) for TORO [10] and our
method. For our method, we use different values for the maximum
limit Dmax on the number of poses solved per constraint, as
described in section III-E.

between a and b by a single constraint β. Let α be b’s current
parent constraint in the path. We update B as follows:

B ← B − JT
α Jα + JT

β Jβ (31)

Both α and its replacement β connect two consecutive nodes
in the path. As can be seen in fig. 1, such constraints have
only one node in their domain, namely the lower of the
two nodes they connect (in this case, b). Both Jα and Jβ

therefore have only one nonzero block, making the update
in (31) an O(1) operation. The path from a to b may contain
another constraint γ, but we need not subtract JT

γ Jγ from
B, since its domain node has been omitted from the path,
and its corresponding rows and columns are not included in
the linear solve. Note that modifying B for all nodes in Sc

is linear in the size of Sc, since we perform the update in
(31) for each node in Sc whose parent was omitted from Sc.

To calculate the Jβ of merged constraint β, we need its
stiffness Sβ and desired value kβ , where kβ follows directly
from β’s desired relative pose pβ (see (1)). If c1 . . . cn are
the constraints merged to create β, we get pβ by taking the
product of the desired transforms of c1 . . . cn:

pβ =

n
∏

i=1

pi (32)

Since stiffness is the inverse of sensor covariance, we find
the merged stiffness Sβ by applying the covariance merging

rule Cmerged =
(
∑

i C−1

i

)−1

. In terms of stiffnesses this
becomes:

Sβ =
n

∑

i=1

RaiSiR
T
ai (33)

where Si is the stiffness of ci and Rai is the desired rotation
from node a to i.
2) Solving and distributing the update: After modifying

B with (31) and eliminating the omitted nodes’ rows and
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TABLE I

AVERAGE AND MAXIMUM TIME PER CONSTRAINT, VALENCIA DATASET

Solver Avg. time (s) Max. time (s)

TORO 1.75092 ∗ 10−5 5.24759 ∗ 10−3

Dmax = 75 3.6635 ∗ 10−4 5.3559 ∗ 10−2

Dmax = 100 4.0791 ∗ 10
−4

6.5095 ∗ 10
−2

Dmax = 150 4.919 ∗ 10
−4

9.5015 ∗ 10
−2

Dmax = 200 5.812 ∗ 10−4 0.13747

Dmax = ∞ 2.0823 ∗ 10−3 3.583

columns from (29), we get the reduced orthogonal decom-
position:

[

J̃c

Γ̃c

]

x̃c =

[

rc

~0

]

(34)

Here, Γ̃c is created from the Cholesky decomposition

Γ̃T
c Γ̃c = B̃, where B̃ is B updated by (31), retaining only

the rows and columns corresponding to nodes in Sc. After
solving for x̃c, we revert the modified blocks of B to their
previous values before updating by 24. If we apply update
x̃c to z as before, the path can potentially bend only at the
nodes in Sc, making the chain discontinuous. Instead, we
use the method used by TORO to distribute over a chain of
nodes the desired pose adjustment of the endmost node. In
our case, the desired pose adjustment is given by temporarily
applying x̃c to z and normalizing the affected quaternions.
The desired pose adjustment is the transform from b’s old
pose to its new pose. This pose adjustment is distributed over
the nodes from a down to b, not including a. As in TORO, we
use the diagonal elements of B as the distribution weights.
For details on this distribution algorithm, we refer the reader
to [10]. This does not cause dog-legs, because x̃c updates
rotations even for position-only constraints.

F. Batch solving

It is possible to build a hybrid hessian HC for updating
a set C of constraints at once, by including the off-diagonal
blocks of multiple constraints’ JT

c Jc.

HC =
∑

c∈C

JT
c Jc + BC (35)

where the block-diagonal regularizer BC is:

BC = B(H)−
∑

i∈C

B(JT
i Ji) (36)

The corresponding orthogonal decomposition form is:

[

JC

ΓC

]

xc =

[

rC
~0

]

(37)

where ΓC is created as before by the Cholesky decomposition
BC = ΓT

C ΓC . We vertically stack Jc and rc corresponding
to the constraints c in C to get JC and rC . When C contains
all the constraints in the posegraph, (37) reduces to the full
exact update equation (14), since JC and rC become J and
r (see (8)), and ΓC vanishes, since there are no constraints i
such that i /∈ C (see (36)).

TABLE II

MINIMUM VALUES OF Dmax NEEDED FOR CONVERGENCE.

Dataset nodes edges
loop
edges

max d Dmax

“Manhattan world” 3500 5598 2099 184 30
Valencia w/o GPS 15031 15153 122 1161 40
Valencia w/GPS 15031 15440 409 1834 90
Paris1 w/o GPS 27093 27716 590 3599 190
Paris1 w/GPS 27093 28943 1817 3605 200
Paris2 w/o GPS 41957 55392 13384 701 150
Paris2 w/GPS 41957 56109 13878 802 200

G. Special Considerations for GPS

In some instances, it is desirable to combine omitting
nodes and batch-optimizing multiple constraints. For exam-
ple, we may wish to solve for a locally exact update, by
solving for only the nodes close to the robot position, as in
[12]. This can be done in our system by omitting faraway
nodes, and batch-optimizing all constraints that operate on
nearby nodes. Another application is in the processing of
GPS constraints. GPS constraints are characterized by long
path sizes and large position residuals, and do not specify
rotation. Relaxing a single GPS constraint c causes its path
to bend in order to move the constrained node n closer to the
desired position. Because c specifies no orientation for the
node, n is free to rotate to align itself with the new direction
of the path. This is harmful to convergence, as it rotates
all of n’s sub-tree, increasing the residuals of other GPS
constraints, which then do similar damage in turn. To avoid
this, we update GPS constraints in batches. This eliminates
spurious rotations by placing additional position constraints
below n in the tree, preventing the sub-tree from bending
away from them. We find that relatively small batch sizes
are sufficient to prevent spurious rotations. For the Valencia
and Paris datasets (section IV), we update GPS constraints in
batches of 30 and 50, respectively. As when processing other
constraints with long paths, we use interpolated solving to
keep update times low.

H. Temperature

To aid convergence, we scale update xc by a temperature
parameter τ , before adding it to parameters z as: z ←
z + τxc. We start with τ = 1, and slowly decrease it
over time. We do this by scaling τ by 0.99 after each
loop through all constraints. If a constraint c’s residual is
large, the resulting τxc may contain large rotation updates,
which can adversely affect convergence. For such updates,
we temporarily substitute τ for a value τ ′, which is chosen
so that the largest rotation update in τ ′xc does not exceed
π/8.

I. Algorithm summary

We summarize our method in algorithm 1. The functions
“Update” and “BatchUpdate” implement single and multi-
constraint updates as described above, using interpolated
solving to solve for no more than Dmax nodes at a time.

IV. RESULTS

Fig. 3 shows a section of our “Paris1” posegraph before
and after optimization, both with and without GPS con-
straints. We show a case where, without GPS constraints,
the optimization causes rotations at an under-constrained
intersection, causing the loop to rotate into an unrealistic
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(a) Olson’s “Manhattan world” (b) “Manhattan world”, converged

(c) Valencia (d) Valencia, converged

(e) Paris2 (f) Paris2, converged

Fig. 6. Solved maps Pose graphs, before and after 10 iterations
with Dmax = 200. Pose graph sizes are given in table II. Initial
configurations show the poses as set by concatenating constraint
transforms down the tree, as described in section III-A. Constraint
residuals are shown as brown/red lines connecting the constraint’s
desired pose to the actual pose. Brighter red indicates higher error.
Valencia (fig. 6c, fig. 6d) is shown at an oblique angle, to better
show its error residuals, which are primarily vertical.

configuration. We show that GPS constraints serve to limit
such error. We also show an instance of the dog-leg problem
experienced by TORO. Even though the dog-leg problem is
typical with GPS constraints, it can also happen, as it did
here, with loop-closing constraints that have a large position
residual and small rotation residual. Our method does not
suffer from this problem.
In fig. 5, we show the log-energy per constraint over time

for our method and TORO. Our method reduces the error
quicker, and converges to an average energy per constraint
that is an order of magnitude lower than that of TORO.
For our method, we use interpolated solving as described in
section III-E, with different maximum values Dmax for the
size of set Sc. GPS constraints were not used, to minimize
dog-legs in TORO. The pose graph data was taken from a
section of Valencia, Spain, with 15031 poses and 15153 con-
straints. The energy was measured after each loop through
all constraints. In actual operation, only a few constraints are
added or updated per frame, so the spacing of the points in
the plot should not be interpreted as the required time per
iteration. Rather, see table I for the average and maximum
time per constraint for the same solvers and posegraph.
The average constraint domain size was 1.53 poses, while
the largest constraint domain was 1161 poses. The times
shown are all within real-time bounds per frame, except when
domain subsampling is turned off (by setting Dmax =∞).
Linearizing the relation between position error and rotation

Fig. 7. Montmartre, Paris An overlay of the converged poses of
fig. 6f on a satellite image from Google Earth.

updates is necessary for properly addressing the dog-leg
problem. However, such projective rotations can also cause
oscillations in the face of excessive subsampling. To test our
method’s robustness to oscillations, we ran the solver with
various levels of subsampling, defined by Dmax, the maxi-
mum number of nodes to solve for in (34). Table II shows the
minimum values of Dmax which did not cause divergence.
Note that these are not hard minimums, as divergence may
also be avoided by lowering the initial temperature τ from
1.0. This table is only intended to illustrate the potential
danger of over-subsampling. Table II also shows each map’s
number of nodes, edges, loop edges, and “max d”. Loop
edges are edges with more than two nodes in their path (they
are also counted under “edges”). The “max d” is the length
of the longest edge path in the map. The “Manhattan world”
dataset was originally used by Olson in [9] (see fig. 6a).

In fig. 6, we show some maps before and after solving
with our method. The “before” images show the poses as
initialized by starting at the root of the parametrization
tree, and crawling downwards, concatenating the tree edges’
transforms. For a pose graph with no loop closures, this
would be equivalent to dead-reckoning. The red edges are
edge residuals, connecting the desired pose of a node to
its actual pose. Relative constraints’ residuals connect two
poses, while GPS constraints’ residuals connect a pose to a
spot in empty space, indicating the desired position. Redder
residuals indicate higher error. Longer residuals do not
necessarily have higher error, as some edges are less stiff than
others. In particular, GPS constraints are much less stiff than
other types, due to GPS’ imprecision. Our method performs
well on graphs with ample loop closures, such as Olson’s
“Manhattan world”, converging to an average energy per
constraint of 1.596, compared to TORO’s 2.062. Our method
completely collapses most relative constraint residuals (fig.
6b, 6d), and greatly reduces GPS residuals (fig. 6f). A small
number of lines which overlap in fig. 6e can be seen to
have split apart in 6f. These are parallel runs where the loop
closure detector failed to recognize as traversing the same
path, and therefore did not connect together with a constraint.
Outdoor urban maps can have fewer loop-closures, due to the
difficulty of detecting them in highly dynamic environments.
Despite this distortion, the solved map aligns relatively well
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(a) “Manhattan world”, noisified (b) “Manhattan world”, converged

(c) Valencia, noisified (d) Valencia, converged

(e) Paris2, noisified (f) Paris2, converged

Fig. 8. Graphs with large initial error Pose graphs, with noisified
constraints (sensor readings). A small random rotation around the
local up axis was multiplied onto each constraint’s rotation, causing
large distortions to accumulate over time. Pose graph sizes given in
table II. Constraint residuals are shown as brown/red lines (redder
= more error).

to satellite photography, as seen in fig. 7.

To test the robustness of our solver to large errors due
to sensor noise, we added rotational noise to all edges in
the “Manhattan world”, Valencia, and Paris2 pose graphs.
These “noisified” graphs can be seen in fig. 8. Each rotation
was multiplied by a small rotation around the local up axis,
where the angle was drawn from a normal distribution with
a standard deviation of 3 degrees. The poses are initialized
using these edges, these small rotations add up to the large
map distortions shown in the left column.

V. CONCLUSIONS AND FUTURE WORK

We have described a method for stochastic optimization on
pose graphs that is able to process position-only constraints,
such as GPS, without introducing the pose staggering known
as the “dog-leg problem”. We demonstrated methods for
reducing the complexity of updates in order to stay within
real-time bounds, and for batch-optimizing multiple con-
straints, with applications to stable GPS updates. Our method
thus presents the means to smoothly transition between
approximate O(n)-per-constraint loop closing (where n is
the size of the constraint’s loop), and exact linear updates as
used by full linear solvers. The method optimizes to a lower
overall energy than a state-of-the-art method in stochastic
SLAM, while staying well within real-time cost bounds per
constraint.

On each iteration, our method efficiently updates a subset
of the pose graph, in a manner that approximates the ef-
fects of nodes and constraints outside of that set. There is
considerable flexibility in how to choose this set, affording
several avenues of future investigation. One is constraint
prioritization, where an effort is made to update constraints
with large error more frequently than those with small
error, for quicker convergence. Another is node prioritization,
where instead of subsampling a constraint domain uniformly,
we select nodes according to the the needs of the application.
An example would be to prioritize local nodes during real-
time exploratory SLAM. This is an approach similar to [12],
but with the added benefit of maintaining global consistency.
Another example is to add loop-closing to visual odometry
by treating bundle adjustment as a local batch update, within
a SLAM framework.
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