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Abstract—In this paper we present a Disaster Invariant 

Feature (DIF), which is used for localization of Unmanned 

Aerial Vehicles (UAV). There exist numerous researches that 

address the problem of localization of UAVs using aerial images. 

However, after a disaster such as a tornado or an earthquake 

many features in aerial images like monuments and unique 

buildings may change, and the image-based localization would 

become hard or even impossible. Consequently it is important to 

find features that remain unchanged or with fairly small 

changes, and can be detected both before and after a disaster. 

We have used a recent method for street detection from aerial 

images and shown that road networks and segments are disaster 

invariant and could be utilized for localization and mapping. 

The algorithm has been implemented and tested on satellite 

images from Google, with nearly equivalent resolution to aerial 

images. The successful result of detecting this DIF on   

Port-au-Prince, in Haiti, images before and after the recent 

earthquake is presented.  

I. INTRODUCTION 

NMANNED Aerial Vehicles (UAVs) have various 

applications in tasks such as search and rescue, 

telecommunication, surveillance, environment and traffic 

monitoring systems. The fact that they are unmanned enables 

them to work in environments that are dangerous and/or 

inaccessible to humans. However this advantage comes with 

the extra cost of being autonomous. For instance, they should 

be able to localize themselves in an environment using 

landmarks and features. During recent decade, Global 

Positioning System (GPS), Inertial Navigation System (INS), 

and rangefinders have been the most popular tools for Ground 

Vehicle localization and pose estimation. But, they all have 

their own drawbacks. GPS, which includes measurements of 

the robot pose, is vulnerable to interference and jamming and 

even intermittently losing connection (without any obvious 

reason) for long periods of time [10]. INS, which is a set of 

accelerometers and gyroscopes and is used for motion 

estimation, is subject to well-known drifting errors due to 

integrations. Finally, it is hard, even impossible, to use laser 

on UAVs because of the vehicles’ high altitude and the high 

amount of required power for operation of laser rangefinders.  

Beside all the above shortcomings for these sensors, it is 

always possible that a sensor fails and having an alternative 

sensor for localization would be desirable. That is why vision 

has been selected in this work as a complement or a 
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replacement for the other sensors, especially GPS, for UAV 

localization. Also, aerial images are very useful, especially 

because the chance that the view is occluded by an unknown 

object is very low, compared to images taken by Ground 

Vehicles,  and the features in aerial images can be detected 

robustly from time to time for localization and SLAM. 

Visual features can be utilized in UAV localization and 

navigation in two ways. In first approach, usually used for 

micro UAVs, landmarks are put on the vehicle and a 

stationary camera on the ground detects them. The ground 

system remotely processes the data and performs the UAV 

localization and the estimated location is sent back to the 

UAV [1], [2]. This approach has limited applications, because 

finding the landmark on a vehicle flying outdoors is very 

difficult. More importantly, it requires an established 

platform on the ground to operate, which makes it nearly 

impossible to be employed in disaster stricken areas. In the 

second approach, the vehicle is self-contained and the camera 

is located on the vehicle. The vehicle detects the landmarks 

and features in images [3] captured by the camera and use 

them for localization or mapping. Our research is based on 

this approach.  

Various visual features have been utilized for the  purpose 

of localization, such as: corners [4], [5], Weighted Grid 

Orientation Histogram [6], [7], Weighted Grid Integral 

Invariant [8], and Scale-Invariant Feature Transform (SIFT) 

[9].  However, almost none of these methods are expected to 

perform satisfactorily in disaster stricken areas. After a 

disaster such as an earthquake, the structural characteristics of 

the environment change drastically, and it is even possible 

that some of the existing landmarks and prominent features of 

the environment become non-existent. This issue has been 

tested on SIFT features and illustrated in Fig. 1. 

 An image (Fig. 1a) is taken from the city of 

Port-au-Prince, Haiti before the earthquake in Januray2010. 

Another larger image (Fig. 1b) is taken after the earthquake 

which includes the original region and its neighborhood. 

SIFT features of the two images are found independently and 

compared together. The result of this SIFT matching should 

give us the region in the second image which is most probable 

to coincide with the first image (the correct region is shown 

by a yellow rectangle). The ideal situation is that the SIFTs in 

the first image only be matched to SIFTs inside the 

yellow-boundary region, so that we can deduce the 

correspondence of the first image and the yellow-boundary 

region in second image. In practice, however, out of 35 

matched pairs (shown  with  red and  green rectangles)  in  
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these two images, only 5 of them are correctly matched (green 

rectangles). More importantly, the incorrect matched pairs are 

found all over the second image. This shows that we cannot 

infer anything from the distribution of matched pairs, and it is 

almost impossible to match an image taken after disaster with 

an original image before the disaster, solely from the SIFT 

features. It should be noted that after comparing the SIFT 

features of Fig. 1a only with the SIFTs in the 

yellow-boundary region in Fig. 1b, nearly 20 matching was 

found. Thus, the matching performance is higher when the the 

true correspondence in known. 

In this study, we propose a Disaster Invariant Feature 

(DIF), i.e. roads and streets, for UAV localizations. We argue 

that road networks are unique features that can be detected 

from the air and used for UAV localization and mapping. 

More importantly, these features are detectable even after a 

disaster, such as an earthquake or a tornado, hits an area. We 

have implemented an especial street detection method to 

make use of such a DIF in a Bayesian filter based framework 

to perform the localization of a simulated blimp. It is 

important to mention that we intentionally did not consider 

other sensors such as GPS to highlight the effectiveness of 

this approach in the absence of the other sensors. 

II.   RELATED WORKS 

As mentioned earlier, GPS, INS and range finders have 

been used for localization. There have been some efforts in 

order to combine these methods and benefit from all of them 

[11], [12], but the possibility of not receiving correct GPS 

signals does not vanish. Other sensors, such as altimeters, 

pressure sensors, sonars, and laser rangefinders [13], have 

also been used for pose estimation, mostly for altitude 

estimation. As mentioned earlier sonars and rangefinders 

have restricted applications due to high operation altitude of 

the UAVs and high required power of these sensors.  

In recent years, vision sensors, both mono and stereo, have 

become more popular. Kendoul et al. [14] combined optical 

flow of a single camera with Inertial Measurement Unit. In 

[4] and [5] camera is used in combination with INS. They 

both have used corner detectors, and tried to find the current 

pose based on previous pose by matching the points in two 

images. However, the correspondence is still a problem, as 

well as the problem of drifting that may happen as a result of 

error in motion estimation. As a result, the use of these 

methods in disaster stricken areas is very limited. 

It is possible to perform localization solely using cameras 

[15]-[17]. Besides the fact that images of a camera are visual 

sensory data, it should be noted that vision can also be used 

for motion estimation and state prediction. In fact, most of the 

localization methods that use vision are based on visual 

odometry [18]; assuming the initial pose is known, for 

instance from GPS, it is possible to find the pose in each step 

by matching features in the current and previous images. 

Again, two major problems arise from this; the 

correspondence of the feature points, and the accumulated 

positioning error (drift error) due to incorrect matching or 

external disturbances existing even in a single step. In [15] a 

solution is proposed that requires at least four features to be 

recognizable in each image. In [17] a similar homographic 

approach was implemented that used corners as features. 

Caballero et al. [16] showed that drift error could be reduced 

by using online mosaicking (instead of point matching)  

In this work we have used vision to complement or replace 

sensors such as GPS in case of error in sensing or failure in 

the sensor. We propose a Disaster Invariant Feature which 

does not suffer from disasters such as earthquakes, a problem 

that exists with other features like SIFT or corners. 

III. STREETS OR ROADS: A DISASTER INVARIANT FEATURE 

(DIF) FOR AERIAL VEHICLE IMAGES 

As mentioned before, it is important to find features that 

remain nearly unaffected and are detectable both before and 

after a disaster. In our experiments, streets or roads have 

shown significant resistance to these types of disasters. 

Furthermore, the streets or roads have adequately wide 

distribution in the aerial images. Thus, even after destruction 

of some road segments, the structure of the road network can 

still be detected. In the following sub-sections we will show 

how the roads are detected and how successfully they are 

used for localization of a simulated autonomous blimp.  

 
(a) 

 
(b) 

Fig. 1.  The found matched pairs in two images of Port-au-Prince, 

Haiti. a) An image taken before the earthquake, and b) the image of 

the same region with its neighborhood, taken after the earthquake. 

The green marks show the correct matched SIFT feature pairs, 

whereas the red marks indicate incorrect matched pairs.  
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A. Road Detection 

There exist few methods for detection of streets in aerial 

images, such as the ones described in [20]-[22]. Most of these 

methods are semi-automatic and need human assistance to 

perform satisfactorily. Many of them take too much time to be 

applicable in real-time applications, and some of them are 

only tested on particular images (in which the streets are 

easily detectable by using trivial methods, such as 

segmentation in HSV space).  However, we are interested in 

automatic methods that are able to extract roads even in 

complex urban areas. In this work, we have exploited the 

method proposed in [23] which is described here briefly. The 

idea is to gradually expand a tree that tracks roads and 

identifies road networks. The root of the tree is planted on the 

image and it tries to grow and follow the directions that are 

more likely to contain roads based on two characteristics of 

them: 1) low variance in brightness along the roads and 2) the 

limited changes of direction while tracking the roads.  In other 

words, this method utilizes both local features (variation in 

brightness) and global features (geometry of the whole road 

structure) to construct appropriate tree. A local search is used 

to track the roads in different possible directions while global 

constraints guarantee the smoothness of the roads. 

The algorithm starts with selecting a seed, i.e. a single node 

or pixel, randomly on the image. In each iteration, an 

unexpanded node on the tree, with the highest probability of 

being on a road, is selected. Starting from that node, a few 

new hypothetical edges, i.e. expanded branches, are created, 

each of them corresponding to a new hypothetical node, and 

are given scores which reflect the likelihood that each of the 

edges are laid on a road. From the whole set of hypothetical 

nodes, the node with the highest score would be the winner 

and is selected for further expansion. This process continues 

until some termination criteria, such as the number of nodes 

in the tree, the ratio of the explored regions of the image to the 

whole image, the estimation of the area of the tree, or the 

minimum value for score of a new node, are satisfied. In our 

implementation, the number of nodes termination criterion is 

used to ensure the real-time performance of the algorithm. 

The maximum number of nodes in the tree is set 

experimentally (and roughly) by running the method on some 

sample outdoor images. The score of a node, say the ith node 

is computed by the following formula: 

O?KNA:E; L Ùä
���k+àÜ F àèã:Ü;+o	

$:L:E;á E;

E :sF Ù;ä O?KNA:L:E;; 
(1) 

where L:E; is the parent of the EçÛ node and àÜ is the direction 

of the edge connecting node E and its parent. The cosine term 

reflects deviation from the weighted average direction of its 

parents (àèÜ), and is computed by: 

àèÜ L ÛäàÜ E :s F Û;äàèã:Ü; (2) 

in which Û  is a discount factor between 0 and 1 and 

determines the sensitivity of the mean direction of the tree to 

direction of the last branch. We heuristically set it to 0.5 to let 

the tree change direction when it reaches a turning point. The 

brightness score is computed based on the following formula 

$:Eá F; L Í �>Þ F >Þ?5�
Þ " æÔÕ

 (3) 

in which OÜÝ  determines the sequence of pixels on the line 

segment between node E  and F , and >Þ  points out the 

brightness of GçÛ node on this sequence. As it can be seen, 

$:Eá F; computes the sum of differences of brightness’s of 

consecutive points along an edge which is a measure of 

variance in the brightness of the pixels on it. The trade-off 

between brightness score and direction score is provided by 

Ú , whose value can be set either experimentally or 

heuristically, so that these two scores take their own desired 

parts in the overall score. Also, Ù, which is between 0 and 1, 

is a balancing factor that determines the significance of the 

parent node’s score, relative to calculated brightness and 

direction scores, and has been set to 0.5 in our experiments. 

However, setting Ú  requires more considerations. For this 

purpose, the direction score and the brightness score may be 

calculated experimentally for trees in some target images, and 

normalized together. Based on this, we concluded that Ú 

should be more than 0.7, and we set it to 0.8. It is worth 

mentioning that as we will discuss in next subsection, the 

detection needs not to be perfect for utilization in the 

correction phase of a Particle Filter for localization.  

 

B.  Constructing Feature Maps 

Based on detected roads, a feature map can be constructed. 

The idea is to compare this map with the global map of the 

environment, and use the result in a Bayesian filter based 

framework. Generally, maps are described in two ways: 

vector maps and raster maps. In first group, map is 

represented with the use of some geometrical primitives, like 

points, lines, etc., whereas maps in the second group, similar 

to occupancy grid maps, are consisted of cells or tiles with 

modifiable resolution. Global map of the environment and 

feature map could be represented in both ways; however, we 

use grid-based maps, to represent both global and feature 

maps, because they are less sensitive to local changes in the 

streets, and also they could be compared with each other more 

easily and more efficiently.  

Global maps can be constructed in two ways; they can be 

derived from existing CAD maps or drawn manually, or they 

can be made by applying the same street detection method on 

old images. Since the global maps are available in advance, 

the improved version of road detection methods can be 

applied w/o worrying about the real-time constraints. This 

offline nature of processing the global maps allows handling 

the huge size of these maps realistically. The certainty of 

having a street in a cell in the resulting grid-based maps, both 

the global maps and the feature maps, varies between 0 and 1.   

As stated before, the result of matching the feature map 

with the global map may be used in the correction phase of a 

Bayesian filter. The justification is as follows: the position 

and orientation of the camera in the environment corresponds 

to a pixel in the global map (barring its altitude). The camera 
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is fixed on the UAV, and its location is related to the UAV 

pose that we want to find. This pose is not known precisely, 

but only an estimation of it is in hand. This is where Bayesian 

filter framework would be advantageous. In each step, the 

estimation of the UAV pose is used to determine the region on 

the global map by which the local map is compared.  Then a 

similarity measure is calculated and is used to modify the 

estimation of the UAV pose. This prediction-correction loop 

is done recursively during normal operation of the UAV. 

IV. SIMULATION AND DISCUSSION 

A.  Particle Filter 

Bayes filter is an algorithm for calculating beliefs, i.e. 

posterior probabilities of state variables computed after 

incorporating the available data. Usually these state variables 

are robot’s pose and/or speed, and the measurements taken by 

robot’s sensor are considered as data. Each iteration 

comprises two steps; in prediction step, prior estimation of 

the state is changed based on the current input (motion model), 

whereas in correction step, this estimation is updated using 

sensory data (measurement model). Particle Filter [24] is a 

non-parametric implementation of Bayes Filter. Briefly 

speaking, it consists of a set of particles, each of them 

representing a hypothesis of the state. In each step, particles 

are relocated based on motion model, i.e. L:Tç�Qçá Tç?5;, and 

weights are assigned to them according to measurement 

model, i.e. L:Vç�Tç;. Here Qç, Tç, and Vç denote input, state, 

and measurement data at time P . After that, particles are 

resampled based on their weights, and as a result, their 

distribution changes and becomes more similar to belief 

probability distribution. To implement Particle Filter, motion 

model and measurement model should be defined. In the 

remainder of this section, these models are presented. 

Motion Model: in our study, we used a UAV with three 

motors: two of them for planar motion (right and left motors) 

similar to a planar mobile robot, and the third for changing the 

altitude of the UAV. We can write Newton-Euler equation of 

motion for the UAV, and derive its motion model (for 

example, this has been done for a blimp by Zufferey et al. 

[25]). In our current implementation we ignored the third 

motor and assumed the altitude of the UAV does not change 

over time. It is also usual to assume that the motion is parallel 

to the ground. Therefore, the motion model becomes very 

simple, and in fact it could be written similar to that of a 

planar wheeled mobile robot (WMR): 

T6 �L �R�ä ���ð 

U6 �L �R�ä ���ð 

ð6 �L �S 

(4) 

Assuming independent control for right and left motors, it 

is possible that R L r and S M r, which results in vehicle 

rotating in its position. Furthermore, uncertainty can be 

modeled by assuming that R  and S  are random variables 

(usually Gaussian) instead of deterministic inputs. It should 

also be noted that the use of other motion models is also 

possible and does not have any major effect on the 

measurement model, which is the main contribution of this 

paper. 

Measurement Model: in our method, each measurement 

is represented by a binary matrix, IßâÖÔß, which is computed 

from detected roads.  In our road detection implementation, it 

is computed by counting the number of tree nodes in each tile 

of the feature map, and setting the tiles with number of nodes 

above a threshold to 1 (on) and the others to 0 (off). This local 

matrix is then compared to the corresponding section of the 

global map (I), and a similarity measure is computed. We 

use the map matching formula introduced in [24]: 

éàáà×ÚÎÌ×áëß

L � Ã ckIëáì FI%oä kIëáìáßâÖÔß:Tç;FI%ogëáì

§Ã kIëáì FI%o6ëáì Ã kIëáìáßâÖÔß:Tç;FI%o6ëáì

 (5) 

I% L s

t0
Í:Iëáì EIëáìáßâÖÔß;

ëáì

 (6) 

2:IßâÖÔß�Tç áI; L ����:éàá�à×ÚÎÌ×áëß
ár; (7) 

where T and U subscripts determine the position of the pixel 

in the image, and 2:IßâÖÔß�Tç áI;� is exactly the distribution 

that new samples are derived from. Both I and IßâÖÔß in the 

above equation accept values between 0 and 1 (not just 0 or 

1); in other words, a detection method with probabilistic 

outputs can also use these weighting formulae. 

 

B. Results 

Fig. 2 shows the results of the road detection algorithm, 

implemented on two images taken before and after 

earthquake from Port-au-Prince, Haiti. The road detection 

algorithm is performed on the image, and the resulting 

occupancy grid map is constructed. Each tile is 10*10pixels. 

Fig. 3 shows a sample result of performing the localization on 

a test image taken from Las Vegas, Nevada. Fig. 4 depicts the 

same results, but the images are zoomed-in around the true 

pose. In both images, particles are shown by red dots. 

Different steps of the localization are shown. Final true pose 

is the pixel (649,920) and it is estimated as (659,922) by the 

Particle Filter, which shows only a slight error in localization 

(about 10m, considering the level of the images we have 

used), as can be seen from the position of green circle (the 

blue ellipse is hidden behind the mass of red dots). It should 

be noted the original image’s resolution is 1200*1200pixels. 

Furthermore, in each step of the PF, instead of resampling all 

particles, %15 of the particles are regenerated uniformly in 

the state space, to achieve better exploration of the state space 

and reduce the effect of particle deprivation problem [24]. 

Each  step  of the  particle  filter -consists of  applying  motion 

model to particles, street detection on an image, weighting the 

particles using map matching, and finally resampling the 

particles- takes about 2seconds to be completed on these 

images (on a 2.80GHz Pentium 4 CPU with 1MB Cache and 

1GB RAM). The required time will be very lower for images 

with lower resolution. However, even in this state (without 
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doing optimizations of the algorithm) it can be used for 

low-speed vehicles, such as blimps (but not on airplanes and 

helicopters). The bottleneck lies on street detection and map 

matching, which currently are performed in all steps of the 

PF. It should be noted that this is not necessary. In fact, we 

can implement the algorithm such that these are performed 

only once in many consecutive steps. This further reduces the 

time complexity of the algorithm.  

V.   DISCUSSION AND FUTURE WORKS 

In this paper we presented a novel Disaster Invariant 

Feature (DIF) that can be detected before and after a disaster 

such as an earth quake or a tornado. Such a feature can be 

used for the localization of aerial vehicles, especially for the 

purpose of search and rescue. It is important to mention that 

the existence of sensors such as GPS does not eliminate the 

need for localization using vision since any sensor such as 

GPS may not be accessible for a period of time or fail 

entirely. The proposed DIF has been successfully used to 

localize a simulated blimp on a real disaster stricken area.   

Future works include improving the street detection 

method and further testing in various disaster stricken 

regions.  Also the construction of probabilistic feature maps 

would be investigated. Furthermore, we will deploy the 

framework on a real blimp to test it in different natural 

circumstances.  

  

VI.   ACKNOWLEDGEMENT 

The authors want to thank Amir Hossein Bakhtiary for his 

assistance in the SIFT analysis.   

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.  The result of performing Monte Carlo Localization of a UAV 

on a sample image taken from Las Vegas, Nevada, during different 

steps. a) initial step: particles are uniformly distributed; b) a middle 

step (step 80): many different hypotheses coexist; c) last step (step 

100) only two hypotheses are remained, and the best one is closer to 

the true pose. The red dots are the particles, the green arrow-like ellipse 

indicates the true pose, and the big green circle shows the estimated 

pose based on particles. The blue and green rectangles are window 

viewed by the camera in each step, and the acceptable region for 

particle generation and resampling in all steps. 

 
(a) 

 
(b) 

Fig. 2.  The result of street detection method on an image taken 

a) before and b) after earthquake from Port-au-Prince, Haiti.  
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(a) 

 
(b) 

 
(c) 

Fig. 4.  The result of performing Monte Carlo Localization of a UAV 

on a sample image taken from Las Vegas, Nevada, during different 

steps. a) initial step: particles are uniformly distributed; b) a middle 

step (step 80): many different hypotheses coexist; c) last step (step 

100) only two hypotheses are remained, and the best one is closer to 

the true pose. The red dots are the particles, the green arrow-like ellipse 

indicates the true pose, and the big green circle shows the estimated 

pose based on particles. The blue and green rectangles are window 

viewed by the camera in each step, and the acceptable region for 

particle generation and resampling in all steps. 
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