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Abstract— An appearance-based similarity measure for local-
izing a robot along a route is presented. This measure assesses
the likelihood that the robot lies between a pair of positions
where snapshot images were captured during training. The
change in the scale parameter of matched SIFT features is
used to determine whether the robot lies ahead or behind
each snapshot. Experimental results in two different indoor
environments suggest that this similarity measure will improve
localization accuracy in situations where there is a large
distance between snapshot positions.

I. INTRODUCTION

Autonomous navigation of a robot along a trained route
is an ability with a variety of potential applications, such as
autonomous driving, security, and environmental monitoring.
Two general approaches to the problem have emerged. The
quantitative approach seeks to describe the position of the
robot and all sensed landmarks within the same global coor-
dinate frame. The qualitative or appearance-based approach
describes the robot’s location with respect to a set of stored
sensory snapshots captured during training. Methods based
on the quantitative approach generally adapt techniques for
Simultaneous Localization and Mapping (SLAM) to the
route following problem. Consequently, these methods also
inherit the computational burden of trying to reconstruct the
geometry of the route from a set of noisy samples—a process
that often requires offline solution (e.g. [1]). However, it has
been demonstrated recently that long routes can be followed
robustly without requiring a correct global reconstruction,
thereby reducing overall computational cost [2].

The qualitative approach requires no reconstruction, but
it does require sensory snapshots to be captured along
the route with sufficient frequency. Localization involves
comparing the current sensory snapshot with some subset
of the stored snapshots. This comparison of snapshots may
operate directly on images or range data by using some
sort of correlation measure [3], [4], [5]. It is perhaps more
common to compare visual sensory snapshots by using
image features such as vertical edges [6], KLT windows
[7], or SIFT keypoints [8], [9]. Route following methods
recently proposed by Chen and Birchfield [7] and Zhang
and Kleeman [5] adhere to the qualitative framework and
are particularly impressive. They have demonstrated robust
performance along routes that are hundreds of metres in
length. Nevertheless, both report that errors in localization
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do occur and occasionally cause their methods to fail.

Our approach to route following relies on visual homing to
guide the robot from its current position to the next snapshot
along the route [10], [11]. The route is represented by a
sequence of snapshot positions at which images are captured
during training (see figure 1). The method described in this
paper estimates the probability that the robot lies between
each pair of adjacent snapshot positions along the route.

Fig. 1. A route is represented by a sequence of snapshot positions denoted
s;. The arrows indicate the orientation of the robot at each s;. Directions
perpendicular to the route through each s; are given by dashed lines. Each
segment of the route is given an integer label ¢ corresponding to the pair
of snapshot positions (s;, S;41)-

If the robot is believed to lie between two snapshot
positions, s; and s; 4 then to travel forwards along the route
it should home to the image captured at position s, 1. If the
wrong pair is chosen then the robot may go off the route.
Some form of similarity measure is therefore required to
compare the current image with all pairs of snapshot images.
Inaccuracies in the similarity measure may be compensated
by probabilistic techniques based on Bayes filter [12] (such
as the Kalman filter used by Zhang and Kleeman [5]). Such
techniques work well to filter out distant possibilities by
considering the robot’s motion constraints. However, if the
similarity measure indicates that the robot is between s;
and s;11 when it actually lies between s; and s;y; then
a localization error can still occur if the previous belief
combined with the motion model fails to rule out (s;,s;41).

In this paper we describe a novel similarity measure based
on the scale change of Lowe’s SIFT features [13]. We utilize
omnidirectional images as sensory snapshots. These images
have forward-facing, and backward-facing halves. Prior to
reaching the position of a snapshot along the route, we
expect to see the same features that lay in the forward
half of the snapshot image, only reduced in scale. Similarly,
features in the back half of the snapshot image should appear
enlarged in scale. Applying this style of reasoning for a
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pair of snapshots allows us to compute a simple similarity
measure that incorporates, the appearance, position, and scale
of features along the route.

In the next section we describe our similarity measure. The
notation used for the remainder of the paper is first presented,
followed by a discussion of how feature scale change can be
used as a stand-in for distance change measurements. The
details of our localization technique are then described. We
then present experimental results, discussion, and conclude
with some directions for future work.

II. METHOD
A. Notation

Positions in space, such as the current position ¢ and
snapshot positions s; and s;;;, will be indicated in bold
lower-case. Images captured from these positions will be
given in upper-case (e.g. C, S;, and S;1). Features extracted
from an image will be denoted with the same symbol, with
a superscript giving the index of the feature. For example,
S7 indicates the j* feature extracted from image ;.

B. Feature scale change

In the description of our method below, we make geomet-
ric arguments on the basis of whether a perceived feature
has expanded or contracted. That is, whether the object that
generated the feature is closer or further from the robot at the
current position than at some reference position. As opposed
to estimating the distance to the feature, we use the change
in the scale parameter of SIFT features to indicate whether
the feature has expanded or contracted. Consider C” the ;"
feature extracted from the current image:

CJ = {Cjkr’Cj,y7cj79’cj,ﬂ’cj7d} (1)

The feature’s image location is (C7®, C%¥), its orientation
is C79, its scale is C7?, and its descriptor vector is C7¢. As
far as we are aware, our previous visual homing algorithm
[11] was the first visual navigation method to make explicit
use of the scale parameter C7+° (henceforth referred to as o
if the context is clear). Here we use it again, only for the
purpose of localization as opposed to homing. Informally, o
is the effective amount of Gaussian blurring required for a
feature’s distinctive characteristic to emerge (the distinctive
characteristic being that the point is a local extrema with
respect to both scale and space). Consider a landmark
which yields one or more SIFT features. If the landmark is
approached, it will take more blurring for the corresponding
features to be detected. Thus, o increases as the distance
between the landmark and viewer decreases.

For our purposes we need only determine whether the
distance to a landmark has increased or decreased with
respect to a reference location. We utilize o for this purpose.
This substitution is valid as long as o decreases monotoni-
cally as distance increases. Figure 2(a) shows a selection of
panoramic images captured in the lobby of the S.J. Carew
building at Memorial University. A total of 10 images were
captured at increasing distances from a plaque on the wall.
The top image shows the positions of SIFT features extracted

from the vicinity of this plaque. Subsequent images show
the matched features for images at distances of 2.4, 4.8, and
7.2m from the top image. Figure 2(b) shows the scale o of
matched features versus distance from the reference location.
A clear trend of decreasing scale with increasing distance is
observable. Although, there are a few exceptions such as the
feature indicated by the heavy trace.

(a)

scale
[o2]
T
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distance
(b)
Fig. 2. (a) Images taken from the lobby of the S.J. Carew building of

Memorial University. Overlaid are the locations of features extracted from
the vicinity of a plaque on the wall. (b) Plot of the relation between spatial
distance and feature scale for the features extracted from the top image in

(a).

C. Concept for localization

As shown in figure 1, each snapshot position s; has an
associated heading, which is just the orientation of the robot
at the time that the image S; was captured. The heading at
these positions is important as it is used to define the front
and back of each snapshot image. Dashed lines through each
s; indicate the direction orthogonal to the heading. These
lines divide the route up into segments labelled by index
1. Bach segment ¢ is associated with the pair of snapshots
(Si,Sit1). The true segment that the robot lies on is given
by the discrete state variable x;. Our task is to estimate x;
given the set of features extracted from the current image.

4831



We define sift as a function that extracts a set of SIFT
features from an image. Thus, the set of features from the
current image is (C) = {C7}. For each possible value of
i we estimate p (v, = i|{C’}) which can be decomposed
according to Bayes rule:
iy P Ha) )

p (IJ{C }) p ({CJ}) 2
p ({C7Hae) p(ar) (3)
Since we are interested in the maximum value of
p (x:]{C7}) the term p ({C7}) is omitted. If we have no
prior notion of the location of the robot then we have a
global localization problem to solve. In this case p(x:) will
be equal for all ¢ and can be omitted. If we are tracking the
movement of the robot over time then p(x;) can be replaced
with p(x,) representing the predicted probability of the robot
lying at z;, which is obtained by taking the estimate from
the last time step and incorporating the robot’s most recent
movement [12]. In either case, we focus on p ({C7}|z,)
which is certainly required to determine p (z.|{C7}).

To compute p ({C?}|x, = i) we assume that the robot is
located on segment  of the route between s; and s;1. To be
more specific, the robot lies in front of s; and behind s; 1.

p ({C e =) =p ({C7 Hae > i = 1)
p ({C7} e <i+ 1)

The probability of computing the set of features {C7}
from such a position depends on the features computed
from images S; and S; 1. We consider first determining the
probability of obtaining {C7} given that the robot is in front
of s;. That is, we compute p ({C7}az, >i —1).

We employ omnidirectional images (cf. figure 2(a)) cap-
tured from a digital camera mounted upwards on a robot
to point at a hyperbolic mirror. Since the forwards direction
corresponds to a fixed position in the image, it is always
possible to separate the image into its front and back halves.
We separate the set of features sift(S;) = {S7} into those
from the front half of the image and those from the back.
Let {F7} be the set of features from the front half of .S; and
{B/} be the set from the back half of S;.

{F/} = front({s]}) )
{B]} = back({s/}) 6)

Next we determine the set of correspondences between
{F/} and {C7} and between {B]} and {C”}. We utilize
the standard match criterion described by Lowe [13] which
accepts a match only if it is significantly better than the sec-
ond closest match. This generates a set of correspondences
Mp, from {F/} to {C7} and Mg, from {B?} to {C7}. Both
Mp, and Mp, are sets of ordered pairs (a, b) where o is the
index of the reference feature (/7 or Bf) and b is the index
of the matching feature from the current image C?.

We now identify those features from F; which have
expanded in C' and those from B, that have contracted:

Exp(Fy) = {Ff: (a,b) € Mp, and 7 < C™°}  (7)
Con(B;) = {B% : (a,b) € Mg, and B"" > C%»°} (8)

R

“)

Each feature F* € Exp(F;) has expanded, meaning that
the matching feature in the current image C® has a larger
value of . Consequently the distance from the robot to the
object that generated the feature is smaller than the distance
at s;. We denote the object that generated F7* as f{*. The
fact that I7? has expanded implies that c lies inside the
circle centred at f*. This circle is shown in figure 3(a). The
portion of the route within this circle is shaded dark grey.
If the robot lies on the route in front of s; we assume that
features from the front of S; will have expanded. Therefore
the proportion of expanded features should be proportional
to the probability that the robot lies along the route ahead of
S;.

p({CYay >i—1) W

®

(b) Feature from the back half of S; has contracted

Fig. 3. (a) The feature F* has expanded, meaning that c lies within the
circle centred at the position of the feature-generating object f*. (b) The
feature B has contracted, meaning that c lies outside the circle centred at
b?. The feature is assumed to be visible only within the cone defined by
(1 and 2. The light grey region indicates the possible locations of ¢ with
the region along the route shaded in dark grey.

A similar situation holds for contracted features in the back
of the image. Each feature B € Con(B;) has contracted,
meaning that the distance to the feature-generating object b
has increased. Each such feature was visible from s; but we
assume that its visibility is limited to a certain angular region.
In other words, we assume that features are not radially
symmetric. The angles of visibility ¢; and (» are shown in
figure 3(b). A contracted feature from B; indicates that the
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robot lies outside of the circle centred at b$ which intersects
s;. Such a feature must also lie within the cone of visibility
defined by (; and (2. The segment of the route within this
region is shaded dark grey in figure 3(b). If the robot lies
on the route in front of s; we assume that features from the
back of S; will have contracted. Therefore,

j . |Con(B;)|
CY oy >i—1) x ———=
pUEe = = x )

We combine equations 9 and 10 to obtain the following:
|Exp(F;)| |Con(B;)|
{EY B!

It remains to compute p ({C}|z; < i+ 1), the probabil-
ity of sensing the current set of features if the robot lies

behind s;4;. The logic for this case is symmetric to that
described above and leads to the following expression:

(10)

p({C7Yay >i—1) = (11)

|Exp(Biy1)| |Con(Fiq1)| (12)
(B} HF )

Combining equations 11 and 12 according to equation 4
yields the following:

p({Cj}|xt <1+ 1) =

|Exp(F)| |Con(Bi)|
{EY B
|[Exp(Bit1)| |Con(Fit1)|
{BL 3 HELLY
We will refer to this measure of p ({C7}|z; =1i) as
scaleDiff .

As a benchmark for comparison we use the average
percentage of matched features from S; to C and S; 4 to C'.

Mg M
| sz\+| sl+1|> (14)

p({C7} |z =1) =

13)

LS ST

In our experiments the cost of computing either scaleDiff
or percentMatched is negligible in comparison to the cost
of either extracting SIFT features or computing the matches
between them.

III. EXPERIMENTAL RESULTS

A. Image sequences

1
percentMatched = 3 <

The images used below were collected in the lobbies of
the Inco Innovation Centre and the S.J. Carew building, both
located on the campus of Memorial University. They were
captured by a manually driven robot with an upward-facing
camera directed at a hyperbolic mirror. The height of the
mirror above the floor is approximately 45 cm. Images are
sampled from the raw camera image to yield a rectangular
image, with each row corresponding to a constant angular
latitude above or below the horizon. An example image from
the Inco centre is provided in figure 4. Figure 2(a) provides
examples of the robot’s view in the lobby of the Carew
building. The Inco centre route was 25 m long with images
captured every 50 cm. The Carew building route was 39 m
long with a capture resolution of 1 m.

Fig. 4.
Inco Innovation Centre of Memorial University.

Image 25 from image sequence inco4 captured in the lobby of the

IV. EXPERIMENTS

Figure 5 shows the performance of both percentMatched
(on the left) and scaleDiff (on the right) on the Inco route
when every second image is taken as a snapshot. The other
images are used to define the test route. The asterisk indicates
the actual robot position while the perpendicular diameter of
each ellipse is proportional to the value of percentMatched or
scaleDifff. Only some of the data is shown, but in all cases
the true position corresponds to the position of maximum
percentMatched or scaleDifff. From this perspective both
similarity measures appear equivalent. However, it is clear
that the values for scaleDiff are more tightly focused, indicat-
ing a much greater degree of confidence. The uniformity of
the distribution of similarity values can be measured in terms
of entropy. Let sim represent a similarity measure (either
percentMatched or scaleDiff). The entropy over the set of n
test images {7;} can be expressed as follows:

E Slm

The average entropy values are given in the figures cor-
responding to each experiment (figures 5, 6, and 7). For all
experiments described in this paper the average entropy of
scaleDiff is much lower than for percentMatched.

We then considered the accuracy of localization when the
distance between snapshots is increased. Tests were done on
both routes with the number of images between snapshots
increased to four or eight. For the Inco route this corresponds
to a distance between snapshots of 2 m and 4 m, respectively,
while on the Carew route it becomes 4 m and 8 m. In all
cases we select all non-snapshot images to be used as test
images.

Figures 6 and 7 show a selection of these results with 8
images between snapshots. The ideal behaviour is for the
snapshot pair with maximum similarity measure (indicated
by ‘+’) to enclose the true robot position (indicated by ‘x’).
Otherwise, the estimated and true positions differ and we
have a fault. No faults occur for either percentMatched or
scaleDiff on the Inco route with 2 m between snapshots. For
the Carew route with 4 m between snapshots percentMatched
experiences 3 / 40 faults whereas scaleDiff experiences none.

The faults for the largest tested distance between snapshots
(4m for Inco, 8m for Carew) are indicated with stars in fig-
ures 6 and 7. On the Inco route, percentMatched experiences
10 / 50 faults while scaleDiff experiences only one. One
of the faults due to percentMatched is more serious in that
the estimated position and the true position differ by two
segments. This fault is indicated with a double star in figure
6. The sole fault for scaleDiff occurs when the angle of

entropy({T;}) = i) logs (sim(7T3)) (15)
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percentMatched

scaleDiff

avg. entropy: avg. entropy: 0.0286

7.13

Fig. 5. Comparison of percentMatched and scaleDiff on the Inco route.
Small dotes indicate positions along the test route. Ellipses extend between
adjacent snapshot positions with their perpendicular diameters set to be
proportional to the normalized value of each similarity measure.

the training route (indicated by the direction of the ellipses)
differs strongly from the test route.

On the Carew route, percentMatched experiences 13 / 40
faults while scaleDiff experiences only two (both of which
are shared with percentMatched).

V. DISCUSSION AND CONCLUSIONS
A. Discussion

The results indicate comparable performance of these two
similarity measures when the distance between snapshots is
small. However, as the distance between snapshots grows
the number of faults generated by percentMatched appears
to be much greater than those generated by scaleDiff. The
only faults experienced by scaleDiff occur in the large bend
visible on the right side of both routes. This situation can be
avoided by increasing the capture frequency in regions with
high curvature. Such a step is also necessary to improve the
robot’s adherence to the route in such regions.

B. Conclusions

We have presented a novel similarity measure which
enhances the localization performance for a robot travelling
along a route. The next step is to test this similarity measure
in the context of a temporal filtering technique based on
Bayes filter. We are also developing a strategy to interpo-
late this measure using stored feature scale information for
intermediate nodes along the route for which no images are
stored. It would also be interesting to compare the perfor-
mance of our similarity measure with other recently proposed
methods based on the visual bag-of-words framework [14],
[15], [16].
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percentMatched scaleDiff
avg. entropy: 1.77 avg. entropy: 0.957 x 10°

avg. distance: 1.37 avg. distance: 1.16 percentMatched scaleDiff
avg. entropy: 1.485 avg. entropy: 1.65 X'10
Fig. 6. Comparison of percentMatched and scaleDIiff on the Inco route. avg. distance: 3.02  avg. distance: 2.14

Every eighth image from the manually trained route is selected as a snapshot
image. The ‘x’ indicates the robot’s current position. The ‘+’ indicates the . . .
£ . Dostt L Fig. 7. Comparison of percentMatched and scaleDiff on the Carew route.
position of maximum percentMatched or scaleDiff. Stars indicate faults, as . : : .
. . Every eighth image from the manually trained route is selected as a snapshot
described in the text. . . .
image. See captions of figures 5 and 6 for notation.
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