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pair of snapshots allows us to compute a simple similarity

measure that incorporates, the appearance, position, and scale

of features along the route.

In the next section we describe our similarity measure. The

notation used for the remainder of the paper is first presented,

followed by a discussion of how feature scale change can be

used as a stand-in for distance change measurements. The

details of our localization technique are then described. We

then present experimental results, discussion, and conclude

with some directions for future work.

II. METHOD

A. Notation

Positions in space, such as the current position c and

snapshot positions si and si+1, will be indicated in bold

lower-case. Images captured from these positions will be

given in upper-case (e.g. C, Si, and Si+1). Features extracted

from an image will be denoted with the same symbol, with

a superscript giving the index of the feature. For example,

S
j
i indicates the jth feature extracted from image Si.

B. Feature scale change

In the description of our method below, we make geomet-

ric arguments on the basis of whether a perceived feature

has expanded or contracted. That is, whether the object that

generated the feature is closer or further from the robot at the

current position than at some reference position. As opposed

to estimating the distance to the feature, we use the change

in the scale parameter of SIFT features to indicate whether

the feature has expanded or contracted. Consider Cj the jth

feature extracted from the current image:

Cj = {Cj,x, Cj,y, Cj,θ, Cj,σ, Cj,d} (1)

The feature’s image location is (Cj,x, Cj,y), its orientation

is Cj,θ, its scale is Cj,σ , and its descriptor vector is Cj,d. As

far as we are aware, our previous visual homing algorithm

[11] was the first visual navigation method to make explicit

use of the scale parameter Cj,σ (henceforth referred to as σ

if the context is clear). Here we use it again, only for the

purpose of localization as opposed to homing. Informally, σ

is the effective amount of Gaussian blurring required for a

feature’s distinctive characteristic to emerge (the distinctive

characteristic being that the point is a local extrema with

respect to both scale and space). Consider a landmark

which yields one or more SIFT features. If the landmark is

approached, it will take more blurring for the corresponding

features to be detected. Thus, σ increases as the distance

between the landmark and viewer decreases.

For our purposes we need only determine whether the

distance to a landmark has increased or decreased with

respect to a reference location. We utilize σ for this purpose.

This substitution is valid as long as σ decreases monotoni-

cally as distance increases. Figure 2(a) shows a selection of

panoramic images captured in the lobby of the S.J. Carew

building at Memorial University. A total of 10 images were

captured at increasing distances from a plaque on the wall.

The top image shows the positions of SIFT features extracted

from the vicinity of this plaque. Subsequent images show

the matched features for images at distances of 2.4, 4.8, and

7.2m from the top image. Figure 2(b) shows the scale σ of

matched features versus distance from the reference location.

A clear trend of decreasing scale with increasing distance is

observable. Although, there are a few exceptions such as the

feature indicated by the heavy trace.
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Fig. 2. (a) Images taken from the lobby of the S.J. Carew building of
Memorial University. Overlaid are the locations of features extracted from
the vicinity of a plaque on the wall. (b) Plot of the relation between spatial
distance and feature scale for the features extracted from the top image in
(a).

C. Concept for localization

As shown in figure 1, each snapshot position si has an

associated heading, which is just the orientation of the robot

at the time that the image Si was captured. The heading at

these positions is important as it is used to define the front

and back of each snapshot image. Dashed lines through each

si indicate the direction orthogonal to the heading. These

lines divide the route up into segments labelled by index

i. Each segment i is associated with the pair of snapshots

(si, si+1). The true segment that the robot lies on is given

by the discrete state variable xt. Our task is to estimate xt

given the set of features extracted from the current image.
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robot lies outside of the circle centred at ba
i which intersects

si. Such a feature must also lie within the cone of visibility

defined by ζ1 and ζ2. The segment of the route within this

region is shaded dark grey in figure 3(b). If the robot lies

on the route in front of si we assume that features from the

back of Si will have contracted. Therefore,

p
(

{Cj}|xt > i− 1
)

∝
|Con(Bi)|

|{Bj
i }|

(10)

We combine equations 9 and 10 to obtain the following:

p
(

{Cj}|xt > i− 1
)

=
|Exp(Fi)|

|{F j
i }|

|Con(Bi)|

|{Bj
i }|

(11)

It remains to compute p
(

{Cj}|xt < i+ 1
)

, the probabil-

ity of sensing the current set of features if the robot lies

behind si+1. The logic for this case is symmetric to that

described above and leads to the following expression:

p
(

{Cj}|xt < i+ 1
)

=
|Exp(Bi+1)|

|{Bj
i+1

}|

|Con(Fi+1)|

|{F j
i+1

}|
(12)

Combining equations 11 and 12 according to equation 4

yields the following:

p
(

{Cj}|xt = i
)

=
|Exp(Fi)|

|{F j
i }|

|Con(Bi)|

|{Bj
i }|

·

|Exp(Bi+1)|

|{Bj
i+1

}|

|Con(Fi+1)|

|{F j
i+1

}|

(13)

We will refer to this measure of p
(

{Cj}|xt = i
)

as

scaleDiff .

As a benchmark for comparison we use the average

percentage of matched features from Si to C and Si+1 to C.

percentMatched =
1

2

(

|MSi
|

|{Sj
i }|

+
|MSi+1

|

|{Sj
i+1

}|

)

(14)

In our experiments the cost of computing either scaleDiff

or percentMatched is negligible in comparison to the cost

of either extracting SIFT features or computing the matches

between them.

III. EXPERIMENTAL RESULTS

A. Image sequences

The images used below were collected in the lobbies of

the Inco Innovation Centre and the S.J. Carew building, both

located on the campus of Memorial University. They were

captured by a manually driven robot with an upward-facing

camera directed at a hyperbolic mirror. The height of the

mirror above the floor is approximately 45 cm. Images are

sampled from the raw camera image to yield a rectangular

image, with each row corresponding to a constant angular

latitude above or below the horizon. An example image from

the Inco centre is provided in figure 4. Figure 2(a) provides

examples of the robot’s view in the lobby of the Carew

building. The Inco centre route was 25 m long with images

captured every 50 cm. The Carew building route was 39 m

long with a capture resolution of 1 m.

Fig. 4. Image 25 from image sequence inco4 captured in the lobby of the
Inco Innovation Centre of Memorial University.

IV. EXPERIMENTS

Figure 5 shows the performance of both percentMatched

(on the left) and scaleDiff (on the right) on the Inco route

when every second image is taken as a snapshot. The other

images are used to define the test route. The asterisk indicates

the actual robot position while the perpendicular diameter of

each ellipse is proportional to the value of percentMatched or

scaleDifff. Only some of the data is shown, but in all cases

the true position corresponds to the position of maximum

percentMatched or scaleDifff. From this perspective both

similarity measures appear equivalent. However, it is clear

that the values for scaleDiff are more tightly focused, indicat-

ing a much greater degree of confidence. The uniformity of

the distribution of similarity values can be measured in terms

of entropy. Let sim represent a similarity measure (either

percentMatched or scaleDiff ). The entropy over the set of n

test images {Ti} can be expressed as follows:

entropy({Ti}) = −

n
∑

i=1

sim(Ti) log2(sim(Ti)) (15)

The average entropy values are given in the figures cor-

responding to each experiment (figures 5, 6, and 7). For all

experiments described in this paper the average entropy of

scaleDiff is much lower than for percentMatched.

We then considered the accuracy of localization when the

distance between snapshots is increased. Tests were done on

both routes with the number of images between snapshots

increased to four or eight. For the Inco route this corresponds

to a distance between snapshots of 2 m and 4 m, respectively,

while on the Carew route it becomes 4 m and 8 m. In all

cases we select all non-snapshot images to be used as test

images.

Figures 6 and 7 show a selection of these results with 8

images between snapshots. The ideal behaviour is for the

snapshot pair with maximum similarity measure (indicated

by ‘+’) to enclose the true robot position (indicated by ‘x’).

Otherwise, the estimated and true positions differ and we

have a fault. No faults occur for either percentMatched or

scaleDiff on the Inco route with 2 m between snapshots. For

the Carew route with 4 m between snapshots percentMatched

experiences 3 / 40 faults whereas scaleDiff experiences none.

The faults for the largest tested distance between snapshots

(4m for Inco, 8m for Carew) are indicated with stars in fig-

ures 6 and 7. On the Inco route, percentMatched experiences

10 / 50 faults while scaleDiff experiences only one. One

of the faults due to percentMatched is more serious in that

the estimated position and the true position differ by two

segments. This fault is indicated with a double star in figure

6. The sole fault for scaleDiff occurs when the angle of
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