
Prediction of action outcomes using an object model
Federico Ruiz-Ugalde, Gordon Cheng, Michael Beetz

Intelligent Autonomous Systems and Institute for Cognitive Systems, Technische Universität München

ruizf@cs.tum.edu, gordon@tum.de, beetz@cs.tum.edu

Abstract— When a robot wants to manipulate an object, it
needs to know what action to execute to obtain the desired
result. In most of the cases, the actions that can be applied
to an object consist of exerting forces to it. If a robot is able
to predict what will happen to an object when some force is
applied to it, then it’s possible to build a controller that solves
the inverse problem of what force needs to be applied in order
to get a desired result. To accomplish this, the first task is to
build an object model and second to get the right parameters
for it. The goals of this paper are 1) to demonstrate the use of
an object model to predict outcomes of actions, and 2) to adapt
this model to an specific object instance for a specific robot.

I. INTRODUCTION

The simple task of pushing an object can produce a very

rich set of different types of outcomes. An object will topple

or slide or both, depending on object characteristics like

shape, weight, friction coefficient(with other objects) and

also on the forces exerted on the object. The object can

also move for longer distances if pushed too hard. We can

think of the object as a system that takes the forces exerted

to it and produces outcomes, i.e. a control system. In the

context of robot manipulation it is desired that a robot is

able to accomplish a certain manipulation task where objects

are involved, therefore the robot needs to be able to control

the outcome of actions applied to this objects. The intent of

our work is to build a control system that is able to control

outcomes by exerting appropriate forces to the object.

Like with any other control problem, we need to describe

the system to control, i.e. the object. We call this description,

the object model. With this model the robot can predict

what will be the outcomes of the actions applied to this

object. Apart from only predicting the outcomes of actions,

the object model determines how can the object be fully

used, but the actual usefulness of the object is limited by

the possible different ways the robot can act on the object,

this is the input domain of actions to this object. This input

domain will define a output domain of outcomes, i.e. what

could possibly do the robot with this object. If the robot is

aware of this input domain and can predict the corresponding

outcomes, then we can say that the robot is aware of the

affordances of this object [1].

The inputs exerted to the object will be in general forces.

In case of a humanoid robot this forces can be produced

using pushing actions with the fingers, hands or arms, or by

grasping the object and then using the arm to exert the forces.

This actions can be produce by different types of controllers

in the robot, but from the object’s perspective this actions

will always be just some forces. This means that for object

control, the arm or hand controllers are not relevant as long

as it’s able to execute the object control commanded action,

although the arm and hand controllers will be part of the

factors that will define the input domain of actions, which in

turn is important for defining the affordances of the object.

As an example, if we want the robot to apply a static rotation

to the object, it may probably need to grab the object first

and then rotate, but for pushing the object, it’s enough to

apply some force with only one finger.

Strong evidence suggests that language and actions are

connected together [2], we believe that one way to make

this connection is by mapping the input and output domain

regions with words and sentences. Sentences like “push the

ice tea box away without toppling it”, “open the ice tea cup”

or “pour the contents of the ice tea into the mug” can give

an idea of how powerful for a robot a language can be.

We refer to this as a language-action-outcome association

This richness on how actions and outcomes can be expressed

is reflected on the richness of an action-outcome language.

(Fig. 1)
Verb

Adverb

Direct Object

Rest of predicate

Object Model

Parameters

Desired final state

Constraints

Fig. 1. Language-action-outcome association

Taking the first example sentence above one can find a

mapping between the words and the object controller and it’s

parameters, e.g. the verb “push” would translate to an input

domain region that uses a push controller to exert force, “ice

tea box” determines the object model to use, “away” gives

the desired outcome of the object (the object final position

must change to “away”), “ without toppling it” gives an extra

constraint to the object controller (optimization principle)

and partially defines the final outcome. (Fig. 2)

Push

Strong

Ice Tea

not rotate

box model

center of mass,

friction coefficient,

weight

Force notably higher

than Friction

Point of contact low

Fig. 2. Language-action-outcome association example

It’s important to notice, that the sentences that involve ac-

tions manipulating objects, refer directly to the manipulated

object and they usually don’t need to mention what the arms

or hands must do in order to accomplish the action. This

reinforces the idea that language helps to specify the object

controller parameters .

Figure 3 shows how the object controller fits into the

complete action-outcome language system.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1708

Reasoning

Planning

Action Language

Association Map

Perception

Commands

Constraints

Model

Selection

Parameters

Object-Model

System

command

Sensor

input

Motor

Controller

(Arm,

Hand)

Sensor

input

command

Motor

Space

Object

Space

Object

Object

physical

variable

Fig. 3. Complete system

This paper concentrates on the object control problem.

Specifically, we setup a simplified object model for a box,

we show how the robot explores the object to determine the

parameters of this object model for a specific box instance

and we demonstrate the use of this object model to predict

action outcomes. The model works in the 3D case, i.e. it can

predict outcomes from forces in 3D space. Also instead of

using vision as feedback, we are able to predict outcomes by

only using the torque and position sensors from the fingers

to feel movement of the object.

II. RELATED WORK

A lot of work has been done in the direction of ac-

quiring human motion capabilities. The use of learning

from demonstration for acquiring movement primitives has

been well know to provide good results in the context of

imitation, and has given extraordinary motion capabilities to

robots [3]. Advancements in robot technology like the DLR-

III lightweight arms and DLR-HIT hands [4], allow robots

to interact in more flexible ways with the environment. Since

object control is more centered on the object, the arm and

hands motion systems are not the main concern, but more

central is the object and how to interact with it. This is much

related to the concept of affordances [5] [1].

Affordances are action possibilities that are perceivable by

an actor. The idea is that given an object and an actor, the

affordances suggests how this object can be used by this

actor. In this direction work has been done in providing

robots with affordances. In [6], a robot observes movements

executed by himself of pushing/pulling and poking of an

object, then it associates this actions with the corresponding

outcomes, and finally is able to execute commands to achieve

a desired outcome. Vision is used to feedback the information

of the generated movement, a histogram based learning

algorithm is used to learn the model.

Also building on top of the affordances concept, is the

notion of OAC (object-action-complexes) [7]. OACs state,

that objects are constantly suggesting actions (to be realized

with them or upon them) which will ultimately transform the

object to a new state. It can also be interpreted as that the

action transforms the usefulness of the object. One of the first

examples of OAC applied to a robot is shown in [8], where

a robot learns a pushing rule, i.e. how an object reacts if

its pushed, and also learns the inverse pushing rule, i.e. how

to push an object in order to accomplish some goal. They

build the pushing rule with an artificial neural network. The

problem is solved for the planar case (3 DOF), and also uses

vision as the outcome feedback.

Instead of using directly a machine learning algorithm,

which may required high quantity of learning experiments

and where dimensionality can be problematic, our contri-

butions are focused on using mechanical models to build

the object model. This models are extremely compact and

require determining very few model parameters. Also the

exploration process for finding this parameters requires very

few experiments, and the robot could even be able to initially

just guess a value for this parameters or retrieve one from

a knowledge database, and start immediately to play with

the object, already by touching the object once, the robot

could get an update to the value that is good enough to start

predicting outcomes correctly.

III. OBJECT MODEL

The object model describes how the object reacts to certain

physical inputs. The inputs to the object are any physical

quantities that could change the state of the object over

time. For example forces on the object can change position,

orientation, speed, acceleration and shape. The outputs of the

object refer to physical values or properties of the object,

like current position, speed, acceleration and temperature.

The model describes the internal workings of the object, i.e.

how inputs affects outputs. The model will always be an

approximation of the real object behavior. How complete is

this model depends on how good in measuring the outputs

and producing inputs our robot is, or if we see it from another

perspective, how much do our robot needs to model the

object to fulfill some desired manipulation goals.

Building the model.

There are three main options for making the object model:

1) learning, 2) system identification and 3) prior system

definition plus parameter identification. In 1) a robot explores

the object by exerting forces (inputs) to the object and

measures the corresponding changes in state (outputs), then

use an appropriate machine learning algorithm to learn the

model function. This is the approach used in [6][8]. In 2)

the object will be explored with different inputs, analyze the

outputs and based on this, generate a transfer function that

tries to imitate the registered behavior of the system as much

as possible (and as needed), using differential equations. And

3) makes use of known mechanical and physical equations

(equations of motion, rigid body, soft body) to model the

objects manually and then the robot can do a more narrow

search for the parameters of this models for each object

instance.

Advantage of 1) is that the robot could be able to learn

new models on the fly of novel objects, also the model

learnt is adjusted to the robot itself, i.e. the generated model

will never be more complicated than what can be described

with what the robot manipulators can sense or actuate, the

1709

disadvantages are that the search space can be huge, which

in turn translates to slow learning. That is usually the reason

why it can be difficult to scale this systems to 3D. In 2)

the disadvantages are that doing system identification in a

multivariate system can be cumbersome specially when the

system has a lot of variables, also probably a lot of manual

work could be necessary to be done. In 3) the main dis-

advantage is that the mathematical description of the object

has to be done manually, which can be time consuming and

difficult in some cases, on the other hand it is only done once

for a class of objects. The advantages are: That a well made

model can be general enough to apply to a large quantity of

types of objects and still be a very compact model with few

parameters. The exploration process is reduced to only search

the model parameters for the object instance, this exploration

could be in some cases automatically guided or encoded in

the model. The model can be easily associated with objects

in a knowledge database. Because of this advantages this is

the method we choose to build the object model. Because

this model requires that the robot explores the object to find

the parameters to the model, it allows the robot to best fit the

model and therefore the object to itself (to what he observes).

Our model is designed to simulate a box, with the most

popular instance: an ice tea box shown in Fig. 4.

For simplification, we make to following assumptions:

The box is always in contact with another object with some

associated friction coefficient (box-table) and with the robot

hand. The object is not deformable or if it is, the deformation

is negligible. We are constraining the robot to “pushing

actions”, but some other actions may be possible with the

current model. We suppose the object is not moving (static

case), we can predict if the box will slide or rotate and how

strong depending on the applied force, but this prediction is

only the instantaneous value, i.e. before any movement, this

is fine for slow movements where inertia doesn’t play such

an important role. The box model consists of three parts:

friction, contact and static equilibrium.

1) Friction: Between the object and the supporting ob-

ject(table) we apply the coulomb friction model (Eq. 1). The

relevant parameter for friction is static friction coefficient

between the object and the supporting object. Fig. 4 shows

the interacting forces during friction in the simplified 2D

case (the model executed on the robot works in 3D).

Ff ≤ µFn (1)

For our box, Fn is the combined force (external force plus

weight) projected on the normal vector of the table plane and

µ is found out by robot exploration. Ff lies always in the

contact plane and with direction against the applied force.

We only consider statics, then µ is for the static case (µs).

2) Contact: This models how the object could rotate with

an axis along the supporting object surface, if it rotates at all.

The important parameter here is the contact surface shape.

The axis where the object will rotate depends on the shape

of the supporting base of the object and on the applied

torques. What needs to be found is in which vertices of the

base of the object there can be a rotation which involves

Fig. 4. Friction forces.

no vertical movement. For each vertex of the supporting

base of the object a range of rotations that will produce

vertical translation is computed using the other vertices. If

a torque that is applied around the current vertex, produces

a counteracting force from another point (that is part of the

supporting base of the object), because this point is in contact

with the table, then is said that this torque will produce

a vertical movement on this vertex, and then we can add

this torque to the set of torques that produces rotation with

vertical movement. There is a continuous range of torques

because there is a continuous set of points along the object

that can cause counteracting forces. To find this continuous

range, the normalized torques produced by arbitrary forces

at every other vertex of the base of the object is calculated,

then the biggest angle smaller than 180
◦ between all the

possible combinations of pair of angles gives the required

range. Then this range is calculated for every vertex of the

supporting base plane of the object and stored as part of

the object model. This algorithm is shown in pseudocode 1.

Chapter 27 of [9] contains more elaborate information on

contact forces.

t o r q u e r a n g e s = []
f o r p i v o t v e r t e x in b o x v e r t i c e s :

t o r q u e s = []
f o r v e r t e x != p i v o t v e r t e x in b o x v e r t i c e s :

t o r q u e = v e r t e x t o p i v o t v e r t e x t o r q u e (v e r t e x ,
p i v o t v e r t e x)

t o r q u e s . append (t o r q u e)
r a n g e = m a x a n g l e s m a l l e r t h a n 1 8 0 (t o r q u e s)
t o r q u e r a n g e s . append (r a n g e)

re turn (t o r q u e r a n g e s)

Pseudocode 1. Calculation of range of torques for each vertex of the base
of the box that produce rotations with vertical translation

3) Static equilibrium (Eq 2): This equation states that

all forces and torques should sum up to zero. It helps to

determine if the object will slide and/or rotate depending on

the applied forces, the friction model and the contact model.

Here the relevant parameter is the weight of the object.

∑
F = 0

∑
p× F = 0

(2)

Fig. 5 shows the interacting forces, contact points and

possible axis of rotation in the simplified 2D case, A and

B are the contact points with the supporting object and also

are the possible axis of rotation. Again the robot runs the

3D case.

1710

Fig. 5. Contact Model.

Prediction using the model.

Using equation 1 and the force balance part of equation 2,

the robot can determine if the box will slide or not. If the

combined force (external force and weight) projected on the

table plane, is bigger than the maximum friction force µsFn,

then the object will slide. On the other hand, if this projected

force is smaller or equal than the maximum friction force,

then the object will not slide.

Apart from sliding, the object can also topple (or rotate

in the vertical plane). This rotation can be around an axis

defined by two of the four box base vertices of the support

polygon, can be around an axis defined by a single vertex

from the base and the produced total torque (external torque

plus weight induced torque) around this point or no rotation

at all. For finding this out, first the robot must compute the

total applied torque (using the torque part of equation 2)

projected on the table plane on each of the supporting

vertices, then it must compare this torques against the torque

ranges calculated using pseudo-code 1. If for one of the

vertices, the applied torque lies inside of the torque range of

such vertex, then this vertex will translate vertically. For the

vertices where the applied torque lies outside of the torque

range, then a score is given to this vertices. The score is high

if the angular distance from the applied torque to the torque

range area is high, the score will be lower as the distance

turns smaller. The first two vertices with the highest scores

are the vertices where rotation without vertical translation

will occur. This means, that this two vertices will define the

axis on the table where the object will rotate. If two of the

three vertices have the same score, then it means that the

object will rotate around the axis with the direction defined

by the applied torque and passing through the the vertex that

has the highest score. Rotation will not occur if the applied

torque, lie inside of the torque range for all the vertices.

IV. EXPLORING FOR THE PARAMETERS

In order to find the value of the parameters for the object

model, the robot must do some exploration with the object,

that is, the robot has to play with the object for a while.

The fastest way to determine this parameters, is to have a

formula that solves for this parameter directly taken from

the object model, and then give the necessary inputs to the

object and measure the corresponding outputs to calculate

the parameter using such formula. One important thing is,

that when we solve for this formula, we must try as much

as possible to not depend on other unknown parameters.

If we can solve the formula and still only depend on one

unknown variable, then the experiment will be a simplified

usage of the object which shows only a part if its behavior.

Unfortunately this is not possible in most of the cases, what

could be possible, is to perform first one experiment where

only one parameter will be determined, and afterwards other

experiments that depend in previews (but already discovered)

parameters except for one. What becomes important is to find

out the right order of experiments to find all the parameters

one by one. Another more sophisticated way of finding the

parameters is starting with a guess of all the parameters and

then depending on the prediction errors adjust this parameters

until all of them predict correctly the behavior of the object.

This has the advantage that one doesn’t have to compute

the closed form solution for the model and that it can find

the parameters even in situations where multiple parameters

are tightly coupled together and the experiments to find this

parameters will not provide each parameter alone. On another

hand some parameters can be measured by other means, e.g.

using vision to find out shape.

A. Box dimensions and contact points (base shape).

Instead of letting the robot explore the shape of the object

(which would be a more complicated precedure), the robot

takes the shape of the object from a CAD model that is

also used by the vision system [10] to detect the position

of the object. In this way the object model gets the base

shape parameters from the CAD model and the position and

orientation of this base shape from the vision system. The

center of mass is infered from the dimensions of the box

assuming that the box is resting in one of the sides of the

box.

B. Weight

Weight is necessary for the friction and force/torque bal-

ance part of the model. There are two ways to find the weight

of the object. 1) A practical approach is to grab the object

then lift it and then measure the force in the force sensing

robotic hand/arm. 2) Another way to find the weight is to

touch the object with the robot hand in a point that will

most likely tilt the box but not slide it and then measure the

necessary force to start tilting to box (detect the starting of

tilting with movement detection from the hand/arm and/or

with vision), then use the contact and force/torque model

to calculate the weight. Because there is water in the box,

the box must be lying in one of its sides to let us use a

simple calculation for the center of mass and there can’t be

any suddent movement which would cause force oscilations.

Method 2 is used because our robotic hand was not strong

enough to lift the ice tea box with 1 liter of water inside.

One of the fingers of our robot is used as the force sensing

device. Since the same force sensing device is used in all

the experiments involving force sensing, then we avoided the

problem of calibration between different sensing devices.

C. Friction coefficient.

From equation 1 one can easily solve for the friction

coefficient: µ = Ff/Fn. Once the weight is known we

1711

can find out the static friction coefficient by applying an

increasing force until the object starts sliding, the force just

before this happens is the maximum static friction force. In

order to detect this precisely we can use the hand/arm to

measure when the object starts to move. It is important that

the object has low deformation to forces and that no tilting

occurs. To assure that the object will only slide and not rotate,

the robot pushes the object on a very low point of the object

height.

V. EXPERIMENTAL SETUP

Our experimental scenario is the assistive kitchen [11].

Our manipulation platform (Fig. 6) consists of a robot with

an omni-directional base, two 7 DOF Kuka-DLR light-

weight arms, two DLR-HIT-Schunk hands and two cameras.

The hands and arms are equipped with torque sensors in all

the actuated joints, and impedance control in joint space is

used along all the experiments. The hands have 4 fingers each

with 4 joints and 3 independent DOF and 3 torque sensors.

Fig. 6. Assistive kitchen robot

The Object.

We use an ice tea box that can hold up to 2 liters of liquid

but during the experiments it was half full. We have a 3D

CAD model of this ice tea box, but for the object model we

only take the 8 vertices that represent the main box of the

ice tea. This approximation will introduce some errors in our

results, but as we will show they are not big.

Motor Control.

In our motor control system we use the fingers as the

torque sensing devices and the arms as the actuator devices.

To move the hand to a specific location before touching the

object, we use a point attractor system, where the arm is

pulled by a velocity vector that is calculated in each control

cycle. The hand is moved to a position before applying

force to the object. From this position we start moving the

arm using a force controlled system where a movement

vector, a force magnitude and a maximum speed is given

to the controller. The hand starts to accelerate in the given

Weight µs

Mean 0.9952 kg 0.3780

Std. Dev. 0.0375 kg1/2 0.0689
Std. Dev. % 3.7721% 18.219%
Min 0.9367 kg 0.3127
Max 1.0583 kg 0.5533

TABLE I

PARAMETERS TABLE

movement vector direction until the force magnitude or the

maximum speed is reached.

Experiments.

Determining the object model parameters: The robot

starts by pushing the ice tea box applying a force with the

moving direction normal to one of the lateral sides of the

box. This force is applied in a high position (1cm below

the height of the box) to assure that the ice tea will always

tilt. The robot starts moving until the finger touches the ice

tea, the robot detects this situation by calculating the speed

of its hand and comparing it with a low threshold speed.

Once the hand is not moving anymore, the robot proceeds

to inspect its speed again and constantly stores the observed

forces from the finger. Then the robot starts to gradually

increase the applied force. When the robot detects movement

again, meaning that the ice tea started to topple, then the

robot stores the last force value before moving and restarts

the experiment. This experiment is repeated ten times, and

the goal is to estimate the weight of the ice tea box by solving

Eq. 2 for the weight torque given the external torque. The

second experiment is exactly the same as the first one, only

that the force is applied in the lowest height possible to be

sure that the ice tea will only slide and not rotate. By solving

Eq. 1 for µ and using the resulting weight calculated from

the last experiment, the robot is able to estimate the static

friction coefficient. This experiment also runs 10 times.

Action outcomes: In order to demonstrate the object model

prediction, the robot starts to apply forces along one whole

lateral side surface of the ice tea. In every point where

force is applied, this force is started low, to be sure there

is no sliding or rotation and then this force is gradually

incremented until movement is detected by the robot. This

is the only moment where an external observer intervenes to

give feedback to the robot about the outcome. The robot can

detect automatically if the ice tea is not moving or moving

(using the hands/arms position sensors) but it can not tell if

the object is sliding or toppling (there is work in progress in

this direction to get this system integrated with vision using

the system described in [10]).

VI. RESULTS.

Table I shows the results for 10 repetitions of the experi-

ments for finding the parameters µs and the weight.

The ice tea was previously filled with approximately one

liter of water. The estimated value is also near to one liter of

water (1kg). The standard deviation is low, which indicates

that the procedure to find this parameter is very stable.

The same can not be said about the friction coefficient. It

shows significant variability. The reason for this may be,

1712

because of not modeled complicated behavior of the friction

surface (deformation), also the surface of the table is not

completely regular and it may have regions with different

friction coefficients. Its important to notice that with our box

model the similarity of the estimated weight value compared

to the value measured with a calibrated scale is not of such

importance as the repeatability of the values measured. The

reason of this is that we want the robot to be able to predict

outcomes and is not our main concern to get exact physical

quantities. If all the model parameters and constants are given

under the same scaling factor (because they are measured by

the same sensors) then this model should be able to correctly

predict qualitative outcomes.

A comparison between the model predictions and actual

action execution is shown in Fig. 7. The Figures show in

colors the different outcomes when the box is pushed hard

enough to produce a movement. As the figures show the

object model is very good in predicting correct outcomes,

so it’s easy for the robot to determine which regions are

highly possible to get the desired outcome, but it’s not so

accurate about the minimum forces needed in order to slide

it. Most probably this is related to the fact that the static

friction coefficient showed great variability, posibly because

of not modeled complicated phenomena, but nevertheless this

prediction is still useful if the robot want to work away from

the threshold point between sliding and not sliding, which

for most of the applications it’s the case.

Fig. 7. Points of contact where the box slides or rotates if a force high
enough is applied. Right: prediction model, left: experimentation. In the
2D pictures, the circle area indicate the force magnitude, while in the 3D
pictures this force is indicated by the third coordinate. Red, green and blue
indicate slide, rotation and sliding/rotation respectivaly.

VII. DISCUSSION AND FUTURE WORK

We were able to demonstrate the use of an object model to

predict different types of outcomes when forces are exerted

to an object. Our setup takes forces in 3D and is able to

calculate outcomes without the need of continuous visual

feedback. Also the task of determining the parameters using

the robot itself proved to be very successful. It also showed

that there are some parameters that are specially difficult

to estimate precisely, in our case the friction coefficient

showed to have a high variance between measurements,

indicating that possibly small variations in other physical

variables could be changing the behavior of the object during

parameter estimation, ultimately affecting the estimation

process. Nevertheless, the robot is able to predict outcomes

correctly under this circumstances, and it should be able to

give useful results even when performing a minimal quantity

of parameter estimation repetitions. While the object and the

task of pushing seem to be simple, it proved to be challenging

specially in the quality of the force signals from the robot and

also in dealing with situations that the object model didn’t

consider completely. Expanding the system to allow the robot

to interact with more objects, giving the robot the capability

to find out the parameters without a closed solution to them,

and then coupling this object manipulation capabilities with

an action-outcome language are our next research goals.

ACKNOWLEDGMENTS

This work was supported by the CoTeSys (Cognition for Tech-
nical Systems) cluster of excellence.

REFERENCES

[1] D. A. Norman, “Affordance, conventions, and design,” Interactions,
vol. 6, no. 3, pp. 38–43, 1999.

[2] R. J. Porter and J. F. Lubker, “Rapid reproduction of vowelvowel
sequences: evidence for a fast and direct acousticmotoric linkage in
speech,” Journal of Speech and Hearing Research, 1980.

[3] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in Pro-

ceedings of the International Conference on Robotics and Automation

(icra2009), 2009.
[4] H. Liu, P. Meusel, G. Hirzinger, M. Jin, Y. Liu, and Z. Xie, “The mod-

ular multisensory dlr-hit-hand: Hardware and software architecture,”
in IEEE Transactions on Mechatronics, 2008.

[5] J. J. Gibson, The Theory of Affordances. John Wiley & Sons, 1977.
[6] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, G. Sandini, and G. S,

“Learning about objects through action - initial steps towards artificial
cognition,” in In Proceedings of the 2003 IEEE International Confer-

ence on Robotics and Automation (ICRA, 2003, pp. 3140–3145.
[7] F. Wrgtter, A. Agostini, N. Krger, N. Shylo, and B. Porr, “Cognitive

agents - a procedural perspective relying on the predictability of object-
action-complexes (oacs),” Robotics and Autonomous Systems, vol. 57,
no. 4, pp. 420–432, 2009.

[8] D. Omrcen, C. Bge, T. Asfour, A. Ude, and R. Dillmann, “Autonomous
acquisition of pushing actions to support object grasping with a
humanoid robot,” in IEEE/RAS International Conference on Humanoid

Robots (Humanoids), 2009.
[9] B. Siciliano and O. Khatib, Eds., Springer Handbook of

Robotics. Berlin, Heidelberg: Springer, 2008. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30301-5

[10] U. Klank, D. Pangercic, R. B. Rusu, and M. Beetz, “Real-time cad
model matching for mobile manipulation and grasping,” in 9th IEEE-

RAS International Conference on Humanoid Robots, Paris, France,
December 7-10 2009.

[11] M. Beetz, F. Stulp, B. Radig, J. Bandouch, N. Blodow, M. Dolha,
A. Fedrizzi, D. Jain, U. Klank, I. Kresse, A. Maldonado, Z. Marton,
L. Mösenlechner, F. Ruiz, R. B. Rusu, and M. Tenorth, “The assistive
kitchen — a demonstration scenario for cognitive technical systems,”
in IEEE 17th International Symposium on Robot and Human Interac-

tive Communication (RO-MAN), Muenchen, Germany, 2008, invited
paper.

1713

