
  

 

Abstract—The developed mobile manipulator is primarily 
composed of a mobile base, a robot manipulator and an 
eye-in-hand vision system. The material handling of a mobile 
manipulator has two stages: guiding the mobile base between 
stations, and picking up a workpiece from a station. Fast 
landmark recognition and obstacle detection based on color 
segmentation are proposed for path following, obstacle 
avoidance and mobile base positioning. Using the machine 
vision, a vision-based vector field histogram method is modified 
and applied to guide the mobile manipulator for obstacle 
avoidance. However, after the mobile manipulator arrives at the 
station, positioning errors of the mobile base and the 
non-horizontality of ground inevitably cause position and 
orientation errors of the mobile base relative to the station. A 
vision-guided control strategy with a behavior-based 
look-and-move structure is presented. This strategy is based on 
six predefined image features. In the designed neural fuzzy 
controllers, each image feature is taken to generate intuitively 
one degree of freedom motion command relative to the camera 
coordinate frame using fuzzy rules, which define a specific 
visual behavior. These behaviors are then combined and 
executed in turns to perform grasping tasks. 

I. INTRODUCTION 

N a semiconductor factory, production lines typically have 
a small production volume and period, leading to frequent 

factory re-layouts. Thus, applying mobile manipulators in the 
production lines of a semiconductor factory is favorable. This 
study adopts an eye-in-hand vision system to provide visual 
information not only for the guidance of the mobile base from 
one station to another, but also for the guidance of the robot 
manipulator mounted on the mobile base to perform the 
following pick-and-place operation. 

Obstacle avoidance is a necessary capability of an 
autonomous mobile manipulator. Borenstein and Koren [3] 
presented and analyzed a modified implementation, called the 
virtual force field (VFF) method, based on the potential field 
method (PFM) [5] in 1989. A disadvantage of the method is 
that doorways are difficult to pass due to repulsive forces. 
Borenstein and Koren developed an enhanced VFF-based 
method called vector field histogram (VFH) method in 1991 
[2]. VFH steers a fast-moving mobile robot toward the target 
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while avoiding unknown obstacles. Therefore, this study 
considers VFH as more appropriate than VFF and PFM for 
fast obstacle avoidance, and proposes a vision-based VFH 
method. 

Beyond the conventional visual servo control methods, 
behavior-based methods for visual servo control have already 
been developed in the literature [1][8]. A behavior-based 
system has been proposed to perform grasping tasks in an 
unstructured environment, in cases in which the position of 
the targets is not already known [8]. The controller maps 
input from the image space to the control values defined in 
the camera space. The control values are then transformed to 
joint controls by a Jacobain transformation, revealing that 
either a hand-eye calibration process has been implemented 
or the hand-eye relationship is known beforehand. 

In the visual guidance of the mobile base, the monocular 
distance perception is formulated from the perspective 
projection camera model rather than interpolation of the angle 
of view (AOV). The VFH algorithm for obstacle avoidance is 
modified here to consider the surrounding information fed 
from a monocular camera, improving the noisy binary result 
using a double-threshold comparator. In the visual guidance 
of the robot manipulator, the vision system compensates for 
the uncertainties in location associated with a mobile base or 
the object. A behavior-based look-and-move control strategy 
[7] is presented to guide the manipulator to approach the 
object and accurately position its end-effector in the desired 
pose. 

II. CONSTRUCTED MOBILE MANIPULATOR 

A mobile manipulator, as depicted in Fig. 1, was 
constructed in the Robotic Systems and Control Lab., 
National Cheng Kung University. It consists mainly of a 
mobile base, a robot manipulator, and a vision system. The 
mobile base is balanced using four passive caster wheels at 
the four corners of the base. It is driven by two powered 
wheels that provide motion and steering. Steering is 
accomplished by differential velocity control of the powered 
wheels. The robot manipulator used here is a vertical 
articulated manipulator with six degrees of freedom (DOF). 
The vision system includes one frame grabber and one CCD 
camera, which incorporates a 10× optical zoom lens with auto 
focus, allowing the camera to zoom in on distant subjects. 
The camera is attached to the end-effector of the robot 
manipulator. The electric power system of the mobile 
manipulator consists of one UPS and two sealed lead acid 
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batteries. 

  
Fig. 1. Developed mobile manipulator. 

III. VISUAL GUIDANCE OF THE MOBILE BASE 

The visual guidance system of the mobile base is composed 
of a path following module, an obstacle avoidance module 
and a positioning module, and switches between the three 
modules based on the surrounding environment conditions. 
The path-following module guides the mobile base to travel 
from one station to another by steering along the 
predetermined path. Then, the positioning module accurately 
drives the robot to dock with the station. The aim of obstacle 
avoidance is to enable a mobile manipulator to work in an 
object-scattered environment without damaging itself or any 
of the obstacles it encounters. 

A.  Landmark Detection and Obstacle Detection 

Two orange patterns, one ring and one strip in shape, were 
used as landmarks for the path following and positioning of 
the mobile base. The principal axis of a strip-mark indicates 
the orientation of the mobile base traveling path or that of the 
mobile base positiong, and the center of gravity (CoG) of a 
ring-mark locates the site for the arrival mobile manipulator. 

The captured image in the RGB color space is first 
preprocessed using the weighted average filter and converted 
to HSI color space. In the landmark detection scheme, the 
preprocessed image is then segmented according to the HSI 
values of each pixel using image thresholding on the hue and 
saturation bands. The potential region is formed by the 
intersection of the binary hue band with the binary saturation 
band, and followed by the morphological opening and closing 
operations to suppress noise without significantly affecting 
the result image. To identify connected regions of pixels 
within the resulting binary image, the region-based 
segmentation is achieved through 8-neighborhood labeling. 
Then, features of the connected pixels can be determined to 
recognize landmarks. Blob geometry features include 
roundness and number of holes for ring-mark recognition, 
and the aspect ratio for strip-mark recognition. Available 
measurements for landmark recognition include the 
roundness, the number of holes and the aspect ratio. 

In the obstacle detection scheme, a pixel is classified as 
representing an obstacle or the ground based on color 
information. The background model is represented in a 
histogram to present the distribution details of the entire 
frame traded at each bin. The bins in the histogram are 
addressed based on the H, S and I values of a color pixel. The 

background pixel is modeled by a Gaussian distribution, 
characterized by its mean and standard deviation. 
Background segmentation is a commonly applied technique 
to identify foreground elements quickly. Whether a pixel 
represents the background or an occluding element depends 
on its intensity and chromaticity. The appearance-based 
segmentation algorithm should consider the case of 
achromaticity. The procedure starts by evaluating the 
saturation of each pixel. A pixel is assumed to have a valid 
chromaticity only if the saturation is above a given threshold. 
The background is segmented from the result of binary hue, 
saturation and intensity image by logical multiplication 
(AND operation). The output is a binary mask marking pixels 
interpreted as the background. 

B. Monocular Distance Perception 

Cheng [4] and Taylor [6] proposed an analysis for the 
monocular camera that was tilted such that the entire field of 
view (FOV) of the camera intersected the floor. A linear 
division of the AOV was used to interpolate the viewing 
angle between camera’s principal axis and the ray of light 
traced from lens center to the object on the ground. Since the 
accuracy deteriorates as the AOV increase, this study derives 
the monocular distance perception from the perspective 
projection model rather than interpolation of AOV. 

The side view of the camera imaging model using 
perspective projection geometry, is illustrated in Fig. 2. The 
camera angle, cp , is measured from vertical to the principal 

axis. The vertical viewing angle, v , and the longitudinal 

distance relative to the object on the floor, Y , can be 
calculated with trigonometry. 
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where y  is the vertical AOV of the camera, v  denotes the 

vertical length from the object point to the principal point in 
pixels, imgH  represents the number of pixels per column on 

CCD, and E  is the elevation of the camera above the floor. 
The lateral distance relative to the object can also be derived 
with trigonometry. The horizontal viewing angle, u , the 

length from the lens center to the camera principal point 
projected on the floor, L , and the lateral distance relative to 
the object on the floor, X , can be computed as follows. 
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where x  is the horizontal AOV of the camera, u  denotes the 

horizontal length from the object point to the PP in pixels, and 

imgW  represents the number of pixels per row on CCD. 

To determine the orientation of the strip-mark on the floor 
with respect to the mobile base frame, an image point moving 
along the principal axis with a small offset from the mark's 
CoG is selected first. After transforming both the mark’s CoG 
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and this selected point from the image plane to the mobile 
base frame, two points in the mobile base frame are obtained. 
Consequently, the orientation of the strip-mark in the mobile 
base frame can be achieved. 

 camera
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 (a) Top view (b) Side view 

Fig. 2. Perspective projection of a point (x,y) onto a point (u,v). 

C. Path Following 

Path following is intended to steer the mobile manipulator 
along a predefined path, and eradicates both the orientation 
and lateral errors. The path following error of the mobile 
manipulator is composed of a lateral error, d , and an 

orientation error, err . The lateral error d  is defined as the 

distance from the origin of the mobile base frame to the 
pre-specified path. While the orientation error, err , is defined 

as the angular deviation of the robot’s heading direction from 
the direction of the desired path, as shown in Fig. 3. Both d  
and err  can be determined by (5). When the strip-marks are 

exploited as a landmark with spacing intervals in the 
workspace, each mark simply directs a ray as the preferred 
path for the mobile manipulator to follow. The landmark 
orientation recorded in the path following module by the 
mobile manipulator will not be updated until next mark is 
presented. 

( ) ( ) sinlr lr lrd sign sign        l r l r  and err l     (5) 

where the unit vector l=(cosθl,sinθl) denotes the orientation of 
the strip-mark on the floor in l  with respect to x-axis of the 

world frame. 
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Fig. 3. Path following coordinates. 

Considering the smooth steering and the path error 
convergence for the mobile manipulator, the steering angle is 
determined from the lateral error, d , and the angular error, 

err . A monotonic increasing function, Gamma-function with 

saturation, is introduced to the steering angle control. 
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where maxd  and steerMax  are the threshold values of the lateral 

error and steering angle, respectively. A large heading 

velocity together with a large angular velocity severely 
damages the stability and safety of the mobile manipulator. 
Therefore, the heading velocity, V , is calculated as follows. 
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where maxV  denotes the maximum heading velocity depending 

on the visual depth and the image sampling rate. To prevent 
V  from falling to zero, a minimum heading velocity is set as 

minV . 

D. Obstacle Avoidance 

The visual guidance system of the mobile base should 
switch the controller from the path following module to the 
obstacle avoidance module when the obstacle is encountered. 
The robot is aware of the desired travel path, but has to plan a 
path around obstacles. A vision-based VFH method is 
proposed in this study. 

After the vision-based mobile manipulator senses the 
surrounding environment with the camera and segments 
obstacles from background, the distribution of obstacles on 
the image plane, called the obstacle distance histogram 
(ODH), is then constructed from the obstacle edges. Next, the 
ODH is transformed from the image plane to Cartesian 
mobile base frame by the coordinate transformation. A 
drawback of VFH is that it treats the mobile manipulator as 
point-like vehicle. By contrast, the proposed method 
compensates for the width of the robot with an obstacle 
enlargement process. The enlargement is performed by 
eroding the obstacle-free space in the grayscale ODH, with 
one-half the width of the mobile manipulator on both the left 
and right hand sides of each obstacle on the ODH. Then, the 
ODH in the Cartesian mobile base frame is mapped onto the 
polar mobile base frame to build the polar obstacle histogram 
(POH). The direction of the POH is set by the direction from 
the obstacles to the robot center point, and the magnitude of 
the POH is the distance from the origin of the mobile base 
frame to the obstacles. A POH results are plotted in Fig. 4. 
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Fig. 4. Polar obstacle histogram. 

Once the polar histogram is obtained, VFH determines the 
open intervals (i.e., the obstacle-free sectors) based on the 
binary polar histogram using one fixed threshold. This 
approach may cause a problem in environments with several 
narrow openings, since the corresponding opening in the 
histogram frequently oscillates between an open and a 
blocked state in a short time. In such a situation, the robot's 
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heading can switch several times between the narrow opening 
and another opening, leading to indecisive behavior when the 
mobile manipulator comes very close to an obstacle. The 
proposed method solves this problem by introducing the 
Schmitt trigger as a comparator with the hysteresis band 
through the overlapping ranges. This double threshold 
comparator is widely utilized for waveform shaping under 
noisy conditions. The Schmitt trigger does not switch when 
the input is within the noise-rejection range, but does switch 
when the input is over τhigh or under τlow. 

Given the mobile manipulator maximum velocity, maxV , 

and the robot deceleration, a, the necessary time and distance, 
τ, to stop the robot before collision can be computed based on 
the accelerated movement formula. 

1
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In the above equations, hi denotes the ith bin value of the polar 
histogram, and τhigh or τlow represents the higher or lower 
trigger threshold which equals τ plus or minus half the noise 
rejection range. 

In the second data reduction stage, the same concept of 
steering selection in original VFH is applied. All of the 
opening sectors in the binary POH have been found, and the 
best direction of travel must be based on the direction to the 
desired path. The nearest open sector is chosen as the 
direction of travel until the next update cycle. Once no 
obstacles are perceived, the mobile manipulator turns to 
follow the strategic direction to return to the path center. The 
mobile manipulator runs initially at its maximum speed, and 
attempts to maintain this speed unless obstacles push its speed 
down. Since the velocity control utilizes the same algorithm 
as that described in the previous subsection, the bulk of the 
method is not repeated here. 

Due to the nonholonomic constraint of the differential 
drive architecture, our mobile manipulator cannot move 
sideways. The path tracking algorithm must be able to 
generate a smooth and continuous trajectory with the specific 
direction of the tangent at each waypoint. Considering the 
continuity, convex hull property and affine invariance, the 
Bezier curve is appropriate for this task and is applied herein 
to generate a trajectory for the robot to detour obstacles. 

E. Positioning 

The schematic layout of the station is shown in Fig. 5. A 
positioning mark for the position control consists of a ring 
and a strip mark. The ring mark's CoG is set in front of the 
desired robot location at a certain distance. The principal axis 
of the strip mark is set to pass through the centerline of the 
mobile base in the desired location and parallel to the station. 
Once the mobile manipulator closes to the station and the 
positioning mark is identified by the eye-in-hand camera. The 
positioning module tends to drive the mobile base toward the 
desired location and align the mobile base centrally along the 
strip mark's principal axis.  

Once the mobile manipulator arrives at the station labeled 
by a positioning mark, it performs an evaluation to 
double-check whether the robot lateral location error stays 
within the acceptable range. If it does not, then the mobile 
manipulator departures to move backward a while and repeats 
the above procedure one more time. To align the mobile base 
with the station, the robot manipulator moves the eye-in-hand 
camera from the mobile base heading position to the right 
side position, where the camera looks straight down at the 
docking-mark. To enhance the visual measurement accuracy 
during docking, the optical lens can be zoomed in to fill the 
whole docking-mark in the camera's FOV. The accurate 
alignment is further divided into two substages. First, the 
angular positioning error of the mobile base is adjusted, then 
the longitudinal error is eliminated. 
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Fig. 5. Station layout. 

IV. VISUAL GUIDANCE OF THE ROBOT MANIPULATOR 

Fig. 6 shows the behavior-based look-and-move control 
structure [7]. For the reference features, the end-effector is 
initially driven by a teaching box to a location that allows the 
gripper to grasp the workpiece. Then, the end-effector is 
driven to the “target location”, which is a safe distance from 
the preceding location (in this case, 10 cm above it). The 
reference features correspond to the image at the target 
location. In this study, the workpiece to be picked up by the 
manipulator’s end-effector is a rectangular parallelepiped. 
The images of the workpiece are captured from above by the 
eye-in-hand camera, as the end-effector moves toward the 
workpiece. The image of the workpiece’s top surface is a 
quadrangle. Only information about the quadrangle is of 
interest, so the captured image is firstly preprocessed to 
obtain a clear image of the quadrangle, from which six 
predefined image features can be calculated. The six image 
features include two coordinates of the CoG, relative distance, 
two ratios of lengths of two opposite sides and the principal 
angle of the quadrangle in the image plane. Then, six 
designed neural fuzzy controllers map image feature errors in 
the image space onto motion commands in the camera space. 
Also, each mapping from image space to camera’s Catesian 
space is mediated by fuzzy rules, and defines a particular 
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vision-based behavior. 
The complete manipulation task involved in implementing 

a human-like visual servoing method is first divided into two 
complex vision-based behaviors, “Approach” and 
“Surround”, and one basic operation, “Catch”. The Approach 
behavior is the translational motion of the camera toward the 
workpiece, which is further divided into two basic 
behaviors – “Center” and “Zoom”. The Center behavior is 
based on the first two image features, two coordinates of the 
CoG of the quadrangular image; this behavior translates the 
camera along the C X  and CY  axes of the camera frame to 
keep the CoG of the quadrangular image at the desired pixel 
in the image plane. However, the Zoom behavior is based on 
the relative distance of the quadrangular image; it moves the 
camera along the CZ  axis of the camera frame to keep the size 
of the object as a predefined value. Additionally, the 
Surround behavior is the orientational motion of the camera 
to keep the workpiece in the gripper, and is further divided 
into three basic behaviors - Yaw, Pitch and Roll. The Yaw 
and Pitch behaviors are based on two ratios of lengths of two 
opposite sides of the quadrangular image; they rotate the 
camera to adjust its orientation. Moreover, the Roll behavior 
is based on the principal angle of the quadrangular image; it 
rotates the camera about CZ  so that the principal angle equals 
that in the reference image, in which the gripper’s two fingers 
are arranged parallel to the short sides of target. Fig. 7 depicts 
these vision-based behaviors. Furthermore, the Catch is a non 
vision-based operation. 

 
Fig. 6. Behavior-based look-and-move control structure. 

Six simple neural fuzzy controllers employing 
back-propagation are designed herein. One image feature 
error is input to each controller, which changes one D.O.F. of 
the camera motion as the output. The back-propagation 
algorithm is used only to adjust the consequents of fuzzy 
rules for each neural fuzzy controller at each iteration during 
the manipulation. Restated, the camera is guided intuitively 
according to the image features on the image plane. Notably, 
the output values of the neural fuzzy controllers are defined in 
the camera frame, but the motion commands sent to the 
manipulator’s controller are relative to the end-effector frame. 
Consequently, the output values of the neural fuzzy 
controllers cannot be immediately sent to the manipulator’s 
controller. In this study, the pose of the camera in relation to 
the end-effector is invariant, so the camera and the 
end-effector can be treated as a rigid body. After the motion 
of the rigid body has been analyzed, the transformation from 
the output values in relation to the camera frame to the motion 
commands with respect to the end-effector frame is obtained. 

Apparently, this hand-eye configuration is inaccurate. 
However, the designed neural fuzzy controllers handle the 
inaccuracy by tuning the consequents of the fuzzy rules 
according to the back-propagation algorithm. This process 
saves considerable time without the intensive computation 
associated with hand-eye calibration. 

)( ZC

)( XC

)( YC

 
Fig. 7. Motion of defined vision-based behaviors. 

V. EXPERIMENTATION 

A. Experimental Setup 

The visual guidance used in experiments has two stages: 
guiding the mobile base to a predefined station and picking 
up a workpiece from the station. The first stage can further be 
divided into two substages: navigation and positioning. The 
camera pose and its zoom position have different settings for 
both two substages. During the navigation substage, the 
camera zoomed at the wide-end is raised 178.5cm upward 
from the floor and pitched 62º downward from the horizontal 
axis to its optical principal axis. In the positioning substage, 
the camera zoomed in close-up view is initially raised 140cm 
upward from the floor and commanded to turn right from 
look-ahead to vertical downward between the mobile base 
and the station. In the second stage, the camera is zoomed at 
the wide-end and the end-effector of the manipulator is firstly 
driven to the top location, about 40cm above the surface of 
the station. The workpiece to be picked up is tilted by 6° to 
the station surface to simulate non-flat ground in the 
application stage. 

B. Experimental Results 

Fig. 8 depicts the trajectory and heading angle of the 
mobile manipulator during obstacle avoidance. Once the first 
obstacle (chair1) is detected on the image and found to block 
the desired path at point 1, the mobile manipulator switches to 
the obstacle avoidance module and deviates from the 
specified path. The sub-goal (temporary target at point 2) 
location is first determined with the proposed vision-based 
VFH method, and a trajectory is generated by path planning 
based on the Bezier curve. After detouring the obstacle, the 
second obstacle (chair2) is detected but it does not block its 
path. Accordingly, the path following module returns the 
robot to the original assigned path.  

The path following module performs the approaching stage 
of the positioning module. Fig. 9 illustrates the successful 
positioning trajectory and heading angle of the mobile 
manipulator during positioning, and the mark locations found 
on image plane. The mobile manipulator stops behind a 
positioning mark 60cm from the front edge of mobile 
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manipulator to the centroid of the ring mark, as shown in Fig. 
9(a). To align the robot finely with the station, the robot 
manipulator is commanded to turn right from look-ahead to 
vertical downward (interval during 62-78 sec) between the 
mobile base and the station after the robot arrived at the 
station. The docking mark does not appear in the image in Fig. 
9(b) because of the blurred-motion image during the 
manipulator movement. 
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(a) Mobile manipulator on obstacle avoidance 
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(b) Heading angle of mobile manipulator 
Fig. 8. Obstacle avoidance performance of developed mobile manipulator. 
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(a) Mobile manipulator on positioning 
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Fig. 9. Positioning Performance of developed mobile manipulator. 

In the experiment performed to evaluate the positioning 
performance of the eye-in-hand manipulator, the end-effector 
of the manipulator is firstly driven to the top location. Then, 
the end-effector is visually guided to grasp the workpiece 
according to the presented control strategy with the preset 
parameters. Fig. 10 displays the images in the course of 
approaching the workpiece. 

VI. CONCLUSION 

This work completely constructed an autonomous mobile 
manipulator for material handling, which mainly consists of a 

mobile base, a robot manipulator and an eye-in-hand vision 
system. The vision system provides visual information not 
only for the guidance of the mobile base from one station to 
another, but also for the guidance of the robot manipulator 
mounted on the mobile base to perform the following 
pick-and-place operation. In the visual guidance of the 
mobile base, the eye-in-hand CCD camera is used as a 
ranging sensor. The relative distance is measured with a 
formalized relationship among the camera elevation, viewing 
angle and angles of view. Using the machine vision, a 
vision-based VFH method is proposed to guide the mobile 
base for obstacle avoidance. Finally, the mobile base docks 
with the station for the following grasping operations within a 
permissible level of positioning error. Positioning errors of 
the mobile base and the non-horizontality of ground 
inevitably cause position and orientation errors of the mobile 
base relative to the station. This paper presents a novel 
behavior-based look-and-move control strategy to guide the 
manipulator to approach the workpiece and accurately 
position its end-effector in the desired pose. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figs. 10(a)~(f) Images in the course of approaching the workpiece, based on 
the presented control strategy; (a)~(b) approaching stage; (b)~(c) fine 
positioning stage; (d)~(f) Catch operation. 
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