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Abstract— In this paper, we introduce the k-Dubins Traveling
Salesman Problem with Neighborhoods (k-DTSPN), the prob-
lem of planning efficient paths among target regions for multiple
robots with bounded curvature constraints (Dubins vehicles).
This paper presents two approaches for the problem. Firstly, we
present a heuristic that solves it in two steps, based on classical
techniques found in the literature. Secondly, we employ a
Memetic Algorithm to solve both combinatorial and continuous
phases of the problem in a combined manner. We provide
formal analysis about both proposed techniques, presenting
upper bounds to the length of the longest tour. Numerous trials
in simulated environments were executed, providing statistical
examination of the final results.

I. INTRODUCTION

Finding feasible paths for mobile agents that are either

length or time optimized has been the goal of several research

fields. In this context, the Traveling Salesman Problem (TSP)

remains as one of the most studied problems, and several

heuristics have been proposed to this NP-hard problem.

However, for several real-world scenarios the mathematical

formulation of the TSP may be either insufficient or too

simplistic to be useful. To overcome some of these limitations,

the TSP has been generalized in several ways:

• the k-Traveling Salesman Problem (k-TSP) employs k
salesmen that start and end at a single city. The remaining

cities must be visited once by one of the salesmen;

• in the Traveling Salesman Problem with Neighborhoods

(TSPN), each city is represented by a region instead of

a point. To visit a city, the salesman must reach any

point inside its region;

• in the Dubins TSP (DTSP), the travel path must conform

to a minimum curvature radius ρ at all points. This is

called a nonholonomic constraint.

All of these variations were created to tackle some real-

world problems such as precision agriculture, environmental

monitoring and surveillance and exploration of regions. The

k-TSP is the natural extension to multiple-agent setups. The

TSPN is commonly employed in the study of Wireless Sensor

Networks (WSNs), where a mobile agent travels through the

network collecting data from the nodes. The visiting region
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Fig. 1. Example of the k-Dubins Traveling Salesman Problem with
Neighborhoods: (a) regions to be visited by a group of Dubins vehicles
(dashed circles) and the base area (cyan square); (b) a possible set of tours,
one for each robot, to reach each node’s region and return to the base.

of each node represents its communication range. Finally, the

DTSP is convenient when the salesman is a nonholonomic

vehicle that conforms to the Dubins constraint.

In this work we introduce the k-Dubins Traveling Sales-

man Problem with Neighborhoods (k-DTSPN), a three-fold

generalization of the TSP suited to the scenario where a

team of k Dubins-constrained vehicles are dispatched from

a central base to visit some given regions of interest in the

environment and then return to the base, accomplishing the

mission as fast as possible. Figure 1 illustrates the problem.

This paper presents two approaches for the problem. Firstly,

we present a heuristic that solves this problem in two steps,

based on classical techniques found in the literature. Secondly,

we propose a technique based on a Memetic Algorithm to

solve both the combinatorial and the continuous steps of

the problem in a combined manner. Though investigations

concerning optimality issues are very complex in such cases,

we provide formal analysis about both proposed techniques,

presenting upper bounds to the length of the tours and showing

statistical examination of the final results.

The remainder of this paper is structured as follows. A

review of the literature is presented in Section II; in Section III,

we provide the problem formalization, propose two algorithms

to solve it and offer formal analysis for both; numerical results

for different scenarios and statistical analysis are shown in

Section IV; and in Section V, we draw the conclusions and

discuss avenues for future investigation.

II. RELATED WORK

Several shortest path algorithms for vehicles with no

constraints can be found in the literature. The Traveling

Salesman Problem (TSP), for example, is a fundamental

optimization problem and has been widely studied [1].
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The k-TSP aims to generate paths to k salesmen departing

from a given city and returning to it, after each one of all

cities have been visited by a single salesman. A more general

instance of this problem is known as the Vehicle Routing

Problem (VRP) [2], [3]. The k-TSP was also used to model

Data Gathering in Wireless Sensor Networks, by applying

holonomic multirobot teams [4], [5]. However, the kinematic

constraints of the vehicles are not considered, resulting in

paths that may not be feasible by real robots.

The challenge of generating a minimum length path through

a set of waypoints for a single vehicle, subject to minimum

curvature constraints and making use of Dubins curves, was

initially introduced in [6]. This problem was named DTSP

and was further studied in [7], [8], [9].

The generation of paths for multiple Dubins vehicles has

been the focus of a great amount of research, specially for

Unmanned Aerial Vehicles (UAVs) [10], [11]. However, in

both works the problem is not modeled with a single start/end

point (i.e. a base) for all vehicles, in contrast to the constraints

imposed by the classical VRP.

The TSPN was initially introduced in [12]. In this problem,

each city to be visited is represented as a geographic region,

referred to as the neighborhood of the city. The salesman

can meet the buyer at any point of its corresponding region.

The TSPN can be stated as the problem of generating the

shortest path that intersects every neighborhood at least once.

The TSPN is often used to model problems related to the

generation of tours to collect data from Wireless Sensor

Networks [13], [14].

Recently, the constraints imposed by DTSP and TSPN

began to be considered as part of the same challenge, which

will be referred here as the Dubins Traveling Salesman

Problem with Neighborhoods (DTSPN). In [15] a Genetic

Algorithm is proposed to deal with this problem, while in

[16], [17] a sampling based approach is used.

The DTSPN was also dealt with in our previous works. In

[18] a simple three-step evolutionary algorithm was used,

but the position and orientation of the waypoints were

not considered in the optimization process. This restriction

was lifted in [19], where a meta-heuristic was presented to

optimize the position of the waypoints inside the regions

and a heuristic was proposed to set the orientation of the

waypoints.

The extension of the DTSPN to the multiple vehicle

scenario (k-DTSPN) brings important benefits such as the

reduction of the overall time to visit all the regions, but

it also increases the challenge of evaluating efficient paths

that consider all the problem constraints. To the best of our

knowledge, this is the first work dealing with this problem.

Hence, in this paper we propose two approaches. The

first one solves the combinatorial (sequence of visits) and

continuous (position and orientation of waypoints) steps

separately. The second approach jointly considers both steps.

We show that the use of a Memetic Algorithm to solve both

combinatorial and continuous optimization problems in a

combined manner produces promising results.

III. METHODOLOGY

A. Theoretical formalization

Let us consider the scenario where a team of k robots must

visit a set of regions of interest, such as nodes of a wireless

network or targets of visual inspection (i.e., environmental

surveillance). Let H = {H0,H1, . . . ,HN}, where Hi ⊂ R
2,

be a set of N+1 closed regions representing the neighborhood

of each node i. The key to the underlying problem is to

guarantee that every region Hi is visited by at least one

robot. We call H0 the base area, where all robots are initially

located and to which all must return at the end of the mission.

For simplicity reasons,1 we consider that each region Hi

is circular and centered at coordinates ni = (xi, yi). Then,

each region can be formally defined as:

Hi = {p ∈ R
2 : ‖p− ni‖ ≤ ri},

where ri is the radius of the i-th node neighborhood.

A convenient and widely adopted way of dealing with the

kinematic model of mobile robots in a two-dimensional space

is to represent the instant configuration of the vehicle as a

position p and an orientation vector ψ. We use the notation

q = 〈p, ψ〉, where q ∈ SE(2), to represent a waypoint, a

configuration that a robot must eventually reach. A waypoint

is always placed inside some region Hi, i.e., p ∈
⋃N

i=1 Hi.

When a robot assumes a configuration q, we consider that

the corresponding region Hi was visited by that robot. For

future reference, the entire set of waypoints (excluding those

at the base area) will be referenced as Q = {q1, . . . ,qP }.

In the case that some regions intersect, it is more convenient

to define a single waypoint placed inside the common inter-

section area. In this article we select the desired intersections

according to an heuristic proposed in [19], described as

follows: Pick the set of intersections (Hi ∩ Hj ∩ . . .) that

cover the largest amount of regions. If there is more than

one set with the same number of regions, then we select

the set whose common region has the largest area. Then

place a waypoint at the centroid of the intersection and repeat

the process with the remaining intersecting regions until all

intersections have waypoints inside.

As for the nonholonomic motion constraints, in this work

we adopt the classical Dubins vehicle model [20]. This model

encompasses a large class of nonholonomic vehicles, such

as Ackerman steering cars and fixed-wing airplanes flying at

constant altitude. Under this model, the path is restricted to

a maximum curvature κ. As far as the underlying physics of

the system is concerned, the curvature is defined as a quantity

directly proportional to the lateral acceleration of the robot

in the plane, and κ is inversely proportional to the minimum

curvature radius ρ the vehicle is able to perform.

Now, let T = {T1, T2, . . . , Tk} be the set of tours Tj
assigned to each robot j, where each tour by definition begins

and ends at the waypoint lying on the base area. Formally:

Tj = 〈q
(j)
base,q

(j)
1 ,q

(j)
2 , . . . ,q

(j)
base〉,

1This is not a restriction of the method – just a convenience to keep
reasoning, implementation, and results visualisation simple. The methodology
proposed in this paper covers continuous, convex regions in general.
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where the waypoints q
(j)
c are in one-to-one correspondence

with the set Q, i.e.:

q
(j)
c ∈ Q subject to

q
(j)
c 6= q

(j′)
c′ ∀c 6= c′ ∨ j 6= j′

and the base waypoints q
(j)
base are all inside the base region,

H0. For simplicity reasons, we define each tour Tj as a

sequence Σj = 〈0, a, b, . . . , 0〉 of waypoint (configuration)

indexes from the set Q.

The previous definitions do not necessarily set that all

tours must contain more than the base area. In other words,

a satisfactory solution to the problem of visit all regions H

may not use all the k robots. For example, if the goal is to

spend the minimum of energy during the mission, using all

robots may not be interesting. In the other hand, if one aims

to reach all regions as fast as possible, using more agents

may be better. As we will discuss later, our objective is to

accomplish the task in minimum time.

Then, given a tour Tj for the j-th robot of the team, we

must optimize the configurations q
(j)
c ∈ Tj to minimize the

total circuit length Lj
ρ composed of Dubins curves over such

configurations, without breaking the geometric association

between each waypoint and the corresponding region(s). In

other words, we must find configuration sets QΣj
for 1 ≤

j ≤ k composed of PΣj
= 〈p

(j)
base,p

(j)
1 , . . . ,p

(j)
base〉 (a subset

of positions) and ΨΣj
= 〈ψ

(j)
base, ψ

(j)
1 , . . . , ψ

(j)
base〉 (a subset of

corresponding orientations) that generate short Hamiltonian

tours for each robot passing through the base area.

Problem 3.1: k-Dubins Traveling Salesman Problem with

Neighborhoods: Let k be the number of robots available to

execute the task of visit all H regions. These robots are

represented as Dubins vehicles. Let F : SE(2) → R
2 be a

projection function that transforms the robot’s configuration

qc into the workspace. Also, let G : SE(2)P → R
+
0 , where

G(Q) = max
j

[

Lj
ρ(QΣj

)
]

, j = 1, . . . , k, (1)

and subject to

F(qc) ∈ Hi, i = 1, . . . , P,

be the Dubins circuit length of the longest tour in T ,

calculated as

Lj
ρ(QΣj

) =
∑

Dρ(q
(j)
c ,q

(j)
c+1) ∀q(j)

c ∈ Tj , (2)

where Dρ : SE(2)×SE(2) → R
+
0 is the length of the shortest

Dubins path with minimum curvature radius ρ between two

configurations of a tour.

Then, we must optimize the Dubins circuit length as:

minimize
T

G(Q). (3)

By minimizing the longest tour applied to one robot and

under the assumption that all robots navigate at the same

constant speed, we expect to reduce the total time to visit all

regions.

B. Algorithm 1

Our first algorithm solves the k-DTSPN in two steps based

on classical techniques found in the literature. Initially, a

TSP instance is solved considering Euclidean costs and then

separated in k tours (k-TSP). The second step traces the

Dubins curves between the positions in order to make the

whole path feasible by vehicles with bounded curvature.

For solving the k-TSP we use a technique called k-

SPLITOUR [21]. This technique is the first constant factor

approximation algorithm for k-TSP, with a theoretical upper

bound of ǫ+1− k, where ǫ is the approximation ratio of the

algorithm used for computing the TSP tour. The algorithm

constructs k tours by splitting a TSP tour according to the

following steps:

1) Find a 1-tour (TSP) T0 = 〈p0,p1, . . . ,pn,p0〉, where

p0 is the initial vertex (base);

2) For each j, 1 ≤ j < k, find the last vertex pi(j) such

that the cost of the path from p0 to pi(j) along T0 is

no greater than (j/k)(L − 2cmax) + cmax, where L is

the Euclidean length of the circuit found in Step 1 and

cmax = max
n

‖p0 − pn‖; (4)

3) Build the k tours as T1 = 〈p0,p1, . . . ,pi(1),p0〉,
T2 = 〈p0,pi(1)+1, . . . ,pi(2),p0〉, . . ., Tk =
〈p0,pi(k−1), . . . ,pn,p0〉.

The cost of any tour Tj , for each 1 ≤ j ≤ k, obtained by

the k-SPLITOUR does not exceed

1

k
(L− 2cmax) + 2cmax, (5)

which is also the average cost of any tour [21].

The Dubins curves among the points in each tour are then

estimated by using a technique called Alternating Algorithm

(AA) [6], which is a very simple heuristic. In short, it

builds the circuit in such a way that consecutive pairs of

waypoints are linked together with straight line segments,

and the remaining (non-straight line) links are built using

Dubins curves based on the orientations previously assigned

to the waypoints. Formally, the orientation of a waypoint i,
expressed as ψi, is determined as follows:

ψi =

{

dir(pi,pi+1) if i is odd

dir(pi−1,pi) if i is even,
1 ≤ i ≤ P. (6)

Figure 2 shows an example of the results given by each

one of the steps of the first proposed algorithm.

The upper bound for the length of the longest route obtained

using Algorithm 1 can be obtained based on the bound of

both techniques used (k-SPLITOUR and AA).

Theorem 3.4 from [22] demonstrates that the Dubins

distance between two configurations is bounded by

Dρ(qc,qd) ≤ ‖pc − pd‖+ τρπ, (7)

where τ ∈ [2.657, 2.658]. Therefore, the upper bound for the

length of a path obtained using AA is

Lρ(P ,Ψ) ≤ ETSP(P) +

⌈

P

2

⌉

τρπ, (8)
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(a) (b) (c)

Fig. 2. Steps of Algorithm 1. (a) Circuit using TSP metrics; (b) resulting tours after executing k-SPLITOUR ; (c) Dubins paths obtained by the AA.

with P ≥ 2 and ρ > 0.

According to Equations 5 and 8, a tour obtained by this

technique has an upper bound in length given by

G ≤
1

k
(L− 2cmax) + 2cmax +

⌈

N

2

⌉

τρπ. (9)

Regarding the time computational complexity, each of

the steps (k-SPLITOUR and AA) runs in linear time O(n)
(excluding the complexity to solve the ETSP instances), where

n is the number of waypoints (P ≤ N ).

C. Algorithm 2

Among the solutions for similar problems, evolutionary

based ones have shown to be a good choice. Memetic

Algorithms (MAs) (sometimes referred as Hybrid Genetic

Algorithms) combine a population-based global technique to

perform exploration and a local search method to perform

exploitation [23], [24]. Figure 3 illustrates the basic steps of

a MA.

Start Generate initial population

Local search

Evaluation

Stopping

criteria met?
Stop

Selection

Crossover

Mutation

Yes

No

Generate a
new population

Fig. 3. Flowchart of a Memetic Algorithm.

One of the main steps in GAs is the choice of a good

representation of the individual, which represents a valid

candidate solution to the problem. Our chromosome is coded

as a permutation of the waypoints qc ∈ Q that must be

visited, representing all possible tours (T ). We represent the

base as different waypoints for each tour, since the orientation

at this specific point can be different among the tours.

Therefore, given the following example chromosome

q
(1)
base − q1 − q2 − q3 − q

(2)
base − q4 − q

(3)
base − q5 − q6,

when decoded gives T = {T1, T2, T3} where

T1 = {q
(1)
base, q1, q2, q3, q

(1)
base},

T2 = {q
(2)
base, q4, q

(2)
base},

T3 = {q
(3)
base, q5, q6, q

(3)
base}.

The initial population is obtained by generating random

individuals, i.e., different visiting sequences (leading to

different tours). After decoding the chromosome into tours,

we use the Alternating Algorithm to create initial feasible

paths, since this method gives a good initial estimation.

Once the generation of the new population is complete,

a local search procedure is applied in order to improve the

fitness of each individual (as stated before, we aim to reduce

the length of the longest tour. The local search is executed

in two steps.

The first step searches for a placement of the waypoint

inside a region that minimizes the Euclidean circuit formed

by all configurations of a tour. The optimization process is

based on the idea that a waypoint should be moved towards

its neighbors as follows: For each waypoint i we define a

target position pdir as:

pdir =

{

projection of pi onto pi−1pi+1 if α, β ≤ 90◦

middle point between pi−1 and pi+1 otherwise,

where α and β are the angles presented at Figure 4. Formally,

the direction of movement is given by:

η = dir(pi,pdir), (10)

where dir(pm,pn) is defined as:

dir(pm,pn) ,
pn − pm

‖pn − pm‖
. (11)

The position of all waypoints are then optimized towards

each pdir in order to minimize (pi−1pi + pipi+1), while

still respecting the boundaries of the region (or a common

region).

The second step of the local search is responsible for

reassigning the orientation each waypoint in order to find a
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pi−1

pi

pi+1pdir

α β
pi−1

pi

pi+1

(a) Projection along the height

pi−1

pi

pi+1pdir

α
β

pi−1

pi

pi+1

(b) Middle point

Fig. 4. Determination of the direction of movement for optimization of the
position of waypoints. (a) Case where the height of the triangle formed by
the neighbor points pi−1,pi and pi+1 fall on the line segment pi−1,pi+1,
the direction of movement points to the point pdir relative to the projection.
(b) Case where the projection falls outside the triangle, the direction of
movement points to the middle point pdir of the segment pi−1pi+1.

shorter Dubins curve connecting them. We make use of the

Mean Angle algorithm proposed in [19], which states that

the new orientation is evaluated as follows:

ψi =
vprev + vnext

‖vprev + vnext‖
, (12)

where vprev and vnext are direction vectors between neighbor

waypoints (see Figure 5) and defined as follows:

vprev = dir(pi−1,pi) and vnext = dir(pi,pi+1). (13)

pi−1

ψi
pi

pi+1

vprev vnext

Fig. 5. Evaluation of a given waypoint’s orientation based on the positions
of neighbor waypoints. The green arrow is the resulting orientation for the
waypoint pi, as shown in Equation (12).

It is important to remind that the results obtained during

the local search phase will only be kept if they are better

than the previous found solutions.

The steps related to the classical GA execution (e.g.

Crossover and Mutation) are responsible for dealing with

the combinatorial part of the problem (sequence of visiting).

The hybrid step (local search) will be focusing on the

continuous part of the problem (position and orientation of

the waypoints).

Recalling that all robots travel at the same constant speed,

the upper bound for the time spent to visit all nodes and return

to the base is defined by the robot that traves the longest tour.

The worst case is when a single robot is selected to visit all

regions (which may happen due to the random nature of the

initial population generation). Therefore, any tour obtained

by this technique has the same upper bound in length given

by Equation 8, which represents the length of a single tour

given by the AA.

The method runs in polynomial time O(nm), where n is

the number of regions and m is the size of the population.

Assuming a constant amount of individuals, the execution

time cost is linear and depends only on the number of regions

in the environment.

IV. EXPERIMENTS

In this section, we describe our experiments and the corre-

sponding statistical analysis. All ETSP problems instances

were solved to optimality using the well-known TSP solver

Concorde [25].

For better visualization purposes, we initially present an

example of possible results given by both techniques for

a small instance. In this first example we have 10 regions

randomly placed in an environment with dimensions 500m×
500m. The regions are to be visited by 3 vehicles, each

one with a minimum curvature radius of ρ = 50m. The

radius of each region was randomly chosen from the interval

[25m, 50m].

Figures 6(a) and 6(b) present the resulting tours obtained by

Algorithm 1 and Algorithm 2, respectively. One may clearly

observe in Figure 6(b) the benefits of the local search in

Algorithm 2, where the visiting waypoints (marked as yellow

arrows) have changed.

−300 −200 −100 0 100 200 300

−200

−100

0

100

200

300

x (m)

y
 (

m
)

(a) 1,337.16m

−300 −200 −100 0 100 200 300

−200

−100

0

100

200

300

x (m)

y
 (

m
)

(b) 1,075.15m

Fig. 6. Example solutions obtained by (a) Algorithm 1 and (b) Algorithm
2. The length of the longest tour is presented. The base is at the blue square.

Since the proposed technique is probabilistic in nature,

in order to perform a thorough statistical analysis we

present next an overall analysis with a significant number

of experiments. We ran 200 experiments in an environment

with dimensions 1,500m× 1,500m containing a total of 30

regions whose positions were uniformly randomly distributed.
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Each region had a fixed radius chosen randomly from the

interval [50m, 100m]. For each experiment, 3 vehicles with

a minimum curvature radius of ρ = 100m are available

to perform the task. Parameters related to the algorithm

execution are presented in Table I.

TABLE I

PARAMETERS USED IN ALGORITHM 2.

Parameter Value

Population size 100
Number of generations 50
Selection method Tournament of size 2
Elitism yes
Crossover probability 0.8
Crossover operator Order-based (OX2)
Mutation probability 0.5
Mutation operator Simple inversion

Figure 7 presents a histogram of the final result ratio

obtained by Algorithm 1 compared to the results given by

Algorithm 2. It is important to remember that ours cost

function is the length of the longest tour (not the sum of all

tours). We can see that Algorithm 1 produced paths that are

approximately 20% in average longer than Algorithm 2 (std.

dev. ≈ 8%) for about 97% of the instances. The mean ratio is

significantly larger than zero, t(199) = 26.64, two-tail p = 0.
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Fig. 7. Ratio between the results (length of the longest tour) obtained by
Algorithm 1 vs. Algorithm 2.

The next experiment was conducted in order to empirically

assess the asymptotic behavior of the quality of the results

(length of the longest tour). Simulations were conducted with

varying amounts of regions from the set {20, 30, ..., 100}, and

for each value 30 random instances were generated. We used

an environment with dimensions 2,500m× 2,500m and the

radius of each region was chosen randomly from the interval

[50m, 100m]. For each instance the maximum number of

robots to be used was selected from the set {2, 4, 8}, all

having a minimum curvature radius of ρ = 100m. The

parameters used by Algorithm 2 were the same as shown in

Table I, except for the size of the population, now composed

by 50 individuals.

Figure 8 presents the results. With a smaller amount

of regions and robots, Algorithm 2 obtains better results.

However, with the increase in these amounts the results of

Algorithm 1 become better. One reason for this is the use a

low number of generations since a greater number of robots

requires more iterations to find good sequences (permutations)

of visiting for all routes.
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(a) Algorithm 1
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Fig. 8. Asymptotic behavior of the average length of the longest tour in
accordance with the number of regions in the environment and number of
robots used.

As mentioned before, no previous works addressing the

problem presented here (k-DTSPN) have been found in

literature. Thus, we chose to perform a comparison with

a technique addressing a similar problem, the k-Traveling

Salesman Problem with Neighborhoods (k-TSPN). The work

of [5] presents an algorithm for data gathering in WSNs using

mobile robots called DGPTour. The DGPTour is a constant

factor γ+2−1/k away from the optimal tour, where γ is the

approximation ratio of the algorithm used to find the TSPN

tour. Figure 9 illustrates the paths obtained by the techniques

for a given instance.

−600 −400 −200 0 200 400

−400

−300

−200

−100

0

100

200

300

400

x (m)

y
 (

m
)

(a) DGPTour [5] (1,619.23m)
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(b) Algorithm 1 (2,002.40m)
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(c) Algorithm 2 (1,762.95m)

Fig. 9. Example presenting the resulting paths obtained by the different
techniques being compared. The center circle highlighted in orange represents
the base position.

We performed 200 comparative experiments for an en-

vironment with dimensions 1,000m × 1,000m. For each

experiment, 40 regions were distributed uniformly at random,

all having a radius of 40m. Four vehicles are available to solve

the problem, each one with a minimum radius of curvature

ρ = 50m. The parameters used by Algorithm 2 are the same

as shown in Table I. For each instance Algorithm 2 was

executed 10 times, and the average values were used for

comparison.
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Figure 10 presents ratio of the length of the longest tour

histograms found by the proposed methods (Algorithm 1 and

Algorithm 2) relative to the technique used as the basis for

comparison (DGPTour).
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Fig. 10. Ratio histograms between the length of the longest tour. (a)
Algorithm 1 vs. DGPTour; (b) Algorithm 2 vs. DGPTour.

The mean ratio found by Algorithm 1 was about 1.33, while

Algorithm 2 returned values 1.28 greater than the largest tour

found by DGPTour on average. However, it is interesting to

note that, although Algorithm 1 presents on average worse

results than Algorithm 2, in some cases it found better tours,

with a ratio slightly above 1.

V. CONCLUSIONS AND FUTURE WORK

This work introduced the k-Dubins Traveling Salesman

Problem with Neighborhoods, which consists of planning

efficient paths among regions for multiple vehicles with

bounded curvature. Both proposed techniques presented good

results, with Algorithm 2 producing paths 20% shorter in

average than Algorithm 1. Both methods produced results on

average 30% longer than the ones obtained for the k-TSPN

using the DGPTour [5].

Future directions include the extension of the proposed

methodology to groups of heterogeneous robots (i.e., with

different curvature constraints and velocities) and to environ-

ments containing obstacles, a scenario that best represents

real world cases. We also intend to improve the local search

procedure combining both steps, tackling the problems of

finding the best placement and orientation of waypoints

jointly.

A known problem concerning the use of Dubins curves is

the discontinuity of the curvature derivative, leading to abrupt

lateral accelerations that makes paths that are not actually

feasible by real robots. Therefore, we intend to study possible

techniques for generating smoother variations of acceleration,

e.g., the use of other types of curves such as clothoids.
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