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Abstract— Roboticists, biologists, and chemists are now pro-
ducing large populations of simple robots, but controlling
large populations of robots with limited capabilities is difficult,
due to communication and onboard-computation constraints.
Direct human control of large populations seems even more
challenging.

In this paper we investigate control of mobile robots that
move in a 2D workspace using three different system models.
We focus on a model that uses broadcast control inputs specified
in the global reference frame.

In an obstacle-free workspace this system model is uncontrol-
lable because it has only two controllable degrees of freedom—
all robots receive the same inputs and move uniformly. We
prove that adding a single obstacle can make the system
controllable, for any number of robots. We provide a position
control algorithm, and demonstrate through extensive testing
with human subjects that many manipulation tasks can be
reliably completed, even by novice users, under this system
model, with performance benefits compared to the alternate
models.

We compare the sensing, computation, communication, time,
and bandwidth costs for all three system models. Results are
validated with extensive simulations and hardware experiments
using over 100 robots.

I. INTRODUCTION

It is now possible to make and field very large (103–1014)

populations of simple robots. Potential applications for these

robots include targeted therapy, sensing, and actuation. With

large populations come two fundamental challenges: (1) how

to perform state estimation for these robots, and (2) how to

control the robots.

Traditional approaches often assume independent control

signals for each robot [1], but each additional independent

signal requires engineering and communications bandwidth.

This becomes more challenging as the robot size decreases.

At the molecular scale [2], there is a bounded number of

individual-specific modifications that can be made.

More recently, robots have been constructed with phys-

ical heterogeneity so that they respond differently to a

global, broadcast control signal. Examples include scratch-

drive microrobots, actuated and controlled by a DC voltage

signal from a substrate [3], [4]; magnetic structures with

different cross-sections that could be independently steered

[5]; MagMite microrobots with different resonant frequencies

and a global magnetic field [6]; and magnetically controlled
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Fig. 1. Examples of manipulating many simple robots using uniform
global inputs. Shown are 1) 1D compression, 2) 2D compression, 3) position
control, 4) obstacle avoidance, 5) pushing an object, 6) dispersion, 7)
splitting, and 8) guiding an object along a trajectory. Many of these can
be realized with an economy of sensing and communication bandwidth.
See the video attachment for simulation and hardware demonstrations,
http://www.youtube.com/watch?v=px5RdSvGD2Q.

nanoscale helical screws constructed to stop movement at

different cutoff frequencies of a global magnetic field [7].

In our previous work with robots that can be modeled as

nonholonomic unicycles, we showed that an inhomogeneity

in turning speed is enough to make even an infinite number

of robots controllable with regard to position. All these ap-

proaches show promise, but they also require both excellent

state estimation and perfect heterogeneity (no duplication). In

addition, the controllers required at best a summation over all

the robot states [8] and at worst a matrix inversion [9]. These

approaches become impractical for large robot populations.

In this paper we take a very different approach, illustrated

in Fig. 1. We assume a population of approximately identical

planar robots and one global control signal consisting of a

vector all robots should move along. This system is not con-

trollable because the robots move uniformly, and applying a

control signal transposes the entire group identically along

the vector. However, we show that a single square obstacle

is sufficient to control the final position of every robot

under mild workspace constraints. Moreover, we catalog

primitive operations, such as techniques for gathering or

dispersing robots in 2D. These manipulation primitives can

be accomplished with a constant number of commands that,
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unlike techniques relying on inhomogeneity, do not increase

with population size.

Our paper is organized as follows. After a discussion of

related work in Section II, we describe our problem and

algorithmic results in Section III. We discuss the results of

simulations and hardware experiments in Section IV, and end

with concluding remarks in Section V.

II. RELATED WORK

Our previous work [8], [9] focused on exploiting inho-

mogeneity between robots. These control algorithms the-

oretically apply to any number of robots—even robotic

continuums—but in practice process noise cancels the dif-

ferentiating effects of inhomogeneity for more than tens of

robots. This paper seeks to establish control algorithms that

extend to many thousands of agents. These techniques derive

inspiration from the field of nonprehensile manipulation [10].

A. Three challenges for massive manipulation

While it is now possible to create many micro- and

nanorobots, there remain challenges in control, sensing, and

computation.

1) Control—global inputs: The systems [2]–[7], [11]–

[13] all rely on global inputs, where each robot receives an

exact copy of the control signal. Two reasonable questions

are “What tasks are possible with many robots, all under

uniform control inputs?” and “What tasks are impossible

with many robots, all under uniform control inputs?”

2) Sensing—large populations: Parallel control of n

differential-drive robots in a plane requires 3n state variables.

Even holonomic robots require 2n state variables. Numer-

ous methods exist for measuring this state in micro- and

nanorobotics. These solutions use computer vision systems

to sense position and heading angle, with corresponding

challenges of handling missed detections and registration

of detections with corresponding robots. These challenges

are increased at the nanoscale where sensing competes with

control for communication bandwidth. In this paper we

outline control techniques that require only the first and

second moments of a population’s position, or the bounding

box containing all robots of interest.

3) Computation—calculating the control law: In our pre-

vious work the controllers required at best a summation over

all the robot states [8] and at worst a matrix inversion [9].

These operations become intractable for large populations of

robots. This paper, by focusing on direct human control of

large robot populations, accentuates computational difficul-

ties because the controllers are implemented by the unaided

human operator. We present an approach that, for many

tasks, bypasses these large-population problems by allowing

the user to command the entire population as a single unit.

For position control–bringing each robot to a desired final

position–we cannot bypass this problem, but we provide an

algorithm that scales linearly in the number of robots.

B. Nonprehensile manipulation

In nonprehensile manipulation, a robot affects its envi-

ronment without grasping [10], [14], [15]. In some ways,

our problem formulation is the inverse of nonprehensile

manipulation. Rather than just use a robot to restructure

the environment, we use the environment to restructure a

population of robots.

We can also use a large population of robots for traditional

nonprehensile tasks, such as transporting objects using the

flow of the robots [16], and manipulating an object too heavy

for a single robot. Our control formulation enables efficient

control of this kind of transport.

III. SYSTEM MODEL

A. Architectures

We compare three n-robot system architectures with the

following motion models:

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The state of the ith robot is [xi, yi, θi] ∈ R
3 and the state

of the system is ∈ R
3n. This paper primarily focuses on the

GLOBAL control architecture.

1) Addressable control with independent inputs (AD-

DRESSABLE): This architecture has the finest level of con-

trol, but requires each robot to be addressable. There are

three scalar inputs, the forward speed v ∈ R, the angular

turning rate ω ∈ R, and the address a ∈ {1, . . . , n,all}.
The ith robot only moves if the address is i or all. This

system is fully controllable because each robot can be steered

independently to a goal position and heading angle.

2) Control with uniform inputs in the robot’s local coor-

dinate frame (LOCAL): The system has two scalar control

inputs, the forward speed v ∈ R and the angular turning

rate ω ∈ R. We proved in [8] that the position (but not the

heading angle) of all the robots is controllable if each robot

has a unique parameter ǫi that scales the turning rate.

3) Control with uniform inputs in the global coordinate

frame (GLOBAL): The system has two scalar control inputs,

the forward speed v ∈ R and the desired heading ψ ∈ [0, 2π).
The parameter k scales the turning command. In an obstacle-

free workspace, this system is not controllable. The robots

translate and turn at the same rate and so their final positions

are the result of the same homogenous transformation being

applied to the starting pose of each robot. However, as shown

in Section III-D, adding a single obstacle is sufficient to

break symmetry and control the final position of each robot.

B. BLOCKWORLD Abstraction

We illustrate our points with a simplified BLOCKWORLD

abstraction. The workspace is a rectangular m1×m2 grid in

which each square is marked either free, fixed, or robot. All

robots are controlled by a shared input command from the

set {↑,→,←, ↓, ∅}, and can move horizontally and vertically
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in the grid, as long as there are no fixed squares stopping the

robot. The boundary of the grid is composed of fixed squares.

The general case of motion-planning in a world composed

of even a single robot and both fixed and moveable squares

is in the complexity class PSPACE-complete [17]. Adding

an additional robot does not decrease this complexity: given

any single-robot problem, we can place a second robot in

the boundary of the world and surround it with fixed squares

without changing the original problem’s complexity. Still,

there are many tractable subproblems. We will use this

abstraction to present two representative algorithms, the first

for removing all the robots from a specified region and the

second for position control of every robot. Both algorithms

require only a single fixed obstacle and we can explicitly

state the space and number of commands required.

C. Clearing a rectangular region

In this section we provide an algorithm to remove all

the robots from within an axis-aligned rectangular region

A using a single, rectangular obstacle composed of fixed

squares. The procedure consists of moving robots initially in

A to the obstacle, sweeping the robots in a back-and-forth

pattern past the obstacle, and returning this newly cleared

area to A.

Given: an area to clear with bottom left corner at [Ax, Ay]
of width Aw and height Ah, and an obstacle with bottom left

corner at [Ox, Oy] of width Ow and height Oh.

Algorithm 1 CLEARREGION(A,O)

1: move ← Ox −Ax ⊲ move obstacle to bottom left

2: move ↓ Oy −Ay

3: c = 0
4: while c ·Ow < Aw do

5: move ↓ Ah ⊲ clear column down

6: move ← Ow

7: c = c+ 1
8: if c ·Ow < Aw then

9: move ↑ Ah ⊲ clear column up

10: move ← Ow

11: c = c+ 1
12: end if

13: end while

14: move → Ax −Ox − c ·Ow ⊲ return cleared area to A

15: move ↑ Ay −Oy

Algorithm 1 requires space proportional to the area of A

and O:

(|Ax −Ox|+Aw)× (|(Ay +Ah)− (Oy +Oh)|+Ah) .

The total distance moved is linear in the area of A:

⌈Aw

Ow

⌉(Ah −Ox) +Ax + 2|Ox −Ax|+2|Oy −Ay|.

D. Position control

This section presents an algorithm to control the position

of n robots using a single obstacle. We employ the BLOCK-

WORLD abstraction, where the robots and the obstacle are

unit squares. Each call to Algorithm 2 moves one robot from

its starting position to its goal position.

a) Notation: The starting position of the kth robot in

world coordinates is kW (0), its desired final position is kWgoal,

and its position at time t is kW (t). We define fixed-size, axis-

aligned bounding boxes S and F such that kW (0) ∈ SW (0)
and kWgoal ∈ FW (0) ∀k ∈ [1, n]. The bottom left corners

of S and F are [SW
x (t), SW

y (t)] and [FW
x (t), FW

y (t)], and

are of width Sw, Fw and height Sh, Fh. Because all robots

are identical, without loss of generality the robot indices are

arranged in raster-scan order left-to-right, top-to-bottom in

S and top-to-bottom, left-to-right in F . We note that the

position of the kth robot may be specified in local reference

frame: kW (t) = FW (t) + kF (t). The unmoving obstacle is

located at [OW
x , OW

y ]. We assume the obstacle position Ox,y ,

the starting positions Sx,y , and the final positions Fx,y are

disjoint. Without loss of generality, we will assume that S is

to the lower right of the obstacle and F is to the upper left

of the obstacle, as illustrated in Fig. 2.

b) Procedure: At the beginning of the kth call, the

time is t, the bounding boxes S and F have been returned

to their initial positions on opposite corners of O, the first

k − 1 robots have been moved to their proper positions in

F , the remaining robots are in their original columns in S,

and O is between S and F . The kth robot starts in position

[kWx (t), kWy (t)] and should be moved to [kWgoal,x, k
W
goal,y].

The algorithm consists in “popping” the kth robot out of

the S(t) bounding box (steps 1–3), pushing the kth robot to

the correct x coordinate relative to Fx(t) (steps 4–7), pushing

the kth robot to the correct y coordinate relative to Fy(t)
(steps 8–10), and returning the S and F bounding boxes to

their original positions on either side of O (steps 11–12).

The commanded distance to move the kth robot from

kW (0) to the final destination kWgoal is bounded by:

Commanded distance(k) ≤ 2(2Sh + Sw + Fh + Fw + 2)

The total distance commanded for position control of n

robots is the sum:

Commanded distance =
n∑

k=1

Commanded distance(k)

≤ 2n(2Sh + Sw + Fh + Fw + 2).

c) Analysis: Algorithm 2 always requires 12n control

switches. The worst-case running time for Algorithm 2 oc-

curs when S and F are sparse and/or have large aspect ratios,

and the algorithm runs in O(n ·max{Sw, Sh, Fw, Fh}) time.

For more reasonable arrays, when S and F are dense with

aspect ratios near 1, the running time approaches O(n
√
n).

Algorithm 2 requires at least Sw+Fw+1 free space to the

left, Sw +Fw to the right, Sh +Fh +1 above, and Sh +Fh

below the obstacle:

(2Sh + 2Fh + 1)× (2Sw + 2Fw + 1) .
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(a) r-one robot (b) Manipulation experiment with Velcro-skirt grippers

Fig. 4. (a) (foreground) The r-one differential-drive mobile robot used for manipulation experiments (background) many r-one robots. (b) Manipulation
experiments. Each robot is wearing a circular skirt covered in Velcro fasteners. The object has the alternate type of fastener, so the robots remain attached
to the object after they collide with it. These experiments demonstrate the feasibility of multi-robot manipulation with simple robots and uniform inputs.

The inputs are low-pass filtered to provide a slow control.

There are two differences from Eqn. (1) due to hardware

constraints: 1.) Under LOCAL control, each robot receives

the same inputs. Over time, due to robot and environment

differences, the robots will not be aligned. This significant

process noise obviates the need to provide unique ǫi values

to each robot. 2.) The r-one robots do not have global

heading information. To emulate a global input, we send the

same velocity and turning commands to all the robots, and

augment this control with a distributed algorithm where each

robot turns to align itself with the average of its neighbor’s

orientation [20]. This algorithm is simple to implement, and

allows us to easily change the number of robots used from

experiment to experiment.

4) Task: Using each controller technique, a human user

will steer the robots from a starting position in the bottom left

side of the environment, to move an object to the goal region

(a position and an orientation). The experimenter records the

position/orientation of the object using a tracking system and

the time required for each task.

5) Results: The completion times are shown in Fig. 5,

and representative paths from one user in Fig. 6. Each shape

was tested with at least 5 subjects. GLOBAL had the shortest

mean completion times, while LOCAL had the longest mean

completion times for experiments with 5 and 8 robots.

Observing test subjects strive to control the robots led

to interesting conclusions. With ADDRESSABLE, the sub-

jects would align all the robots in a vector straight to the

goal, then enable them all to drive the robot to the target

position, then turn them to align tangent to the shape to

correct the orientation. The time to switch between robots

was the largest limitation to this approach and became

increasingly costly as the number of robots increased. With

the GLOBAL control, the subjects could very quickly bring

the object to the desired position—much faster than with

ADDRESSABLE—but controlling the orientation was difficult

because our arena was a rectangular shape with no convex

obstacles to pivot the object. Instead our test subjects relied

on dragging the object. The sum of the forces often created

a moment about the object, allowing the object to slowly

spin. The LOCAL control took the greatest amount of time

with more robots, requiring almost 40 minutes to push a 1

m object a 2 m distance in two trials of the 8-robot case.

The users were eventually successful, by iterating between

rotating the robots in place with alternating forwards and
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Fig. 5. We measured the completion time for human users using the three
control techniques in Eqn. (1). Users controlled n = 1 robots to manipulate
the box shape, 3 for the triangle, 5 for Texas, and 8 for the amoeba shape.
GLOBAL had the shortest mean completion times overall and LOCAL the
longest for experiments with 5 and 8 robots. Also shown are the means
and the final times for each trial (the same subject tested all three control
techniques, and each shape was tested with at least 5 subjects).

backwards velocity inputs. Occasionally the forward and

backward inputs opportunistically result in the object moving

in the general direction of the goal, and our test subjects

would continue this input until the object stopped progress.

B. Hardware Demonstrations: Large Robot Populations

The Kilobot [19] is a low-cost robot that allows one

to easily test collective algorithms with large numbers of

robots. It is available as an open source platform and is also

commercially available. Each robot is approximately 3 cm

in diameter and 3 cm tall, and uses two vibration motors to

move on a flat surface at speeds up to 1 cm/s. Each robot

has a single ambient light sensor which is used to implement

phototaxis (i.e., moving towards a light source).

Phototaxis is implemented by turning on one of the two

vibration motors, which causes the robot to slowly move

forward while turning. Since the ambient light sensor is

located on the back of the robot, this rotation will cause

the sensed light value to decrease until the robot is pointed

in the direction of the light source, at which point any further

rotation will cause the sensed light value to increase. Once

the light value begins to increase, the robot switches which

motor is active, causing the robot to rotate in the opposite

direction. The process of rotating until the sensed light value

increases and then switching directions is run continually,

which causes the robot to move towards the light source.
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Fig. 6. Representative paths of the triangle object, which is manipulated by
n = 3 robots to a goal position and orientation at (0.9, 0.6) m. The same
human subject repeated the task with three controllers: ADDRESSABLE in
red, LOCAL in green, and GLOBAL in blue. Outlines of the object every
10s reveal that the LOCAL controller had the longest and least smooth path.
GLOBAL control makes steady progress to the goal, while ADDRESSABLE

stops forward movement periodically to rotate each robot towards the goal.

The following tests in Figs. 7 and 9 were conducted

with n=101 kilobots, a 1.2×1.2 m whiteboard as our

workspace, using either a set of five lights arranged at the

{W,SW,S, SW,E} vertices of a 4 m square centered on

the workspace, or (for the Assembly task) moving a light

along the circumference of a 3 m radius circle centered on

the workspace.

1) 1D and 2D compression: Compression tasks use the

environmental obstacles to reduce the position variance. By

driving the robots into a vertical boundary, we can reduce

the horizontal variance. Driving into a horizontal boundary

reduces the vertical variance. Iterating between the two

reduces both variances.

2) Dispersion: Dispersion separates the robots to raise the

position variance. This requires a more complex workspace.

We use a Galton array, an arrangement of circular obstacles

in interleaved rows with spacing between obstacles sufficient

so that only one robot can pass through at a time. Robots

enter from the top, and bounce stochastically left or right as

they collide with obstacles. The probability distribution for

the resulting spread of robots can be computed analytically—

Pascal’s triangle provides the number of paths to each

subsequent row. Experimental results are shown in Fig. 8.

3) Object manipulation with obstacles: In this test a

single object was pushed to a goal region at the end of an

S-shaped maze. The object was weighted to require multiple

robots pushing to break static friction. Control consisted of

alternating between a) actively pushing the object and b)

regrouping sufficient robots behind the object to return to

active pushing.

4) Object manipulation with orientation control: To rotate

an object, the robots must exert a force with a line of action

offset from the object’s center of mass. In this test a single

object was steered to a desired position and orientation.

5) Assembly: The robots were initialized uniformly-

randomly in the workspace. Two components of a compound
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Fig. 7. Five tasks with 101 Kilobots: 2D compression, dispersion, ma-
nipulating an object through a maze, manipulation with orientation control,
and assembly. In each task the light source’s position was the only input
to the robot population. This input is robust to individual robot failures—
during each test several robots failed due to glitches, poor calibration, or
low batteries—but each demonstration was ultimately successful.

object, each requiring several robots to manipulate, both re-

quired reorientation before they could be assembled. Control

consisted of preparing both parts for mating, pushing the

objects together, and finally delivering the assembly to the

goal location.

6) Maze navigation: In this experiment we steered vary-

ing numbers of robots through an S-shaped maze and

recorded the number of robots at the goal position as a func-

tion of time. Fig. 9 summarizes the results. This experiment

indicates that there is an additional cost in time to steer

additional robots through a maze, but the growth appears

to be much less than linear. In single trials, n = 10 required

2.6× as much time as n = 1, and n = 100 required only

3.7× as much time as n = 1.
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TABLE I

TASK COMPLEXITY FOR n ROBOTS AND THE THREE CONTROL

ARCHITECTURES OF EQN. (1). MANIPULATION IS COMPARED FOR A

PATH WITH m STRAIGHT-LINE SEGMENTS.

Commands O(·) Sensing

Task A
D

D
R

E
S

S
A

B
L

E

L
O

C
A

L

G
L

O
B

A
L

A
D

D
R

E
S

S
A

B
L

E

L
O

C
A

L

G
L

O
B

A
L

position control n n n 3n 3n 2n
compression n n 1 3n 3n 4

move in unison n n 1 0 3n 0
dispersion n n 1 3n 3n 4

manipulation nm nm m 2n 3n 4
form closure n n 1 3n 3n 2n
force closure n n N/A 3n 3n N/A

that motion-planning in BLOCKWORLD with multiple robots

and fixed and moveable squares is PSPACE-complete. An

open problem is determining the complexity of motion

planning with multiple robots and only fixed squares. Our

algorithm for position control uses a single obstacle. This

algorithm concentrates the task complexity into the (large)

sequence of moves. An alternative approach is to design

complex environments that can enable position control with a

small number of moves. We will explore this design space of

environmental vs. movement-sequence complexity in future

work.

We demonstrated through extensive testing with human

subjects that many manipulation tasks can be reliably com-

pleted, even by novice users, under this system model.

Results were validated through hardware experiments using

over 100 robots, and simulations with large populations of

robots.

There are a number of things we cannot do with the

GLOBAL model of Eqn. (1). If two robots are in identical

environments, and start in identical states, they cannot be

differentiated. The same control sequence applied to each

will produce the same results. We note that this only applies

to deterministic systems. Stochastic systems, such as the

interleaved array of obstacles in Fig 1, can differentiate iden-

tical robots. Force closure on an object is a second impossible

task, but we demonstrated that equipping robots to adhere to

an object enables them to steer the object along a trajectory.

Our hardware experiments illustrated that orientation control

in a concave boundary with no interior obstacles is difficult.

In a frictionless environment, orientation control would be

impossible. Similarly, we cannot simultaneously generate

velocities in different directions.

Many of the tasks we demonstrated could be combined

for tasks that require large populations such as (1) search

and coverage tasks, (2) distributed object manipulation and

assembly, (3) parallel procurement and delivery. Future work

should expand our experiments through large-scale online

simulators, enabling larger populations of robots and re-

fined experimental control. We want to explore the level of

state feedback required to complete a task—could a trained

user steer a million robots through a maze using only the

mean and variance of the position distribution? Would the

bounding-box of the population be sufficient?

VI. ACKNOWLEDGEMENTS

The authors thank Alex Cornejo for providing software

and expertise to track the Kilobots. This work was supported

by the National Science Foundation under CPS-1035716.

REFERENCES

[1] A. Sudsang, F. Rothganger, and J. Ponce, “Motion planning for disc-
shaped robots pushing a polygonal object in the plane,” IEEE Trans.
Robot. Autom., vol. 18, no. 4, pp. 550–562, Aug. 2002.

[2] P.-T. Chiang, J. Mielke, J. Godoy, J. M. Guerrero, L. B. Alemany,
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