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Abstract— This paper presents system framework and con-
trol algorithm that enable a human operator to simultaneously
interact with a group of swarm robots in a remote environment.
In this control system, several characteristics of the config-
uration of the swarm robots are encoded as task functions,
for which a human operator can specify desired values that
are conveyed to the end-effector of the master robot. Stability
and tracking performance of the proposed control system are
investigated in the presence of communication delays so that
the swarm robots can be manipulated remotely. Moreover, the
swarm robots, which perform like a redundant robotic system,
can also regulate their position to achieve secondary tasks
autonomously. The proposed control algorithms are validated
via numerical simulations on a 3-DOF robot manipulator with
a group of mobile robots.

I. INTRODUCTION

Much recent research has been devoted to developing

control architectures and algorithms for human operators

to regulate a group of swarm robots [1], [2], [3], [4],

[5]. However, most of the control systems proposed in the

literature are difficult to fulfill complex missions in cluttered

environments. In addition, few studies have addressed the

issue of unreliable communication channels and the flexi-

bility of the swarm robot. Therefore, this paper proposes a

new control framework to accomplish bilateral human-swarm

interaction by adopting the task-space teleoperation control

system addressed in [6], [7].

Studies in recent decades have examined how to control

multiple robots in maintaining formation, avoiding obstacles,

and monitoring the environment [8], [9], [10], [11], [12],

[13]. Based on artificial potential functions and sliding-mode

control, [9] demonstrated that a group of swarm robots

could achieve formation control and social foraging. It has

been proposed recently to control a swarm of robots by

positioning robots inside a desired region while maintaining

a minimum inter-robot distance [10]. The redundant ma-

nipulator technique has also been proposed to control the

motion of a swarm group [14] by designing different task

functions with the use of null-space projection. In order to

handle task functions having different priority and to avoid

possible singularities in the system, [15] applied singularity-

robust task-priority inverse kinematics [16] to redundant

techniques for platoons of robots [14]. However, most of the
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Fig. 1. Overall system for bilateral human-swarm interaction.

aforementioned work does not consider human input, and can

be applied only for a predefined trajectory and formation.

Several studies have explored teleoperating a group of

mobile robots remotely using a single human operator. The

work [3] used passivity techniques to address the stability

problem of controlling groups of mobile robots by employing

one master robot. The teleoperation system with single-

master and single-slave robots [17] was extended by [2] to

support multiple mobile slave robots under constant, bounded

communication delays. Assigning an identity to each slave

robot enables coordinating their positions to maintain a rigid

formation. Although the aforementioned control algorithms

can provide a human operator to remotely command multiple

robots, assuming either no delay in the communication chan-

nel or slave robots following a predefined static formation

could limit the applications in practice.

This paper develops a control system for human-swarm

interaction, see Fig. 1, by adopting the study of semi-

autonomous teleoperation between kinematically dissimilar

master and slave robots [7]. We formulate two types of

tasks, teleoperation task and autonomous task, to enable the

swarm robots to be teleoperated by the human operator and

to autonomously achieve additional tasks. The teleoperation

task is accomplished by utilizing the abstraction of group

robots addressed in [14], [15]. Thus, the human operator

can control the movement and formation of the swarm

robots by commanding on the corresponding task functions.

Considering that the augmented slave swarm exhibits high

level of redundancy, the null-space of the group of swarm

robots can be utilized to achieve several sub-tasks.

The paper is organized as follows. Section II presents

the model of the master manipulator and the slave swarm

robots. The proposed controller and stability analysis are

addressed in Section III, which is followed by the dis-

cussion of teleoperation and autonomous task functions in

Section IV. Section V illustrates numerical examples of the

proposed bilateral human-swarm interaction system. Finally,

Section VI summarizes the results and provides possible

future research directions.
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Fig. 2. Control framework of the proposed human-swarm system.

II. HUMAN-SWARM SYSTEM

The proposed human-swarm system is composed of a

robotic manipulator, which is commanded by a human oper-

ator, and a group of swarm robots, which are teleoperated to

accomplish various tasks in a remote environment (Fig. 1).

The control framework, illustrated in Fig. 2, is formulated

subsequently in this section.

A. Master Side-Human Operator

Without loss of generality, the robotic manipulator in-

fluenced by the human operator is assumed to be a non-

redundant robot and described by [18]

Ml(ql)q̈l +Cl(ql , q̇l)q̇l +gl(ql) = ul + JT
l Fl , (1)

where ql ∈Rm is the vector of generalized configuration coor-

dinates, Ml(ql)∈Rm×m is the inertia matrix which is symmet-

ric and positive-definite, Cl(ql , q̇l) ∈ Rm×m is the matrix of

Coriolis/Centrifugal terms, which satisfies the property that

the matrix Ṁl(ql)− 2Cl(ql , q̇l) is skew symmetric under an

appropriate definition of the matrix Cl(ql , q̇l) [18], gl(ql) =
∂Gl(ql)/∂ql ∈ Rm is the gradient of the potential function

Gl(ql), ul ∈ Rm is the vector of applied control torque,

Fl ∈ Rm is the force exerted by the human operator, and

Jl is the Jacobian matrix that will be defined subsequently.

The subscript l in (1) denotes local site of the human-swarm

system.

Let Xl ∈ Rm represents the end-effector of the robotic

manipulator that is related to the robot joint-space as

Xl = fl(ql), Ẋl = Jl(ql)q̇l , (2)

where fl(ql)∈ Rm×m denotes the differentiable forward kine-

matics of the manipulator, and Jl(ql) = ∂ fl(ql)/∂ql ∈ Rm×m

denotes the differentiable Jacobian matrix that is assumed to

be known in this paper. Additionally, the Jacobian matrix is

a square matrix as the robot is considered a non-redundant

manipulator for simplicity.

B. Slave Side-Swarm Robot

The dynamics of the ith fully actuated mobile robot in the

swarm can be described by [9], [10], [19]

Mri(qri)q̈ri +Cri(qri, q̇ri)q̇ri +gri(qri) = uri +uei, (3)

where qri ∈ Rr is the vector of generalized coordinates,

Mri(qri) ∈ Rr×r is the symmetric and positive-definite in-

ertia matrix, Cri(qri, q̇ri) ∈ Rr×r is the matrix of Corio-

lis/Centrifugal terms where the matrix Ṁri(qri)−2Cri(qri, q̇ri)

is skew symmetric under an appropriate definition of the

matrix Cri(qri, q̇ri) [2], [10], gri(qri) = ∂Gri(qri)/∂qri ∈ Rr is

the gradient of the potential function Gri(qri), uri ∈ Rr is the

vector of applied control torque, and uei ∈ Rr is the external

force applied to the ith robot. The subscript r in (3) denotes

the remote site of the proposed system.

In this paper, we consider that the group of swarm is

constituted by n mobile robots whose dynamics are de-

scribed by (3). By denoting qr = [qT
r1, . . . ,q

T
rn]

T , Mr(qr) =
diag{Mr1, . . . ,Mrn}, Cr(qr, q̇r) = diag{Cr1, . . . ,Crn}, gr =
[gT

r1, . . . ,g
T
rn]

T , and ur = [uT
r1, . . . ,u

T
rn]

T , ue = [uT
e1, . . . ,u

T
en]

T ,

the dynamics of the swarm robots are given by

Mr(qr)q̈r +Cr(qr, q̇r)q̇r +gr(qr) = ur +ue, (4)

where Mr(qr)∈Rrn×rn, Cr(qr, q̇r)∈Rrn×rn, qr ∈Rrn, gr ∈Rrn,

ur ∈Rrn, and ue ∈Rrn. Following the dynamics (3), the matrix

Ṁr −2Cr is skew symmetric.

Therefore, the task-space function of the swarm robots (4),

similar to a robotic manipulator, can be described as

Xr = fr(qr), Ẋr = Jr(qr)q̇r, (5)

where Xr ∈ Rm is the vector of task functions that will be

defined subsequently to represent the characteristic of the

swarm robots, and Jr(qr)∈ Rm×rn is the Jacobian matrix cor-

responding to Xr. The relationship between the generalized

coordinates of the swarm robots and the task-space function

is given by fr(qr) = [ fr1(qr) . . . frm(qr)]
T ∈ Rm, where

fri(qr) are differentiable scalar task functions that suitably

depend on the state of swarm to describe the abstractions of

the group of robots. Accordingly, the Jacobian matrix of the

swarm robot can be represented by

Jr(qr) =
∂ fr(qr)

∂qr

=
[∂ fr1

∂qr

T

, . . . ,
∂ frm

∂qr

T ]T

, (6)

where ∂ fri/∂qr is the ith row of the Jacobian matrix Jr.

Based on the definition of Jr, the external force applied

on the swarm group can be represented by ue = JT
r Fr,

where Fr ∈ Rm denotes the external force corresponding to

the task-space function of the swarm robots. Therefore, by

assigning appropriate task-space function for the abstraction

of the swarm robot, the group behavior of the swarm robots

can be controlled by manipulating the corresponding task

functions [8], [14]. The design of artificial task functions

fri(qr) will be addressed in Section IV.

In this paper, we assume rn > m such that the augmented

dynamic model of swarm robots (4) performs like a redun-

dant robotic system. Therefore, the Jacobian matrix Jr is a
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non-square matrix so that the null-space of the swarm robots

can be controlled to provide the swarm robot the ability to

achieve several sub-tasks [20], [21].

III. CONTROLLER DESIGN

The control algorithm is proposed and studied in this

section for the system framework illustrated in Fig. 2, and

system model formulated in the previous section. Following

the dynamic model of the human-swarm system, the tracking

errors in task space between the robotic manipulator and

the group of swarm are defined by el(t) = 1/αXr(t −Tr)−
Xl(t) and er(t) = αXl(t − Tl)−Xr(t), where α is the ratio

between the end-effector of the manipulator and the task-

space function of the swarm robots. As illustrated in Fig. 2, Ti

for i= {l,r} in the tracking errors denote the communication

delays for signals transmitted between the human operator

and the swarm robots. The constant α is utilized to scale

the workspace of the manipulator for the workspace of

the swarm robot. Thus, if limt→∞ el(t) = limt→∞ er(t) = 0,

the task functions that represent the characteristics of the

swarm robots can track the scaled position of the robotic

manipulator that is commanded by the human operator.

For the robotic manipulator (1), we define sl ∈ Rm as

sl =−J−1
l ktel + q̇l , (7)

where kt is a scalar control gain, and J−1
l ∈ Rm×m denotes

the inverse of Jl . Let vl = q̇l − sl , we have vl = J−1
l ktel . By

denoting al the differential of vl , it is obtained that al =
q̈l − ṡl = J̇−1

l ktel + J−1
l kt q̇l .

Similarly for the dynamics of the swarm robot (4), we

define sr ∈ Rrn as

sr =−J+r kter + q̇r − (Irn − J+r Jr)Ψs, (8)

where Irn ∈ Rrn×rn is an identical matrix, J+r ∈ Rrn×m denotes

the pseudoinverse of Jr, which is defined by J+r = JT
r (JrJ

T
r )

−1

and satisfy JrJ
+
r = Im [21], and Ψs ∈ Rrn is the auxil-

iary function employed to control the additional degree-of-

freedom (null space) of the swarm robot via the projection

(Irn−J+r Jr). (The design of function Ψs will be discussed in

detail in Section IV.) Subsequently, we define vr = q̇r − sr

such that vr = J+r kter. Then, ar, the differential of vr, can be

given by ar = q̈r − ṡr = J̇+r kter +J+r kt ėr +
d
dt
[(Irn −J+r Jr)Ψs].

From the definition of vi and ai for i = {l,r}, we get q̇i =
si + vi and q̈i = ṡi + ai. By substituting q̇i and q̈i into the

dynamics model (1) and (4), we have

Mi(qi)(ṡi +ai)+Ci(qi, q̇i)(si + vi)+gi(qi) = ui + JT
i Fi. (9)

Since the robot dynamics are linearly parameterizable [10],

[18] such that M(q)ξ̇ +C(q, q̇)ξ + g(q) = Y (q, q̇,ξ , ξ̇ )Θ,

where ξ ∈ Rβ is any differentiable vector, Θ ∈ Rw is a

constant vector of dynamic parameters, and Y (q, q̇,ξ , ξ̇ ) ∈
Rβ×w denotes the matrix of known functions, the equation (9)

can be written as

Mi(qi)ṡi +Ci(qi, q̇i)si = ui + JT
i Fi −Yi(qi, q̇i,vi,ai)Θi. (10)

By defining pi = Jisi =−ktei+ Ẋi, where the property that

Jr(Irn − J+r Jr) = 0 [21] is utilized for the swarm robots, the

proposed control input for the human-swarm system is given

as

ui = YiΘ̂i − ksisi − kpJT
i pi + kdJT

i ėi, (11)

where ksi,kp,kd are positive control gains, and Θ̂i is the

estimate of the uncertain parameter vector Θi. By substituting

ui into the robot dynamics (10), the closed-loop dynamics of

the proposed system becomes

Mi(qi)ṡi +Ci(qi, q̇i)si + ksisi

= YiΘ̃i − kpJT
i pi + kdJT

i ėi + JT
i Fi, (12)

where Θ̃i = Θ̂i −Θi for i = {l,r} is the estimated error for

the unknown vector Θi, and the estimated dynamic parameter

vector Θ̂i is updated by the adaptive law

˙̂
Θi =−ΓiY

T
i si. (13)

Thus, the stability analysis of the presented closed-loop

control system follows

Theorem 3.1: Consider the closed-loop human-swarm

system described by (12) with the update law (13). Assume

that the Jacobian matrix of the robotic system is full rank. If

there exists no external force (Fl = Fr = 0), then all signals in

the closed-loop system are bounded. Additionally, the scaled

tracking errors el , er, velocities Ẋl , Ẋr, and sr asymptotically

approach the origin independent of constant delays in the

communication network.

Proof: Consider a positive-definite storage functional

for the human-swarm system as

V =
α

2

(

sT
l Mlsl + Θ̃T

l Γ−1
l Θ̃l + ktkdeT

l el

)

+
1

2α

(

sT
r Mrsr

+Θ̃T
r Γ−1

r Θ̃r + ktkdeT
r er

)

+
αkd

2

∫ t

t−Tl

ẊT
l (τ)Ẋl(τ)dτ

+
kd

2α

∫ t

t−Tr

ẊT
r (τ)Ẋr(τ)dτ. (14)

Taking time derivative of the functional V , we have

V̇ =
α

2

(

sT
l Ṁlsl +2sT

l Ml ṡl +2Θ̃T
l Γ−1

l
˙̂
Θl +2ktkdeT

l ėl

)

+
1

2α

(

sT
r Ṁrsr +2sT

r Mr ṡr +2Θ̃rΓ
−1
r

˙̂
Θr +2ktkdeT

r ėr

)

+
αkd

2
(ẊT

l Ẋl − ẊT
l (t −Tl)Ẋl(t −Tl))

+
kd

2α
(ẊT

r Ẋr − ẊT
r (t −Tr)Ẋr(t −Tr)). (15)

Substituting the closed-loop system (12) and the adaptive

law (13) into the above equation, we get

V̇ =−αksls
T
l sl −

ksr

α
sT

r sr −αkp pT
l pl −

kp

α
pT

r pr +αkd pT
l ėl

+
kd

α
pT

r ėr +
αkd

2
(ẊT

l Ẋl − ẊT
l (t −Tl)Ẋl(t −Tl))

+
kd

2α
(ẊT

r Ẋr − ẊT
r (t −Tr)Ẋr(t −Tr))+αktkdeT

l ėl

+
ktkd

α
eT

r ėr. (16)
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By substituting pi = −ktei + Ẋi to the terms of pT
i ėi with

ėl =
1
α Ẋr(t − Tr)− Ẋl and ėr = αẊl(t − Tl)− Ẋr, the above

equation can be written as

V̇ =−α(ksls
T
l sl + kp pT

l pl +
kd

2
ėT

l ėl)−
1

α
(ksrs

T
r sr

+kp pT
r pr +

kd

2
ėT

r ėr)≤ 0. (17)

Since V is positive-definite and V̇ is negative semi-definite,

limt→∞ V exists and is finite. Hence, si, pi, ėi ∈ L2 and

si,ei,Θ̃i ∈ L∞. From the closed-loop of the system (12),

we get ṡi ∈ L∞. By invoking Barbalat’s Lemma [22], we

obtain that limt→∞ si(t) = 0. Since pi =−ktei + Ẋi = Jisi, we

have Ẋi ∈ L∞. As si,ei ∈ L∞, q̇i ∈ L∞. From the derivative

of pi = Jisi that ṗi = J̇isi + Jiṡi, we further obtain ṗi ∈
L∞. Since pi ∈ L2 and ṗi ∈ L∞, by invoking Barbalat’s

Lemma again, we get limt→∞ pi(t) = 0. Following the proof

of Theorem 2.1 in [7], we conclude that limt→∞ Ẋr(t) = 0.

Similarly, we obtain limt→∞ Ẋl(t) = 0. Consequently, from

pi = −ktei + Ẋi, we have limt→∞ ei(t) = 0, which implies

limt→∞

(

Xr(t)−αXl(t)
)

= 0.

By considering the case when the external force Fi is

passive with respect to pi as the output, there exists a constant

ci ∈ R+ such that [2], [17]

−
∫ t

0
FT

i (τ)pi(τ)dτ ≥−c2
i , for i = {l,r}. (18)

Hence, we have the next corollary.

Corollary 3.2: Consider the closed-loop system of the

human-swarm framework described by (12) and the update

law (13). Assume that the Jacobian matrix of the robotic

system is full rank. If the external forces from the human

operator and the remote environment satisfy the passivity

condition (18), then the closed-loop system is stable, and

the scaled tracking error el , er, velocity Ẋl , Ẋr, and sr

asymptotically approach the origin independent of constant

communication delays.

Proof: By considering the storage functional V

V =
α

2

(

sT
l Mlsl + Θ̃T

l Γ−1
l Θ̃l + ktkdeT

l el

)

+
1

2α

(

sT
r Mrsr

+Θ̃T
r Γ−1

r Θ̃r + ktkdeT
r er

)

+
αkd

2

∫ t

t−Tl

ẊT
l (τ)Ẋl(τ)dτ

+
kd

2α

∫ t

t−Tr

ẊT
r (τ)Ẋr(τ)dτ +αc2

l −α

∫ t

0
FT

l (τ)pl(τ)dτ

+
c2

r

α
−

1

α

∫ t

0
FT

r (τ)pr(τ)dτ, (19)

the proof can be completed by following the proof of

Theorem 3.1.

IV. TASK FUNCTIONS

The scaled position tracking of the proposed human-

swarm system is demonstrated in the preceding section that

limt→∞ Xr(t) = limt→∞ αXl(t), which implies that the end-

effector of the master robot and the task space of the swarm

robot converge to each other under the scale α . Therefore,

the movement of the swarm robot can be teleoperated by the

human operator through the design of an appropriate task

function fr(qr) for various applications. This type of task

function, which is named as teleoperation tasks in this paper,

provides a mechanism for the human operator to directly

influence the group of swarm robots in a remote environment.

In addition to the teleoperation tasks, the null space of

the redundant swarm robots can be controlled to achieve

additional tasks by properly choosing the auxiliary function

Ψs, and this part of task function is called autonomous task.

The designs of these two types of task are introduced in this

section.

A. Teleoperation Task

1) Centroid of swarm robots: The first teleoperation task

function introduced in this section is a function representing

the average position of the swarm robots. By denoting qri j ∈
R the jth coordinate of the ith robot in the swarm, the task

function that represents the centroid of the swarm robots in

the jth coordinate fσ j
(qr) is defined by

fσ j
(qr) =

1

n

n

∑
i=1

qri j, (20)

where n is the number of robots in the swarm. Based on

the definition of the task function, the partial derivative of

fσ j
(qr) can be given by

∂ fσ j
(qr)

∂qr

= [ . . . 0 j−1
1

n
0r− j 0 j−1

1

n
0r− j . . . ], (21)

where 0 j denotes a j-dimensional zero row vector, and

∂ fσ j
(qr)/∂qr ∈ Rrn. For the use of this task function fσi

(qr)
being one of the entry in task space fri(qr), the human

operator can individually control the average position of the

jth coordinate of the swarm robots through teleoperation.

2) Variance of swarm robots: Even though the task func-

tion for average position can provide the human operator to

control the centroid of the swarm robots, only commanding

the average position might lead to divergent swarm position.

Therefore, the next teleoperation task considered is the

variance of the swarm robots. The task function of the total

swarm variance can be given by

fµ(qr) =
1

rn

r

∑
j=1

n

∑
i=1

(qri j − fσ j
(qr))

2, (22)

where the value r in the denominator is the number of degree-

of-freedom of the individual swarm robot. Thus, the partial

derivative of fµ(qr) is

∂ fµ(qr)

∂qr

=
[

. . .
∂ fµ j−1

(qr)

∂qri j−1

∂ fµ j
(qr)

∂qri j

∂ fµ j+1
(qr)

∂qri j+1
. . .

]

,

where ∂ fµ j
(qr)/∂qri j =

2
rn2

(

(n−1)qri j −∑
n
l=1,l 6=i qrl j

)

With the use of swarm variance for teleoperation task, all

entries of ∂ fµ(qr)/∂qr are zero if only if qri j = qrl j, ∀i 6= l,

which means that all swarm robots are located in the same

position. This situation is unacceptable in practice and can

be avoided by designing suitable autonomous task functions,

i.e. inter-robot collision avoidance.
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B. Autonomous Task

The natural of redundancy for the swarm robots can be

utilized to achieve additional tasks other than tracking the

teleoperation task function received from the human operator.

Since Theorem 3.1 and Corollary 3.2 have demonstrated

that limt→∞ sr(t) = 0, based on the definition in [6], [20],

[21], the convergence of the sub-task tracking error for the

redundant robotic system to the origin can be guaranteed.

Hence, the null space of the swarm robots can be controlled

to achieve additional tasks autonomously. The design of

autonomous tasks for the human-swarm system is addressed

in this section.

The sub-task control, which is considered as the au-

tonomous task in the framework of human-swarm interaction

system, can be achieved by designing appropriate auxiliary

function Ψs. The vector Ψs, defined by a negative gradient

of an auxiliary function fa(qr) [23], is given as ΨT
s =

−∂ fa(qr)/∂qr. According to [6], [20], [21], the auxiliary

function fa(qr) can be designed appropriately such that the

lower value corresponds to more desirable configurations.

Two examples of the autonomous task functions are intro-

duced in this section for the control of swarm robots.

1) Inter-robot distance: For the swarm robotic system

with rn < m, controlling the average position and variance of

swarm robots has infinite solution for the swarm formation.

Robots might gather together in several small groups while

achieving the teleoperation tasks. However, in some appli-

cations such as coverage control of mobile robot network,

increasing the covering area is necessary to improve the

overall performance. Therefore, the first autonomous task

considered in this paper is to maximize inter-robot distance

in order to enlarge the area of coverage. By denoting d(i, j)
the distance between the ith robot and the jth robot, the task

function are given by

fd(qr) =−
2

n(n−1)

n−1

∑
i=1

n

∑
j=i+1

d(i, j), (23)

which is the average of the inter-robot distance. Thus, the

gradient of the function fd(qr) can be shown as

∂ fd(qr)

∂qr

=−
2

n(n−1)

[

. . .
∂ fd(qr)

∂qri j−1

∂ fd(qr)

∂qri j

∂ fd(qr)

∂qri j+1
. . .

]

.

If d(i, j) is given by Euclidean distance such that

d(i, j) =
(

∑
r
l=1(qril − qr jl)

2
)1/2

, then the function

∂ fd(qr)/∂qri j can be obtained from (23) with

∂d(i, j)/∂qril = (qril −qr jl)/d(i, j). Thus, the swarm

robot can regulate their formation by utilizing the auxiliary

function ΨT
s =−∂ fd(qr)/∂qr in the controller to maximize

the inter-robot distance in order to increase the coverage area

autonomously. It is worth pointing out that this autonomous

task should be performed cooperatively with the use of

variance for teleoperation task. Since the teleoperation task

has higher priority than the autonomous task, the group of

swarm robots will not diverge because of the control on

swarm variance by the teleoperation task.

2) Avoidance of obstacles: Due to the limited information

from the remote environment to the human operator and

time delays in the communication channels, the ability

of swarm robots to autonomously avoid obstacles within

the environment in real-time is necessary to improve the

performance of human-swarm interaction system. Based on

the proposed control framework, the collision avoidance

algorithm presented by [24] for multi-agent system can be

adopted to the autonomous tasks for swarm robots. If there

exist collision-free configurations and paths, the group of

swarm robots can change their formation to avoid obstacles

in the environment.

By denoting d(i,o j) the distance between the ith robot to

the jth obstacle in the remote environment, the task function

is given by

fao j
(qr) =

n

∑
i=1

(

min
{

0,
d(i,o j)

2 −R2
o

d(i,o j)2 − r2
o

})2

, (24)

where Ro ∈R+ is the avoidance distance, and ro ∈R+ denotes

the smallest safe distance of d(i,o j) such that Ro > ro. The

avoidance function fao j
(qr) is zero for d(i,o j) ≥ Ro, and

the aim of this function is to regulate the configuration of

swarm robots to guarantee that d(i,o j) > ro. By using this

function, we assume that the initial configurations of the

swarm robot satisfy d(i,o j)≥ Ro, ∀i, j. Hence, the auxiliary

function Ψs for the avoidance function can be written by

ΨT
s =−∂ fao(qr)/∂qr, where

∂ fao j(qr)/∂qr =
n

∑
i=1

4
[

(

R2
o − r2

o

)2(
d(i,o j)

2 −R2
o

)

(

d(i,o j)2 − r2
o

)3

]

(qri −qo j),

if ro < d(i,O j) < Ro, and ∂ fao(qr)/∂qr = 0 if d(i,o j) ≥ Ro

and d(i,o j)< ro. Moreover, the partial derivative function is

not defined if d(i,o j) = ro [7], [24].

The autonomous function (24) can be utilized for inter-

robot collision avoidance by simply replacing d(i,o j) by

d(i, j), the distance between robots. The efficiency of this

autonomous task function will be demonstrated in Section V.

V. NUMERICAL EXAMPLES

Numerical simulations are presented in this section to

validate the efficacy of the proposed bilateral human-swarm

interaction with time delays. The model of 3-DOF Phantom

Omni robotic manipulator [25] is considered as the master

robot, and the swarm robot is described by a group of

8 fully actuated mobile robots moving on the X-Y plane.

According to the proposed system framework and controller,

the end-effector of the master robot is able to operate three

different teleoperation task functions. In the simulation, we

consider the average X-position fσ1
(qr), the average Y-

position fσ2
(qr), and the swarm variance fµ(qr) as the

three teleoperation tasks for the swarm robot. In addition to

the teleoperation tasks, the autonomous tasks for increasing

inter-robot distance and collision avoidance (see Section IV-

B) are utilized in the following simulation.

By following the notations in [25], the physical parameters

for the master robot are chosen as m1 = 0.5, m2 = 0.3, m3 =
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Fig. 3. Teleoperation task functions of the master robotic manipulator and
the remote swarm robots.
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Fig. 4. Scaled tracking errors, αXl(t)−Xr(t), for the human-swarm system.

0.6, l1 = 25, l2 = 25, I1x = 0.2, I1y = 0.2, I1z = 0.1, I2x =
0.4, I2y = 0.1, I2z = 0.3, I3x = 0.1, I3y = 0.2, I3z = 0.3, and

g = 0. Moreover, the augmented swarm model is given as

time-invariant system with Mr = 2I16 and Cr = I16. Therefore,

by choosing the control gains kt = 1, ksl = 1, ksr = 1, kd =
1, kp = 1, Γr = 0.01I32, and Γl = 0.01I8, and selecting the

communication delays Tl = 0.3sec, Tr = 0.5sec and the scaled

constant α = 10, the simulation results are illustrated in

Fig. 3 to Fig. 6.

In this numerical example, the entire system is assumed to

be in free-motion for t < 20sec. After t = 20sec, the human

operator exerts a spring-damper force to manipulate the end-

effector of the master robot towards Xl = [8, 2, 4]T for

t = 20 ∼ 50sec, Xl = [8, 2, 15]T for t = 50 ∼ 80sec, Xl =
[14, 2, 15]T for t = 80 ∼ 100sec, and Xl = [14, 2, 4]T for

t = 100∼ 140sec. The swarm robots are teleoperated to attain

the specified values of task functions, which are represent
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Fig. 5. Snapshots of the swarm robot in the remote environment with col-
lision avoidance autonomous task control. The average X-position, average
Y-position, and variance of the eight robots are corresponding to Fig. 3.

the X-average position (1st task function), Y-average position

(2nd task function), and variance of the swarm robots (3rd

task function). From Fig. 3, we can observe that the closed-

loop system is stable in the presence of time delays, and

the group of swarm robots can change its configuration to

ensure that the task-space functions converge to the end-

effector position of the master robot. The scaled tracking

errors are shown in Fig. 4.

The snapshots of the remote swarm robots, corresponding

to Fig. 3, are illustrated in Fig. 5. The circles with solid line

denote the smallest safe distance ro that the robots should not

enter, and the dashed circles denote the avoidance distance
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Fig. 6. Distances between the swarm robots to the center of the largest
obstacle in the remote environment.

Ro such that the autonomous tasks start to influence the

movement of the swarm robots to avoid the obstacles. Based

on the proposed control framework, the human operator

can simultaneously teleoperate a group of swarm robots to

regulate their position and variance. In addition, the swarm

robots are able to change their configuration for avoiding

obstacles and enlarging the inter-robot distance by utilizing

the proposed autonomous tasks. Fig. 6 illustrates the distance

between the eight swarm robots with the center of the largest

obstacle. It can be observed that the robots start to change

their configurations if the distance is less than Ro = 22 and

keep away from the safe distance ro = 16.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a system framework to enable a hu-

man operator to control a group of swarm robots in a remote

environment. Task functions allow the operator to specify

characteristics of the desired swarm-robot configuration and

thereby teleoperate the swarm robots accordingly. A con-

trol algorithm was presented to guarantee position tracking

between the task function of the master robot, controlled

by a human operator, and the swarm robot under kinematic

dissimilarity. Moreover, the control system has been proven

to be stable independent of time delays in the communication

channels. Since the group of swarm robots exhibits high

level of redundancy, the additional degree-of-freedom was

used to achieve several local tasks autonomously. Numerical

examples demonstrated the efficacy of the proposed human-

swarm interaction system. Future work will involve the study

of non-passive external forces and time-varying delays in the

communication network.
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