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Abstract— In this paper, we propose an “anti-fatigue” control
method for bionic actuated systems. Specifically, the proposed
method is illustrated on an over-actuated bionic arm. Our
control method consists of two steps. In the first step, a set
of linear equations is derived by connecting the acceleration
description in both joint and muscle space. The pseudo inverse
solution to these equations provides an initial optimal muscle
force distribution. As a second step, we derive a gradient di-
rection for muscle force redistribution. This allows the muscles
to satisfy force constraints and generate an even distribution of
forces throughout all the muscles (i.e. towards "anti-fatigue").
The overall proposed method is tested for a bending-stretching
movement. We used two models (bionic arm with 6 and 10
muscles) to verify the method. The force distribution analysis
verifies the “anti-fatigue” property of the computed muscle
force. The efficiency comparison shows that the computational
time does not increase significantly with the increase of muscle
number. The tracking error statistics of the two models show
the validity of the method.

I. INTRODUCTION

The bionic arm is a human-like musculoskeletal structure
that is activated by numerous muscles. It has many advan-
tages, such as high robustness, low load for each muscle, etc.
One important potential application for this bionic system,
due to its similarity to the human arm, is the possibility
to estimate/predict the human muscle force based on the
control of the bionic system. Towards this objective, many
bionic robots have been built so far, such as ECCEROBOT
from University of Zurich [1], Kenshiro from University of
Tokyo [2], Airic’s Arm from Festo Co. Lt., Lucy from Vrije
Universiteit Brussel [3].

However, controlling a bionic system is quite sophisticated
compared to controlling a classical mechanical system. The
main difficulty is that the bionic system is always actuated
by numerous muscles [4], which makes it a redundant over-
actuated nonlinear dynamic system [5]. The coordination
of these muscles is not simple. Moreover, since muscles
can provide only a “pull” force, the muscle force should
remain positive and the output force for each muscle must
be within an interval from 0 to maximum. This enforces
muscle force constraints as another requisite in the control
problem. Various approaches have been proposed to resolve
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Fig. 1: Control method classification.

this redundancy problem. In [6], inherent to redundant sys-
tems for internal force regarding the overall stability, a cable-
driven system for a simple sensor-motor control scheme
was proposed. As there exists redundancy in joint space,
muscle space and impedance space, the solution of muscle
coordination is not unique [5]. The possible solution for
controlling the bionic arm can be concluded in three cat-
egories: optimizing energy consumption, impedance change
and “anti-fatigue” (Fig.1).

For the first category (the optimization solution), the
muscle coordination solutions differ depending on the chosen
criteria. For example, in [7], the criterion of the minimum
overall energy-consumption of muscles was considered. In
[8], the trajectory of the arm is optimized and adjusted
for a time and energy-optimal motion. In [9], dynamic
optimization of minimum metabolic energy expenditure was
used to solve the motion control of walking. In [10], a
nonlinear optimal controller was used to develop a real-
time EMG-driven virtual arm. However, optimization is often
computationally demanding, and this can be a disadvantage
for its usage in applications.

Regarding the second category (impedance change), as
the muscles in the bionic arm are antagonist muscles, dif-
ferent arm stiffness can generate the same movement. The
stiffness change can be achieved by impedance control.
The impedance issue has been considered for years. Early
work from the neurophysiology community presented a study
where deafferented monkeys are shown to be capable of
maintaining a posture under disturbances. Later on, many
impedance control methods have been proposed. For exam-
ple, in [11], the mechanical impedance property of muscles
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was modeled based on adaptive impedance control, which
was proposed in common physiological cases. In [12], the
arm movement was achieved by shifting the equilibrium
point gradually. Afterwards, this kind of impedance control
scheme has been named equilibrium trajectory control, or
virtual trajectory control [13]. In [14], a complete model of
an arm with force and impedance characters was created for
human-robot dynamic interaction.

The objective of the third category ("anti-fatigue") is to
design the control in such a way that muscular fatigue is
minimal. This is associated with finding a feasible solution
targeted at distributing the muscle forces evenly. The “anti-
fatigue” control is very important as it corresponds to the
human’s neuro control scheme. Until recently, this “anti-
fatigue” control has not been fully considered. There are
few research works on it. From these, the work in [15]
is noteworthy, as they proposed a muscle force distribution
method to drive the muscle forces to their mid-range in the
sense of least-squares.

Another important factor to take into consideration while
developing a muscle force control system for a bionic arm
is the body movement patterns, as introduced in the neuro-
science domain. The dynamics of the musculoskeletal system
have an order parameter which can determine the phase
transition of movements [16]. These scenarios were found
in finger movement and limb movement patterns [17][18].

Actually, each category mentioned above points towards
a separate solution space corresponding to a specific re-
quirement. There exists overlapped solution spaces indicating
the compromise of different requirements. The compromise
method is a promising field in the future. In this paper,
we focus on proposing an “anti-fatigue” solution to bionic
arm control. Specifically, our control method consists of two
steps. In the first step, the initial muscle force is derived
by connecting the acceleration description in both joint and
muscle space. As a second step we derive a gradient direction
for muscle force redistribution. This allows the muscles to
satisfy force constraints and generate an even distribution of
forces throughout all the muscles (i.e. towards "anti-fatigue").
The overall proposed method is tested in two models (bionic
arm with 6 and 10 muscles). The force distribution analysis,
efficiency comparison and tracking error statistics verify the
validity of the method.

The paper is organized as follows. In Section II, we begin
by describing the mathematical model of a bionic arm. In
Section III, our "anti-fatigue" muscle force control method
is presented. A simulation with details of dynamic responses
as well as efficiency and control performance evaluation
is illustrated in Section IV. Finally, in Section V we will
conclude this paper.

II. BIONIC ARM MODELING

A 2-dimensional bionic robot arm model was built based
on the upper limb data of a digital human (Fig.2). The
model is restricted in a horizontal plane and thus has two
degrees of freedom (shoulder flexion-extension and elbow
flexion-extension). The range of the shoulder angle is from

Fig. 2: Bionic arm model.

-20 to 100 degrees, and the range of the elbow is from 0
to 170 degrees. The bionic arm is driven by articular and
monoarticular muscles. By considering the arm (including
upper arm and lower arm) as a planar, two-link, articulated
rigid object, the position of the hand can be derived by a
2-vector q of the shoulder and elbow angles. The input is a
muscle force vector Fm. Due to the redundant muscles, the
dynamics of the rigid object are strongly nonlinear. Using the
Lagrangian equations from classical dynamics, we obtain the
dynamic equations of the upper limb model as

[
H11 (t) H12 (t)
H21 (t) H22 (t)

] [
q̈1

q̈2

]
(1)

+

[
C11 (t) C12 (t)
C21 (t) C22 (t)

] [
q̇1

q̇2

]
=

[
τ1(t)
τ2(t)

]
or abbreviated as

H (t) q̈ + C (t) q̇ = τ (2)

with q =
[
q1 q2

]T
=
[
θ1 θ2

]T
being the shoulder

and elbow angles respectively. τ =
[
τ1 τ2

]
= f (Fm) is

the joint torque, which is considered as a function of muscle
force Fm

Fm =
[
Fm,1 Fm,2 · · · Fm,nmuscle

]T
(3)

where nmuscle is the muscle number. H (q, t) is the iner-
tia matrix which contains information with regards to the
instantaneous mass distribution. C (q, q̇, t) is the centripetal
and coriolis torques representing the moments of centrifugal
forces.

336



H11 = J1 + J2 +m2d
2
1 + 2m2d1c2 cos (q2)

H12 = H21 = J2 +m2d1c2 cos (q2)

H22 = J2

C11 = −2m2d1c2 sin (q2) q̇2 (4)
C12 = −m2d1c2 sin (q2) q̇2

C21 = m2d1c2 sin (q2) q̇1

C22 = 0

where ci is the distance from the center of a joint i to the
center of gravity point of link i. di is the length of link i.
Ji = mid

2
i + Ii where Ii is the moment of inertia about the

axis through the center of the i-th link’s mass mi.

III. “ANTI-FATIGUE” CONTROL

A. Basic Idea

There are two steps to achieve “anti-fatigue” muscle force.
In Step1, we use pseudo-inverse to compute the initial muscle
force. The input is the desired joint trajectory and muscle
force boundary. The output is the minimum muscle force
under the sense of least-squares. The basic idea is to initially
create a linear equation based on the description of the
acceleration contribution in joint space and muscle space,
respectively. Then, the muscle activation level is calculated
by solving the above linear equation. Finally, the muscle
force is computed by scaling the muscle activation level with
the corresponding maximum muscle force.

Based on Eq.1, the general dynamic equation of the bionic
arm can be written in the general form as

H (q, t) q̈ + C (q, t) q̇ = f (Fm) (5)

where f (Fm) maps muscle force Fm to joint torque. The
equation is simplified to the following form

H (q, t) q̈ = Γ + Λ (6)

Here, Γ = f (Fm), Λ = −C (q, t) q̇. From this viewpoint,
we can separate the total acceleration contribution into two
parts, i.e. q̈Γ and q̈Λ. Thus, we have

q̈ = q̈Γ + q̈Λ (7)

where

q̈Γ = H (q, t)
−1

Γ, q̈Λ = H (q, t)
−1

Λ

The above equations indicate that in the joint space, the
acceleration contribution comes from 1): joint torque Γ, 2):
centripetal and coriolis torque Λ. Hence, we can compute
the acceleration contribution from joint torque q̈Γ by Eq. 7.
Whereas, from the muscle space viewpoint, each muscle has
acceleration contribution. Assuming the total muscle number
is nmuscle, the maximum acceleration contribution of the
j-th (1 ≤ j ≤ nmuscle) muscle q̈m,j,max (1 ≤ j ≤ nmuscle)
can be calculated as [15]

q̈m,1,max = H−1JT
m Fm|Fm,1=Fm,1,max;Fm,j=0 (j 6=1)

q̈m,2,max = H−1JT
m Fm|Fm,2=Fm,2,max;Fm,j=0 (j 6=2)

· · ·
q̈m,nmuscle,max = H−1JT

m

Fm|Fm,nmuscle
=Fm,nmuscle,max;Fm,j=0 (j 6=nmuscle)

By combining these two approaches for the computation
of the acceleration contribution in joint space and muscle
space, we can build a linear equation

AX = B (8)

where

A =
[
q̈m,1,max q̈m,2,max · · · q̈m,nmuscle,max

]
X =

[
σ1 σ2 · · · σnmuscle

]T
B = q̈Γ

where X is a vector of muscle activation level σi (i =
1, 2, ..., nmuscle). The muscle activation level is a scalar in
the interval [0, 1], representing the percentage of maximum
contraction force of each muscle. Therefore, the muscle force
can be calculated as a product of maximum contraction
force and activation level. Considering Eq.8, we can use the
pseudo-inverse to compute muscle activation level

X = A+B (9)

where A+ = AT
(
AAT

)−1
. To calculate the muscle force

Fm, we define

Fm,max =
[
Fm,1,max · · · Fm,nmuscle,max

]T
(10)

as the maximum muscle force vector. The muscle force can
be calculated as the product of the muscle activation level and
maximum muscle force. Thus, the initial optimized muscle
force can be computed as

Fm,ini = Fm,max ⊗X (11)

where the operator ⊗ calculates the dot product of two
vectors. Similarly, due of the pseudo-inverse property, the
initial muscle force satisfies the minimum of the muscle force
in the least-squares sense, i.e.,

min ‖Fm,ini‖2 = min

nmuscle∑
j=1

F 2
m,ini,j

 (12)

The computed initial muscle force Fm,ini does not con-
sider the physical constraints of the muscles, which are:
1) the maximum output muscle force is limited and 2)
muscles can only contract (i.e. non-negative force values).
The objective in Step2 is to make the muscles work in an
“anti-fatigue” manner (i.e., the load is distributed evenly).
Here, we use gradient descent to generate resulting muscle
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forces that satisfy the above constraints. This is achieved
by providing a gradient direction in the null space of the
pseudo-inverse solution obtained in Step1 to relocate the
initial muscle force Fm,ini to an optimized state, which
satisfies muscle constraints 1) and 2).

We assume each muscle force is limited to an interval from
Fm,j,min to Fm,j,max for (1 ≤ j ≤ nmuscle) . Our objective
is to find a gradient direction that bounds each muscle force
Fm,j to a value equal or greater than Fm,j,min, and equal or
less than Fm,j,max. To consider both the muscle fatigue issue
and the muscle force boundary constraint, the output force of
each muscle can be limited to be around the middle between
Fm,j,min and Fm,j,max, i.e. the mid-range of the muscle
force constraints. The physical meaning of this method is
to distribute the overall load to all the muscles averagely,
allowing each muscle to work around its appropriate working
load. Based on this “anti-fatigue” load distribution principle,
the muscles can continually work for extended time periods.
According to the above muscle force distribution principle,
to generate the gradient direction, we choose a function h
which represents the sum of squared deviation of the current
muscle force and its middle force

h (Fm) =

nmuscle∑
j=1

(
Fm,j − Fm,j,mid

Fm,j,mid − Fm,j,max

)2

(13)

where

0 ≤ Fm,j,min ≤ Fm,j ≤ Fm,j,max

Fm,j,mid =
Fm,j,min + Fm,j,max

2
j = 1, 2, · · · , nmuscle

We define Fin as a vector representing the internal force
of muscles generated by redundant muscles which has the
same dimension with Fm. We calculate Fin as the gradient
of the function h, i.e.,

Fin = Kin
∂h (Fm)

∂Fm

∣∣∣∣
Fm,ini

= Kin ∇h|Fm,ini
(14)

= Kin


2

Fm,ini,1−Fm,1,mid

Fm,1,mid−Fm,1,max

2
Fm,ini,2−Fm,2,mid

Fm,2,mid−Fm,2,max

...
2

Fm,ini,nmuscle
−Fm,nmuscle,mid

Fm,nmuscle,mid−Fm,nmuscle,max


where Kin is a scalar matrix controlling the optimization
speed. It is easy to prove that the direction of Fin points to
Fm,i,mid. Therefore, we map the internal force Fin into Fm

space, i.e., pseudo-inverse solution’s null space as

g (Fin) =
(
I −

(
JT
m

)+
JT
m

)
Fin (15)

where I is an identity matrix having the same dimension as
the muscle space. According to the Moore-Penrose pseudo-
inverse, g (Fin) is orthogonal with the space of Fm,ini.
Finally, the optimized muscle force is calculated as

Fm = Fm,ini + g (Fin) (16)

It is noted that, the main computational burden in the
muscle force optimization is the pseudo-inverse calculation
(Eq.9), especially in the inverse computation

(
AAT

)−1
.

An advantage of this formulation is that the dimension of(
AAT

)−1
is equal to the joint dimension. Thus, with the

increase of muscle number, the computational burden does
not increase significantly. This is verified in the simulation
section (Section IV).

B. Procedures

The block diagram of the proposed method is shown
in Fig.3. The input is the desired trajectory of joint and
muscle force constraints. The output is the muscle force.
There are two main computational steps. In Step1, we use
pseudo-inverse to calculate the initial muscle force. In Step2,
the internal force is calculated and further mapped into the
null space of the pseudo-inverse solution in Step1. The final
output of the muscle force is the sum of the calculation
results in Step1 and Step2. The detailed procedures of the
proposed method are shown in Algorithm 1.

Algorithm 1: “Anti-fatigue” Muscle Force Control
INPUT: The desired trajectory points and muscle force

boundary.
OUTPUT: The Optimized muscle force.

• Procedure1: Generating desired trajectory

Given the desired trajectory points, by using QR decompo-
sition, we can formulate a continuous derivative function to
connect trajectory points at each moment in time [5]

qd (tk) = akt
3
k + bkt

2
k + cktk + dk (17)

Then the desired trajectory position, velocity and acceleration[
qd (tk) q̇d (tk) q̈d (tk)

]T
are computed at time tk by

the derivative calculation

q̇d (tk) = 3akt
2
k + 2bktk + ck (18)

q̈ (tk) = 6aktk + 2bk (19)

• Procedure2: Preparing A and B

To calculate the initial optimized muscle force, we need to
prepare the acceleration contribution matrix from the muscle
space A and the acceleration contribution from joint space
B.

A =
[
q̈m,1,max q̈m,2,max · · · q̈m,nmuscle,max

]
(20)

where q̈m,j,max (j = 1, 2, · · · , nmuscle) can be specified as
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Fig. 3: Block diagram of the algorithm.

q̈m,1,max = H (q, t)
−1
JT
m ·
[
Fm,1,max 0 · · · 0

]T
q̈m,2,max = H (q, t)

−1
JT
m ·
[

0 Fm,2,max · · · 0
]T

· · ·
q̈m,nmuscle,max = H (q, t)

−1
JT
m ·[

0 0 · · · Fm,nmuscle,max

]T
where Jm is the Jacobian matrix from muscle space to joint
space. According to Eq.7, B can be computed as

B = q̈Γ = q̈|qd,q̇d,q̈d − q̈Λ = q̈|qd,q̇d,q̈d −H (q, t)
−1

Λ (21)

• Procedure3: Muscle force optimization

First, we compute the initial optimized muscle force by
pseudo-inverse. Based on the previously computed A and
B in Procedure2, we can obtain the initial muscle activation
level as follows

X =
[
σ1 σ2 · · · σnmuscle

]T
= A+B (22)

where A+ = AT
(
AAT

)−1
. Then, the initial optimized

muscle force is

Fm,ini = Fm,max ⊗X (23)

=
[
Fm,1,maxσ1 · · · Fm,nmuscle,maxσnmuscle

]T
Second, we re-optimize the muscle force (e.g. distributing
muscle force evenly) by gradient descent. The final muscle
force is

Fm = Fm,ini +
(
I −

(
JT
m

)+
JT
m

)
(24)

·Kin


2

Fm,ini,1−Fm,1,mid

Fm,1,mid−Fm,1,max

2
Fm,ini,2−Fm,2,mid

Fm,2,mid−Fm,2,max

...
2

Fm,ini,nmuscle
−Fm,nmuscle,mid

Fm,nmuscle,mid−Fm,nmuscle,max


where Kin is a scalar matrix controlling the optimization
speed. I is an identity matrix having the dimension of
nmuscle.

IV. SIMULATION

The performance of the proposed muscle force com-
putation method was tested through a bending-stretching
simulation. According to the bending-stretching movement,
the desired trajectory points of the shoulder joint and elbow
joint are generated with a sine wave signal. These trajectory
points are used to create a trajectory function for each joint.
By applying the computed muscle force, the bionic arm is
controlled. The desired movement is bending the upper arm
from 0 rad to π/2 rad and the lower arm from 0 rad to π/3
rad, and then stretching them back to 0 rad. The frequency
of the movement is 2π Hz and the total simulation time is
10s. The muscle force constraint is set from 0 to 500N. In
this simulation, we use bionic arms with 6 and 10 muscles
to test the proposed method on force distribution, tracking
capability, and efficiency.

A. Settings of the Bionic Arm with 6 Muscles

The inertia-related parameters of the 6-muscle bionic
arm are based on real data of a human upper limb. The
muscle configuration, coordinate setting and inertia-related
coefficients settings are shown in Fig.4(a) and Table I.
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Segment Upper Arm Lower Arm
Length (m) 0.282 0.269
Mass (kg) 1.980 1.180

MCS Pos (m) 0.163 0.123
I11 (kg ·m2) 0.013 0.007
I22 (kg ·m2) 0.004 0.001
I33 (kg ·m2) 0.011 0.006

TABLE I: Anthropological parameter values. (MCS Pos
means mass center position.)

Muscle
Index

Muscle Name Coordinate
Parameter

Attached
Bones

1 Brachioradialis a101=0.182,
a102=0.065

O:Humeral,
I:Radius

2 Brachialis a71=0.13,
a72=0.021

O:Humeral,
I:Ulna

3 Triceps a51=0.015,
a52=0.02

O:Scapula,
I:Ulna

4 Coracobrach a11=0.01,
a12=0.056

O:Scapula,
I:Humeral

5 Deltoid a21=0.01,
a22=0.07

O:Scapula,
I:Humeral

6 Pronators a91=0.117,
a92=0.024

O:Humeral,
I:Radius

7 Bicep a31=0.045,
a32=0.02

O:Scapula,
I:Radius

8 Supinator a81=0.08,
a82=0.028

O:Humeral,
I:Radius

9 Ancones a61=0.01,
a62=0.01

O:Humeral,
I:Ulna

10 Media brachial a41=0.01,
a42=0.01

O:Humeral,
I:Ulna

TABLE II: Muscle configuration of the bionic arm with 10
muscles. (O: the attached bone with the original site; I: the
attached bone with the insertion site.)

We extracted the anthropological data from [19]. In this
model, we consider the common-used bionic arm with mono-
articular and bi-articular muscles. In this model there are 6
muscles: four of them are mono-articular and two are bi-
articular. Without loss of generality, the muscle configuration
coefficients are set as aij = 0.1m (1 ≤ i ≤ 6, 1 ≤ j ≤ 2)
[15].

B. Settings of the Bionic Arm with 10 Muscles

The muscle configuration of the 10-muscle bionic arm
is based on real human musculoskeletal data. The muscle
configuration is shown in Fig.4(b). Here, we use the same
inertia coefficients with 6-muscle model (Table I). The
muscles’ origin, insertion coordinates and attached bones are
shown in Table II. The attachment position of the muscles
are determined from the digitized muscle insertions and
anatomical descriptions. In this paper, we modified the model
data in [20] to a 2D case and the new coordinates of each
muscle’s origin and insertion have been slightly extracted.

C. Force Distribution Comparison

The muscle force distribution is shown in Fig.5 where for
each subfigure, mi (i = 1, 2, · · ·) indicates the i-th muscle.
The vertical axis gives the statistical average muscle force in
N. The upper and lower two subfigures show the computed

Fig. 5: Muscle force distribution.

muscle force based on the bionic arm with 6 muscles and
10 muscles, respectively. The left and right subfigures show
the muscle force distribution in the Step1 and Step2. From
this figure, we can conclude the following: 1) The muscle
force distribution in Step2 is more evenly distributed than
that in Step1; 2) In Step2, all the muscle forces satisfy
the constraints, i.e. non-negative and within the output force
boundary; 3) The computed average muscle force in the 10-
muscle’s case is smaller than that in 6-muscle’s case, which
verifies the fact that more muscles can lead to smaller load
share.

D. Tracking Error and Visualization

The tracking error statistics for the 6-muscle’s case and
10 muscle’s case are shown in Fig.6. The horizontal axis
lists the shoulder/elbow angles based on 6-muscle’s case
and shoulder/elbow angles based on 10-muscle’s case. The
vertical axis is the tracking error statistics in radians. In
each box, the central mark indicates the median, the edges
of the box show the 25 and 75 percentiles, respectively. It
is shown that the tracking error of the shoulder and elbow
angle in the 6 muscle’s case and the 10 muscle’s case is
small (less than 0.01 rad). As the shoulder joint is the base
joint of the elbow joint, the tracking error of the elbow
joint is smaller for both cases. We can also see that, the
tracking performance remains acceptable with the increase
of the muscle number. For movement visualization, we used
the Muscular Skeletal Modeling Software (MSMS) to create
visible geometrical model of the arm’s muscles and further
evaluate the movement. In Fig.7, we provide snapshots of the
arm movement from different viewpoints at one moment.

E. Computational Time Comparison

The computational time based on the bionic arm model
with 6 muscles and 10 is compared. The simulation was
run in a MacBook Air laptop. The basic configuration
of the computer is listed below: processor: 1.7GHz Intel
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(a) With 6 muscles. (b) With 10 muscles.

Fig. 4: Muscle configuration of the bionic arm.
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Fig. 6: Tracking error statistics.

Core i5; memory: 4GB 1333 MHz DDR3; startup disk:
Macintosh HD 200GB; operation system: Mac OS X Lion
10.7.4 (11E53). Fig.8 shows that the computational time
increases rather slightly (about 15%) considering that the
muscle number increases heavily (67%). This indicates an
advantageous property of our proposed method: the main
computation regarding matrix calculation is in joint space
and thus, the muscle number does not affect the efficiency
significantly. On the other hand, the computational time is
approximately half of the time in the simulated dynamic
system, which means that the proposed method can be run
in real-time.

V. DISCUSSION

In this paper, we use optimization to solve the redun-
dancy problem in muscle coordination by avoiding com-
plex computation and large computational burden. Gener-
ally, there have been two basic research methods to ana-
lyze muscle coordination: theory-oriented and experiment-
oriented. Theory-oriented methods usually rely on modeling
and optimization which can provide a rigorous optimized

(a) Front view. (b) Left view. (c) Front view.

(d) Back view. (e) Right view. (f) Bottom view.

Fig. 7: Snapshots of the arm movement from different
viewpoints.

solution for coordination in a certain criterion. However, as
the nonlinear optimization is usually a NP-hard problem,
the optimized solution search has a high computational
cost. On the other hand, experiment-oriented methods start
from analyzing the electromyography pattern and mimic
the real muscle activation signals. These kind of methods
are usually designed for a specific system with certain
mechanical structures. Our method belongs to the theory-
oriented category, whereas we try to approach a “natural
optimization”, meaning that the optimization does not require
many settings and complex time-consuming computation. as
the main computation happens through the matrix inversion
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Fig. 8: Comparison of cumulative computational time be-
tween bionic arm with 6 muscles and that with 10 muscles.

of AAT and JT
mJm, the computational scale of the proposed

method is mainly related to the number of the joints, not to
the number of muscles. This means that for more complex
3D musculoskeletal systems, even if we add more muscles,
the computational time would not increase significantly.

VI. CONCLUSION

This paper presented a new method for “anti-fatigue”
control of a bionic arm. The method consists of two main
steps: first, a pseudo-inverse solution is utilized towards
computing the initial muscle forces; and second, gradient
descent is used to comply with the “anti-fatigue” require-
ment and distribute the muscle force while satisfying the
constraints. The two arm movement simulations that we
performed, the first with 6 muscles and the second with
10 muscles not only show the “anti-fatigue” property of
the proposed method, but also indicate that the method has
a desirable efficiency regarding scaling of the number of
muscles. Quite importantly, the proposed method can also
be readily generalized to numerous other bionic systems.
Finally, our current directions for extensions and future work
are centered on applying our method to a real-world robot,
as well as investigating the relation of the computed muscle
forces from our method to real muscle activation signals
derived through Electromyography (EMG). Thus, turning our
method also into a tool not only for synthesis of activation
signals, but also for analysis of human motion observations.
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