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Abstract— This paper investigates modeling and control of a
limit cycle walker that walks sliding on the ice. We introduce
the model of an underactuated spoked walker for analysis
and analyze the collision model on the assumption of sliding
contact with the ground to identify the condition for achieving
instantaneous exchange of the stance leg. We also develop the
equation of motion incorporating dynamic friction in sliding
contact. Numerical simulations show that the walker can
generate stable walking gaits by applying a simple control of
the torso.

I. INTRODUCTION

Including passive dynamic walking [1], in modeling of

limit cycle walking, it is commonly assumed that the end

point of the stance leg is always in contact with the ground

without sliding [2][3]. This implicitly supports that the con-

tact point develops sufficient friction. On the ice, however,

this assumption cannot hold. This paper then addresses

two issues; one is identifying the condition for achieving

instantaneous exchange of the stance leg and the other is

generation of stable walking gaits on the ice. First, we

introduce the model of an underactuated spoked walker with

a torso that falls as a 1-DOF rigid body immediately prior

to impact [4], and develop the inelastic collision model on

the assumption that the walker is sliding at impact. We then

identify the condition that the rear leg leaves the ground

immediately after landing of the fore leg. Second, we develop

the equation of motion incorporating dynamic friction in

sliding contact and numerically test the possibility of stable

gait generation on the ice. Numerical analysis of the gait

properties show that there is an optimal friction coefficient

for achieving the most efficient walking gait.

Bourgeot et al. discussed the variety of the post-impact

motion of a dynamic walker that falls as a 1-DOF rigid body

based on the concept of rocking block, and they divided

the possible motion into four cases according to the relation

between the pre-impact velocity and the post-impact one [5].

Font-Llangunes and Kövecses also discussed this issue and

analyzed the post-impact state of a compass-like biped robot.

They identified the condition for transition to double-limb

support (DLS) based on the vertical velocity of the end-

position of the rear leg [6]. In this paper, however, we take a

different approach; we analytically derive the impulse vector

which is derived as a zero-time integral of the impulsive

forces at impact and examine the sign of each element to

determine unilateral constraint [7]. Through mathematical
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investigations, we show that the result obtained is equivalent

to those of the related works [5][6]. Furthermore, we numer-

ically investigate the properties of the generated gait on the

ice and show that there are the optimal solutions of friction

coefficient for achieving the maximum walking speed.

II. COLLISION ANALYSIS

A. Underactuated Spoked Walker with Torso

Fig. 1 shows the model of an underactuated spoked walker

which composed of a twelve-legged rimless wheel and a

torso. Let m1 [kg] and I1 [kg·m2] be the mass and inertia

moment of the rimless wheel. Let m2 [kg] and I2 [kg·m2]

be those of the torso. The leg length or the radius of the

rimless wheel is l [m]. The length of the torso is 2r [m] and

this is connected to the rimless wheel at the central joint.

This walker can exert a joint torque, u [N·m], between the

stance leg and the torso. The torso functions as a reaction

wheel for the RW; the stance leg can use the reaction torque

for propulsion.

B. Inelastic Collision Model

Let q =
[

x z θ1 θ2
]T

be the generalized coordinate

vector. Here, (x, z) is the position of the stance-leg end, θ1
is the stance-leg angle with respect to vertical, and θ2 is the

torso angle with respect to horizontal. The inelastic collision

of the fore leg (the next stance leg) with the ground is then

modeled as

M(q)q̇+ = M(q)q̇− + JI(q)
TλI , (1)

where the superscripts “−” and “+” stand for immediately

before and immediately after impact. Note that q in Eq. (1)

is equal to q− = q+. M(q) ∈ R
4×4 is the inertia matrix

and is detailed as

M(q) =









mt 0 mtl cos θ1 0
0 mt −mtl sin θ1 0

mtl cos θ1 −mtl sin θ1 mtl
2 + I1 0

0 0 0 I2









, (2)
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Fig. 1. Model of underactuated rimless wheel with torso
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where mt := m1 + m2 [kg] is the total mass. The size

of the Jacobian matrix, JI(q), is non-unique and changes

according to the condition for velocity constraint at impact.

In the following, we describe the conditions in detail.

C. Condition for Instantaneous Stance-leg Exchange

First, we analytically derive the condition for achieving

instantaneous stance-leg exchange by assuming that the

motion transitions to DLS after impact.

If we assume that the fore leg slides at impact, that is,

the end-point is not constrained in the X-direction, the only

velocity constraint condition is given by

d

dt

(

z + l cos θ−1 − l cos(α− θ−1 )
)+

= 0, (3)

where θ−1 = α/2 [rad].

We generally assume that the contact point between the

stance-leg end and the hard ground develops sufficient fric-

tion and that the end point does not slide steadily or the

constraint condition of ẋ+ = 0 always holds. In this case,

the walking motion consists of single-limb support (SLS)

and instantaneous DLS for stance-leg exchange. On the ice,

however, this is not true and we must develop the Jacobian

matrix, JI(q), in Eq. (1) accordingly. The lack of ẋ+ = 0
implies that a redundant DOF is created. We therefore have

to concern about the possible emergence of DLS motion after

impact [7][8]. Transition to DLS motion implies that the

walker continues sliding without rotating. In the following,

we discuss the problem of how to determine the post-impact

motion, SLS or DLS, through mathematical analysis of the

impulse.

If we assume that the rear leg does not leave the ground

immediately after landing of the fore leg or maintains contact

with the ground, the following condition must hold.

ż+ = 0 (4)

In addition, in this paper we assume that the torso is

mechanically locked to the RW at impact. This means that

the walker falls down as a 1-DOF rigid body immediately

before impact. This velocity constraint condition is then

specified as

θ̇
+

1 − θ̇
+

2 = 0. (5)

By summarizing Eqs. (3), (4), and (5), we get

JI(q)q̇
+ = 03×1 (6)

JI(q) =





0 1 −l sin θ−1 + l sin(θ−1 − α) 0
0 1 0 0
0 0 1 −1



 . (7)

Following Eqs. (1) and (6), the impulse vector, λI ∈ R
3,

can be solved as

λI = −XI(q)
−1JI(q)q̇

− =







2It+mtl
2(1−cosα)

4l sin α

2

− 2It−mtl
2(1−cosα)

4l sin α

2

I2






θ̇
−

1 ,

(8)

where XI(q) := JI(q)M(q)−1JI(q)
T and It := I1 + I2

[kg·m2] is the total inertia moment. By substituting λI of

Eq. (8) into Eq. (1), the velocity vector immediately after

impact, q̇+, is derived as

q̇+ =
(

I4 −M(q)−1JI(q)
TXI(q)

−1JI(q)
)

q̇− (9)

=









ẋ− + lθ̇
−

1 cos α
2

0
0
0









. (10)

The result of θ̇
+

1 = θ̇
+

2 = 0 implies that the walker begins

to slide in the X-direction maintaining DLS.

The first element in Eq. (8) represents the impulse (zero-

time integral of impulsive force at impact) in Z-direction at

the end of the fore leg, and the second element represents

that of the rear leg. It is obvious that the first element is

always positive. The second element becomes positive only

if the following inequality holds.

mtl
2 (1− cosα) ≥ 2It (11)

If Eq. (11) holds, the motion transitions to DLS.

The left-hand side in Eq. (11) converges to zero if α →
0. Small α increases the potential of instantaneous stance-

leg exchange. Let us consider a numerical example in the

following. By choosing the parameters as listed in Table I,

the value of the left-hand side in Eq. (11) becomes 0.402,

whereas that of the right-hand side becomes 3.0. We then

conclude that DLS motion does not emerge after impact. The

right-hand value in Eq. (11) is the total inertia moment, so the

value is large implies that the rotational energy immediately

before impact is large. The resultant SLS motion after impact

in this case is therefore convincing.

In the case that the rear leg leaves the ground immediately

after impact, the condition of Eq. (4) is not necessary and

JI(q) ∈ R
2×3 then becomes

JI(q) =

[

0 1 −l sin θ−1 + l sin(θ−1 − α) 0
0 0 1 −1

]

. (12)

By using this, λI ∈ R
2 is derived as

λI =
4mtl sin

α
2 θ̇

−

1

2It +mtl2 (1− cosα)

[

It
I2l sin

α
2

]

. (13)

It is obvious that all the elements of λI are positive if and

only if θ̇
−

1 > 0. By substituting Eq. (13) into Eq. (9), we can

derive q̇+ and its elements are detailed as follows.

ẋ+ = ẋ− +
2mtl

3 sin α
2 sinα

2It +mtl2 (1− cosα)
θ̇
−

1 (14)

ż+ =
2
(

2It −mtl
2 (1− cosα)

)

l sin α
2

2It +mtl2 (1− cosα)
θ̇
−

1 (15)

θ̇
+

1 = θ̇
+

2 =
2It −mtl

2 (1− cosα)

2It +mtl2 (1− cosα)
θ̇
−

1 (16)

TABLE I

PHYSICAL PARAMETERS FOR WALKING MODEL

m1 2.0 kg
m2 1.0 kg
l 1.0 m
r 1.0 m

α 30 deg

I1 = m1

(

l

2

)

2

0.5 kg·m2

I2 = m2r
2 1.0 kg·m2
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Note that ẋ+ and ż+ in the above equations are the velocities

at the end-position of the rear leg immediately after impact.

Eq. (15) implies that ż+ becomes positive if the condition of

Eq. (11) holds. This means that the following two conditions

are equivalent.

(C1) The velocity of the end-position of the rear leg, ż+, is

negative.

(C2) The impulse in vertical direction of the rear leg is

positive.

(C1) is the condition Bourgeot et al. and Font-Llagunes and

Kövecses derived [5][6]. (C2) is that one of the authors

derived [7].

The transition rules for the positional coordinates are

described in the following. At the start of walking, we set

the end-position of the stance leg (x, z) to (0, 0). At every

impact, we reset x to

x+ = x− + 2l sin
α

2
. (17)

It is obvious that z± = 0 holds. The angular position of the

stance leg, θ1, should be reset to

θ+1 = θ−1 − α = −
α

2
. (18)

Also θ±2 = 0 must hold on the assumption that the output

following control is achieved as described later.

III. EQUATION OF MOTION AND CONTROLLER

DESIGN

A. Equation of Motion

The equation of motion corresponding to the generalized

coordinate vector, q, becomes

M(q)q̈ + h(q, q̇) = Su+ JTλ+ JT
µλ, (19)

where the first term of the right-hand side is the control

input vector, the second term is the vector of the holonomic

constraint force between the stance-leg end and the floor, and

the third term is the vector of the dynamic friction force. In

the left-hand side, M(q) is the same as Eq. (2) and the

vectors h(q, q̇) ∈ R
4 and S ∈ R

4 are detailed as follows.

h(q, q̇) =











−mtlθ̇
2

1 sin θ1

mt

(

g − lθ̇
2

1 cos θ1

)

−mtgl sin θ1
0











, S =









0
0
1
−1









(20)

As previously mentioned, the stance-leg exchange is in-

stantaneous and the continuous motion is always SLS. The

condition for the holonomic constraint during the stance

phase is then given by

ż = Jq̇ = 0, J =
[

0 1 0 0
]

. (21)

By solving Eqs. (19) and (21) for λ, we get

λ = −
JM(q)−1 (Su− h(q, q̇))

JM(q)−1Ĵ
T

(22)

=
2mt

(

I1

(

g − lθ̇
2

1 cos θ1

)

− ul sin θ1

)

2I1 +mtl2 (1− cos(2θ1)− µ sin(2θ1))
. (23)

By observing the sign of λ, we can check the unilateral

constraint.

The dynamic friction force in sliding contact is given by

µλ [N]. Here, µ is the coefficient of dynamic friction and

this includes the direction of the friction force. The Jacobian,

Jµ, is then determined as Jµ =
[

µ 0 0 0
]

. µ should be,

for example,

µ(q̇) = µ0sign(ẋ), (24)

where µ0 is a positive constant. There is no standard value of

µ0 because measured value of it changes in accordance with

temperature and ice quality [9][10]. We then set small values

less than 1.0 for simple modeling. For avoiding chattering,

we consider an approximation of Eq. (24) around ẋ = 0 as

follows.

µ(q̇) = −µ0 tanh(cẋ) (25)

Where c is a positive constant. Following Eqs. (19) and (21),

we can eliminate λ in Eq. (19) and arrange it as follows.

M(q)q̈ = Y (q, q̇) (Su− h(q, q̇)) (26)

Y (q, q̇) := I4 − Ĵ(q̇)T
(

JM(q)−1Ĵ(q̇)T
)−1

×JM(q)−1 (27)

Ĵ(q̇) := J + Jµ(q̇) (28)

B. Input-Output Linearization and Control Input

Let y := θ1−θ2 = STq be the control output and consider

tracking control of y to yd(t). The second-order derivative

of y with respect to time becomes

ÿ = STq̈ = STM(q)−1Y (q, q̇) (Su− h(q, q̇)) . (29)

Then we can consider the control input for achieving y →
yd(t) as follows.

u = A(q, q̇)−1 (v(t) +B(q, q̇)) (30)

v(t) = ÿd(t) +KD (ẏd(t)− ẏ) +KP (yd(t)− y) (31)

The scalar functions A(q, q̇) and B(q, q̇) are defined as

A(q, q̇) := STM(q)−1Y (q, q̇)S,

B(q, q̇) := STM(q)−1Y (q, q̇)h(q, q̇).

KP and KD are PD gains and are positive constants. y is,

however, exactly controlled to follow yd(t) and PD feedback

is not necessary because y+ = −α/2 and ẏ+ = 0 hold. To

smoothly control y from −α/2 to α/2 during the stance

phases, we introduce yd(t) as the following 5-order time-

dependent function.

yd(t) =











6α

T 5
set

t5 −
15α

T 4
set

t4 +
10α

T 3
set

t3 −
α

2
(0 ≤ t < Tset)

α

2
(t ≥ Tset)

Here, note that the time variable, t, is reset to zero at every

impact. yd(t) satisfies the following boundary conditions.

yd(0
+) = −

α

2
, ẏd(0

+) = 0, ÿd(0
+) = 0

yd(Tset) =
α

2
, ẏd(Tset) = 0, ÿd(Tset) = 0

We assume that the output following control is completed by

the next impact.
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IV. GAIT ANALYSIS

A. Typical Walking Gait and Stability

We chose the initial condition as

q(0) =
[

0 0 −α/2 0
]T

, q̇(0) =
[

0 0 V0 V0

]T
, (32)

where V0 [rad/s] is the initial angular velocity. Fig. 2 shows

the simulation results of level dynamic walking where Tset =
0.30 [s], µ0 = 0 and V0 = 0.80 [rad/s]. We can see

that a stable walking gait is successfully generated on the

completely frictionless surface. From Fig. 2 (a), we can also

see that x decreases or the contact point slides backward

during the stance phases.

Fig. 3 shows the evolutions of the gait descriptors for three

values of V0 with respect to the step number. Here, (a) is the

step period, and (b) is the walking speed. From Fig. 3 (a),

we can see that the step periods converge to the steady one

at a fast convergent speed. From Fig. 3 (b), however, we can

see that the walking speeds are kept different constant values

according to the initial angular velocities. We can conclude

that the generated gaits are stable but the limit cycles are not
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Fig. 2. Simulation results of dynamic walking on ice where Tset = 0.30
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Fig. 3. Evolutions of gait descriptors where µ0 = 0

unique. The steady walking speed monotonically increases

as the initial angular velocity increases.

Fig. 4 shows the simulation results of level dynamic

walking where µ0 = 0.4. The initial conditions were chosen

as the same in Eq. (32). From the results, we can see that

a stable gait is successfully generated. Fig. 4 (a) supports

that the contact point, x, slides forward during the stance

phases, that is, the walker in this case can move forward

more smoothly than the previous case. The sliding contact

enables the walker to increase the forward momentum and

to thrust against the floor. The step length is also increased

by the effect of sliding.

B. Gait Properties

Before gait analysis, we define the gait descriptors for

evaluating the efficiency of the generated walking gaits.

The average walking speed is defined as

V =
∆x

T
.

Here, T [s] is the step period. ∆x [m] is the step length

defined as the change in x from an instant immediately after

impact to the next, i.e. is defined as

∆x :=

∫ T−

0+
ẋ dt+ 2l sin

α

2
. (33)

The energy efficiency is evaluated in terms of the specific

resistance (SR) which is a dimensionless quantity and is

defined as

SR :=
p

mtgV
.
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Fig. 4. Simulation results of dynamic walking on ice where Tset = 0.30
[s] and µ0 = 0.4

Here, p [J/s] is the average input power defined by

p :=
1

T

∫ T−

0+
|ẏu| dt.

We performed numerical simulations by taking the follow-

ing procedures.

(P1) Set µ0 to zero.

(P2) Set the initial conditions to those in Eq. (32) where

V0 = 0.80 [rad/s].

(P3) Run the walking simulation for over 100 [s], and

save the gait descriptors and the steady state variables

immediately after impact.

(P4) Increase µ0 by 0.01 and rerun the walking simulation

by using the state variables saved in (P3) as the new

initial conditions.

(P5) Repeat from (P3) to (P4) until µ0 = 1.0.

Fig. 6 shows the gait descriptors for three values of Tset

with respect to µ0. Here, (a) is the step period T , (b) the

step length ∆x, (c) the walking speed V , and (d) the specific

resistance. In the cases where Tset = 0.3 and 0.4 [s], stable

gaits were generated for all µ0. Where Tset = 0.2 [s],
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Fig. 5. Evolutions of gait descriptors where µ0 = 0.2

stable gaits could not be generated with small values of µ0

because the ground reaction force, λ, became negative during

the stance phases. The small Tset generates a great deal of

joint torque, and this induces a substantial change in vertical

acceleration.

Except the step period, there are significant differences

between the gait descriptors where µ0 = 0 and those where

µ0 = 0.01. This fact implies that the gait efficiency dramat-

ically improves if there is the slightest effect of dynamic

friction. In contrast, the gait efficiency can be improved

flexibly by adding external energy sources after converging

a steady gait where µ0 = 0.

From Fig. 6 (b), we can see that the step lengths in the

cases where Tset = 0.30 and 0.40 [s] converge to the steady

ones and that there are the ranges of µ0 where the step

lengths are more than the steady ones. In these ranges, the

walker slides forward during the stance phases and the step

length becomes longer as shown in Fig. 4 (a). As µ0 increases

more, however, the motion during the stance phases becomes

equivalent to that in the absence of sliding due to big friction.

The first term of the right-hand side in Eq. (33) therefore

converges to zero. To confirm this, we plotted

2l sin
α

2
= 0.517638 [m]

in the figure. Also the step length where Tset = 0.20 would

converge to this value if µ0 increases more.

Fig. 6 (c) and (d) show that there is a unique µ0 that

maximizes the walking speed or minimizes the SR in each

case. The walking speed is maximized in the case that the

contact point, x, slides forward well during the stance phases

and the step period is reasonably short. The values of µ0 are

close to each other but are different. We must conclude that
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Fig. 6. Gait descriptors for three values of Tset with respect to µ0

the optimal solution for µ0 depends on the criterion.

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed modeling and control of limit

cycle walking incorporating the effect of dynamic friction

in sliding contact. Through mathematical analysis, we iden-

tified the condition for achieving instantaneous stance-leg

exchange. Numerical simulations showed that the optimal

solutions of the friction coefficient to the walking speed and

SR are different.

In the future, we should discuss more realistic model

of dynamic friction and extend mathematical analysis to

various walking models. Application to stabilizing control

and efficient gait generation utilizing the frictional effect is

also left as a future work.
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