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Abstract— We consider a gray-box modeling of a McKibben
pneumatic artificial muscle (PAM) actuated by a proportional
directional control valve. This paper presents a hybrid nonlin-
ear model of the PAM system and then proposes a systematic
parameter identification procedure that uses a game-theoretic
learning algorithm to obtain the appropriate parameter values
for the modeling. With a practical example, finally, we verify
the proposed method by illustrating a process of searching for
the parameter values together with figures of after-and-before
learning. As a result, we see that the resulting parameters are
better than ones obtained by our previously-proposed heuristic
and trial-and-error-based algorithm.

I. INTRODUCTION

The McKibben pneumatic artificial muscle has a high
strength-to-weight ratio and good flexibility due to its me-
chanical structure. It consists of an internal rubber tube sur-
rounded by a cylindrical mesh that is braided by inextensible
threads. Both ends of the two-layered tube are sealed by caps
to retain the cylindrical form, and one cap has a connecter
to supply compressed air. By filling the inner tube with
compressed air, the diameter of the rubber tube increases and
the long axis shortens due to the inextensible threads. This
is how the PAM generates a contraction force. On the other
hand, releasing the compressed air from the PAM allows the
elasticity of the rubber tube inside the PAM to return it to
its original shape.

Modeling and control of the PAM are known to be one of
the challenging issues in a robotics field. There are several
studies and applications about modeling and control, such
as nonlinear modeling [1]–[3], advanced control [2], [4]–
[10] and model-based control of robots with PAM [11],
[12]. Especially, most of the difficulties in the issues are
caused by the nonlinear characteristics such as a hysteresis
and compressed air flow, and so catching them has some
merits, such as realization of fine controls, evaluation of how
much the true dynamics is approximated, and etc. Making it
easy to handle in terms of control, Vo-Minh et al. [13] treat
with a Maxwell-slip model as a lumped-parametric quasi-
static model in order to capture the force/length hysteresis.
Motivated to acquire an accurate nonlinear hybrid model,
our initial work [14] employs a friction model based on
implicit Euler integration [15] and a fluid model of the
proportional directional control valve, whose parameters can
be identified by a heuristic but rational procedure proposed
in [16]. Moreover, in [16], the authors have considered a
situation where the mass of the weight continuously changes
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within an allowable weight range, taking into account future
applications to the antagonistic PAM pairs [17], [18] and
further development. The proposed algorithm, however, is a
heuristically trial-and-error-based procedure for identifying
the parameters so that it takes much computation times
and experiences to obtain the appropriate values. Therefore,
automation of the identification procedure must be useful for
people those who want to get the PAM models, like the work
[19] that proposes a gray-box identification with a locally-
linearlized model for an industrial robot.

This paper aims at a gray-box modeling of the PAM
system actuated by the proportional directional control valve.
The gray-box modeling requires a mathematical model of
the PAM system and its parameter identification process. In
this paper, first, we present a hybrid nonlinear model of the
PAM system that is based on our previous result in modeling
[16] with modification of generalization in terms of the load.
Analysis of the model reveals that it has nine key parameters
characterizing transient and steady-state behaviors and also
that some of the model parameters dependent on the load
are ones affecting on only steady-state behaviors, where the
steady state is considered when a step signal is input to the
system as a control command to the valve. Next, this paper
proposes a systematic method of automatically identifying
the parameters by applying a game-theoretical learning tech-
nique, which is a main contribution. The learning algorithm
searches for values of the parameters so that simulation
data, generated by the model, is as close as possible to
experimental data, sampled in advance. This can be achieved
by measuring an error between the two data in terms of a
utility. This paper describes how to materialize the utility in
a procedure form since the materialization is a key to the
achievement in our game-theoretic manner. Finally, to verify
the gray-box modeling including the automatic identification,
we show a process of searching for the parameter values
together with figures of after-and-before learning, and the
resulting parameters, which are better than ones obtained by
the existing perfectly trial-and-error-based algorithm [16].

An essential issue of this work is that the determination of
the parameters is to solve a complex problem of a simulation-
based nonlinear optimization subject to a hybrid nonlinear
constraint condition. The contribution of our work, thereby,
can be also explained by that an adequate solver for the
problem is developed by the game-theoretic learning algo-
rithm. What the solver does is in a game fashion as follows.
The parameter (that is a player) tries to maximize the utility
by observing the opponent parameters’ updates. Repeating
this game play, the parameters can reach a so-called Nash
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Fig. 1. Illustration of considered PAM system.

equilibrium where neither players want to deviate from the
respective utility values. The resulting parameters are a local
(or might be a global) optimum to the optimization problem
and then the model of the PAM system can be automatically
identified.

II. PHYSICAL MODELING OF THE PAM SYSTEM

This paper considers a PAM system with a vertically
suspended weight and a proportional directional control
valve, as illustrated in Fig. 1. A model of the considered PAM
system is in a switched system with 32 nonlinear subsystems
fσ : ℜ3 ×ℜ → ℜ3,

ẋ(t) = fσ(x(t), u(t)) if x(t) ∈ Xσ, (1a)

y(t) =
[
1 0 0
0 0 1

]
x(t), (1b)

where the state variable x ∈ ℜ3 and output variable
(measured by sensors) y ∈ ℜ2 are respectively defined as
x := [ϵ ϵ̇ P ]T and y := [ϵ P ]T , u ∈ U ⊂ ℜ is a control
iput, σ ∈ Σ := {1, 2, · · · , 32} is a subsystem’s index,
Xσ := {x ∈ ℜ3 |Ψσ(x) ≤ 0}, Ψσ : ℜ3 × ℜ → ℜ is
a function derived from a conditional statement in the if-
then rule. When inputting a constant command signal to the
valve, ū ∈ U , there exists a unique index, σ ∈ Σ, such
that fσ([ϵ̄ 0 P̄ ]T , ū) = 0 is satisfied, where ϵ̄ and P̄ are a
contraction ratio and an inner pressure of the PAM in steady
state, respectively.

The model (1) is written by summarizing several dynamic
equations and is based on our results in modeling [14], [16],
where some of the equations are partially modified to have
dominant parameters take a positive value. The dynamic
equations are related to a contraction force, some frictions, a
PAM’s volume, an inner pressure, a weight, and a flow rate
of a control valve, all of which are introduced in Appendix.
When considering the load that varies in time, we have to
reveal which parameters depend on the load or not. In [16],
fortunately, we have specified such parameters via doing
several experiments for parameter identification, and then
this paper characterizes relation of the parameters with the
load in the following proposition.

Proposition 1: For the model (1), there exists an interval
[a, b] (0 ≤ a ≤ b) such that parameters, K, θ, Cq1, Cq2,
and cc, are dependent on a load, M ∈ [a, b], and other
parameters, A0, k1, k2, and cv , are constant over all M .

Naturally, the load-dependent parameters can be consid-
ered functions of the load whose domain is [a, b], i.e.,

TABLE I
VARIABLES AND PARAMETERS OF PAM SYSTEMS

D0 : natural diameter of PAM [m]
L0 : natural length of PAM [m]
L : initial length of PAM after a weight loaded [m]
l : length of PAM [m]

ϵ = L−l
L

: contraction ratio [ - ]
V : volume of PAM [m3]

D1, D2, D3 : coefficients of polynomial [m3]
M : mass of the weight [Kg]
g : gravitational acceleration [m/s2]
P : absolute internal gas pressure [Pa]

Ptank : source absolute pressure [Pa]
Pout : atmospheric pressure [Pa]
Cv : specific heat at constant volume [J/Kg K]
k : specific heat ratio for air [ - ]
R : ideal gas constant [J/Kg K]
T : absolute temperature [K]
K : coefficient of elasticity [N/m3]
θ : initial angle between a braided thread

and cylinder long axis [deg]
Cq1 , Cq2 : correction coefficients [-], [1/Pa]

cc : Coulomb friction [N]
A0 : orifice area of control valve [m2]

k1, k2 : polytropic indexes [−]
cv : viscous friction coefficient [Ns/m]

K(M), θ(M), Cq1(M), Cq2(M), and cc(M) defined over
M ∈ [a, b]. Note, the PAM model shown in the appendix
is already generalized in terms of M . The feature of Propo-
sition 1 can lead to the following corollary by the similar
technique used to derive the main Theorem 1 in [16], where
its proof is omitted here so please see that literature.

Corollaly 1: (Separability of Parameters) The parameters
of the model (1) can be divided into two groups: the
parameters, K(M), θ(M), Cq1(M), Cq2(M), cc(M) for any
M ∈ [a, b], characterize steady-state behaviors, and the other
parameters, A0, k1, k2, cv , characterize transient behaviors.

The separability of the parameters is very interesting
because although it looks like the formulated model (1) is too
complex to investigate and catch what impact the parameters’
change respectively gives on the transient and steady-state
behaviors, the corollary says not true. This result gives an
indication of making an effective procedure of identifying
the nine parameters, which is our aim of this work.

III. PARAMETER IDENTIFICATION USING
GAME-THEORETIC LEARNING

What we want to do in this section is to solve the following
optimization problem for the parameter identification: given
experimental data Dexp,

min
p∈ℜ9

d(Dsim(p), Dexp)

s.t. PAM model (1) generates Dsim(p),
pi > 0 ∀i ∈ {1, 2, · · · , 9},

where p = (K, θ,Cq1, Cq2, cc, A0, k1, k2, cv) ∈ ℜ9 is a
decision variable and d(·, ·) is a distance between two data
sets. This optimization has a nonlinear objective and a hybrid
nonlinear constraint condition, which would look too difficult
to solve by existing algorithms, so that we try to develop a
game-theoretic learning algorithm suitable for obtaining the
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solution (parameter values). In general, finding the global so-
lution to such a nonlinear and complex optimization problem
is so hard, while if an accurate measurement of the distance
is possible to realize, it must be helpful to evaluate the
solutions. For example, the accurate measurement enables
to check how far or close the obtained solution is to the
optimal or the other local. Therefore, our approach also takes
into account materialization of how to accurately measure the
distance between two data sets in terms of an area error on
a corresponding plane, which is a feature of this approach.

Remark 1: The game-theoretic learning process of search-
ing for the values is to update p with a time-invariant step
size ∆p, i.e., p ← p + ∆p. The simulation data Dsim(p) is
recalculated with the updated p. Then, we write Dsim(∆p)
with an initial parameter value p(0) in the rest of this paper,
where ∆p corresponds to a that is defined in the next section.

A. Game Setting

Let us define the game G with players, actions, and a
utility: A set of rational N players is P = {1, 2, · · · , N},
an action of player i is ai ∈ Ai := {0, ∆pi}, and a utility
is u(a) = −d(Dsim(a), Dexp), where an action profile is
a = (a1, a2, · · · , aN ) and a ∈ A := Πi∈PAi, then the
strategic game is denoted as G(P,A, u). The player becomes
a parameter that we want to identify. The utility is common
for all players, is a non-positive function, u : A → ℜ−,
and represents a scalar value related to an error between
two data sets, whose construction and detail explanations
will be shown in section III-B. For the i-th player’s action
ai ∈ Ai, its opponent’s action profile is denoted as a−i, i.e.,
a = (ai, a−i). The important concepts are described below,
which are helpful for analyzing the game.

Definition 1: A best response of player i to an opponent
action profile a−i is denoted as BRi(a−i):

BRi(a−i) = {ai ∈ Ai |
u(ai, a−i) ≥ u(a′

i, a−i) ∀a′
i ∈ Ai} . (2)

Definition 2: An action profile a∗ is a Nash equilibrium
if, for every i ∈ P , a∗

i ∈ BRi(a∗
−i) holds.

Our process of searching for the values of the parameters
by repeating the game, follows a Cournot adjustment model.
Supposed that parameter cv is ith player, for example,
the parameter at step t, denoted as cv(t), is updated by
cv(t + 1) = cv(t) + 0 if ai(t) = 0, or cv(t + 1) =
cv(t) + ∆pi otherwise, where ∆pi is a time-invariant step
size to the player cv . Then, the process makes a choice of
more reasonable one of the two actions that yields a better
utility value, i.e.,

ai(t) = arg max
ai∈Ai

(u(ai, a−i))

= arg max(u(0, a−i), u(∆pi, a−i)),

where it should be noted that u takes a non-positive value.
This kind of the game setting can be viewed as a game

deterministically played by rational players who wants to
maximize the utility (the area error multiplied by minus one).
That is to say that each strategic player, upon observing the

opponent action a−i, would select a reasonable action ai

that would minimize a cost of the error. In an equilibrium,
every player has an action a∗

i that maximizes the utility,
given the opponent action a∗

−i. Therefore, no rational players
would find it profitable to unilaterally change its action.
This equilibrium is known as to be a Nash equilibrium or
Cournot-Nash equilibrium. Here, the equilibrium is when
each player’s action is included in a best response to the
opponent action, then neither wants to deviate from the
respective utility values. In this game-theoretic approach, the
player (parameter) learns in a rational way to reach a certain
equilibrium. This is why the identification process is called
learning.

B. Materialization of the Utility

The utility is basically to measure an error between
simulation and experimental data in both of steady-state and
transient responses. Toward explaining how to measure, first,
we introduce some notations for the data. Dsim(a) denotes
a set of simulation data that is obtained by running a code
of the hybrid nonlinear system with parameters updated
by a and with Mi fixed. The simulation data set consists
of steady-state data Dsim,s and transient data Dsim,t, and
furthermore, Dsim,s includes dilatation process data Ddila

sim,s

and contraction process data Dcont
sim,s, where the dilatation

and the contraction are separated to catch a hysteresis loop
appearing in steady state. That is,

Dsim = {Dsim,s, Dsim,t} = {Ddila
sim,s, Dcont

sim,s, Dsim,t},

=
{
{(P̄ d

si, ϵ̄
d
si)}

Nd
s

i=1, {(P̄
c
si, ϵ̄

c
si)}

Nc
s

i=1,

{(tsi, Psi(ti), ϵsi(ti))}
Nt

s
i=1

}
,

where Nd
s , N c

s and N t
s are the number of the corresponding

data. Similarly, the experimental data Dexp,s consisting of
Dexp,s and Dexp,t are sampled in advance using an practical
equipment, and Dexp,s includes dilatation process Ddila

exp,s and
contraction process Dcont

exp,s. That is,

Dexp = {Dexp,s, Dexp,t} = {Ddila
exp,s, Dcont

exp,s, Dexp,t},

=
{
{(P̄ d

ei, ϵ̄
d
ei)}

Nd
s

i=1, {(P̄
c
ei, ϵ̄

c
ei)}

Nc
e

i=1,

{(tei, Pei(ti), ϵei(ti))}
Nt

e
i=1

}
,

where Nd
e , N c

e and N t
e are the number of the corresponding

data. Note that the both data sets are separately acquired so
that the pressure sequences and the time sequences included
are not always common to each other. We have to process the
original data sets in an appropriate way to achieve accurate
measurement of the error between them.

The utility function:

u(a) = −d(Dsim,·(a), Dexp,·) ≤ 0,

then, can be materialized in a procedure that follows below,
where the subscript ‘·’ is ‘s’ or ‘t’. Our idea of it, as
illustrated in Fig. 2, is to partition the error area into triangles
and trapezoids, and since they are convex sets, we can
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(a) Original data of simulation ⃝ and
experiment ¤ over the middle range
[αl, αh].

(b) Projections of ⃝ and ¤ onto the
other segment, respectively. They are
Ψ(Dsim,s) and Ψ(Dexp,s). If exist, a
cross point is calculated, denoted as △,
and a set of the cross points is denoted
as Dcp.

(c) The error over the middle range
is a sum of trapezoidal and triangular
areas in red, by using the processed
data {Dsim,s, Ψ(Dexp,s), Dcp} and
{Dexp,s, Ψ(Dsim,s), Dcp}.

(d) Original data of simu-
lation ⃝ and experiment
¤ over the side range
[0, αl], where it is a low
side range in this figure.

(e) Two projections of
the edge point ¤, whose
pressure is αl, onto the
simulation data segments.
The points are ready to be
denoted as Dαl .

(f) The error over the
range [0, αl] is a sum of
triangular areas in red, by
using the data Dαl .

Fig. 2. Procedure of calculating the utility u(a), which provides an accurate area error between Dsim(a), and Dexp, denoted as ⃝ and ¤ respectively.
(a)-(c) are about processing the data over the middle range and (d)-(f) are about processing over the (low) side range in the steady state. In the case of the
transient responses, the similar technique of (a)-(c) is used to calculate error areas.

use a standard function such as polyarea on MATLAB.
Although this idea is fundamental in computer science, some
technical and unique situations must be treated adequately.
For example, the data Dsim and Dexp include the hysteresis
loop coming from the dilatation and contrition processes, so
that we need take into account the processes in calculating
the error, and the treatment must change depending on a
pressure range. Additionally, the procedure is constructed to
output a non-positive value and so u(a) taking zero means
that it is the happiest situation to each player who makes
his/her decision of choosing ai.

Step 1. To get ready for measuring the error in steady state,
the pressure range are separated into three: [0, αl], [αl, αh],
and [αh,∞], where αl and αh are given by

αl = max
(
min

i

(
{P̄ d

si}
Nd

s
i=1, {P̄

c
si}

Nc
s

i=1

)
,

min
i

(
{P̄ d

ei}
Nd

e
i=1, {P̄

c
ei}

Nc
e

i=1

))
, (3)

αh = min
(
max

i

(
{P̄ d

si}
Nd

s
i=1, {P̄

c
si}

Nc
s

i=1

)
,

max
i

(
{P̄ d

ei}
Nd

e
i=1, {P̄

c
ei}

Nc
e

i=1

))
, (4)

where the middle range and the low side range are illustrated
in Fig. 2(a) and Fig. 2(d).

Step 2. Process data over the middle range [αl, αh] for
measuring. For some i ∈ Nd

s , there exist appropriate indexes
j, j − 1 ∈ Nd

e subject to P̄ d
ej−1 ≤ P̄ d

si ≤ P̄ d
ej . Then, let us

consider projection of the simulation data (P̄ d
si, ϵ̄

d
si) onto a

segment of the experimental data as a map Ψ,

Ψ : (P̄ d
si, ϵ̄

d
si) 7→

(
P̄ d

si,
ϵ̄d
ej − ϵ̄d

ej−1

P̄ d
ej − P̄ d

ej−1

(P̄ d
si − P̄ d

ej) + ϵ̄d
ej

)
,

where all of the projected points is denoted as Ψ(Dsim,s).
Similarly, the experimental data is projected onto a segment
of the simulation data,

Ψ : (P̄ d
ei, ϵ̄

d
ei) 7→

(
P̄ d

ei,
ϵ̄d
sj − ϵ̄d

sj−1

P̄ d
sj − P̄ d

sj−1

(P̄ d
ei − P̄ d

sj) + ϵ̄d
sj

)
,

where all of the projected points is denoted as Ψ(Dexp,s).
Furthermore, if there exist cross points of the simulation and
experimental data, the cross points are calculated, denoted as
Dcp. These process are illustrated in Fig. 2(b) and Fig. 2(e),
where circles and boxes in black are the projected points.
Additionally, the above projections have to be done in the
contraction process as well, but the details are omitted here.

Step 3. Process data over the side ranges, [0, αl] and [αh,∞]
for measuring. Consider a point giving αl via (3) and connect
the point and all points over the range [0, αl]. A set of those
points is denoted as Dαl

. Similarly, consider a point giving
αh via (4) and connect the point and all points over the range
[αh,∞]. A set of those points is denoted as Dαh

.

Step 4. To get ready for measuring the error in the pres-
sure and the contraction ratio over time, the corresponding
data, Dsim,t and Dexp,t, is processed by using the same
technique as the projection used in Step 2., and then
{Dsim,t, Ψ(Dexp,t)} and {Dexp,t, Ψ(Dsim,t)} are obtained.

Step 5. Sort the processed data {Dsim,s, Ψ(Dexp,s), Dcp, },
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{Dexp,s,Ψ(Dsim,s), Dcp}, Dαl
and Dαh

, which are related
to the steady state, and the other data {Dsim,t, Ψ(Dexp,t)}
and {Dexp,t, Ψ(Dsim,t)}, which are related to the time re-
sponses. They can yield the smallest triangles and trapezoids
by a certain geometric technique such as tessellation, and
their areas are summed to get a total, as illustrated in
Fig. 2(c) and Fig. 2(f). Finally, this procedure can output
the respective errors multiplied by minus one, i.e., u(a) =
−d(Dsim,s(a), Dexp,s) in the steady-state case, or u(a) =
−d(Dsim,t(a), Dexp,t) in the time response case.

Note that the above procedure is a polynomial time.

C. Parameter Identification by Game-Theoretic Learning

A game-theoretic learning algorithm for automatically
finding the parameters of our interest is proposed in Algo-
rithm 1. In the algorithm, two games are played: One is
(Ps,As, u) with five players of ps = (K, θ,Cq1,− 1

Cq2
, cc)

and their actions ∆ps = (∆K, ∆θ, ∆Cq1, ∆Cq2, ∆cc) and
zero, which is played from line 2 to 8, and the other is
(Pt,At, u) with four players of pt = (A0, k1,

1
k2

, 1
cv

) and
their actions ∆pt = (∆A0, ∆k1, ∆k2, ∆cv) and zero, which
is played from line 11 to 17. A reason why the two games
can be played comes from the separability of the Corollary
1 that helpfully reduces interaction among the players. Here,
the for loop from line 1 to 9 expresses that the parameters are
determined for each loads of M1 to MNM

. From this, NM

pairs of the parameters related to the steady state are obtained
and then the interpolation over the load range can be done at
line 18 to get five M -dependent continuous functions about
ps.

Theoretical analysis of the proposed algorithm can lead to
the following property.

Theorem 1: Suppose that initial positive values of param-
eter ps(0) and pt(0), close to zeros, give well-possedness to
the switched nonlinear system of the PAM (1). All of the
actions a∗, generating ps and the M -dependent continuous
functions, at line 4 and a∗, generating pt, at line 13 are Nash
equilibria, respectively.

Proof: There are several facts to support the theorem
that all action sets (non-negative step sizes) are finite, that
they are fixed to each parameters, that a time sequence of
u(a) is a non-decreasing function, and that the conditions at
lines 2 and 11 describes that if they are met, the correspond-
ing game play is terminated, that is, at that time there are no
rational actions maximizing the respective utility value u(a)
to each players. Then, the actions becomes a best response
each other. Moreover, since it is clear the algorithm is a
polynomial time, this algorithm can terminates in finite time.

We can find that the resulting values of the parameters
related to the transient responses as well as the resulting
functions of the parameters related to the steady state are gen-
erated by the Nash equilibrium. The algorithm is contributed
to make the parameter identification automatic, compared to
our previous work [16]. The Nash equilibrium, however, does
not always provide the best performance in the sense of the

Algorithm 1 Parameter Identification Algorithm
Require: DM

exp, k ← 0, ps(0) ̸= ps(−1), pt(0) ̸= pt(−1)
Ensure: functions ps(M) and values pt.

1: for j = 1 to NM do
2: while for all i, ps

ij(k) is ps
ij(k − 1) do

3: for i = 1 to 5 do
4: a∗

i ← arg maxai∈As
i
−d(DMj

sim,s(ai, a−i), D
Mj
exp,s)

5: ps
ij(k) ← ps

ij(k − 1) + a∗
i

6: end for
7: k ← k + 1
8: end while
9: end for

10: k ← 0
11: while for all i, pt

i(k) is pt
i(k − 1) do

12: for i = 1 to 4 do
13: a∗

i ← arg maxai∈At
i
−d(Dsim,t(ai, a−i), Dexp,t)

14: pt
i(k) ← pt

i(k − 1) + a∗
i

15: end for
16: k ← k + 1
17: end while
18: Parameters ps

i· related to steady-state behaviors are inter-
polated over [M1,MNM ] by a least-square approxima-
tion.

parameter identification. Then, we actually need to verify
what results can be obtained by applying the PAM model
(1) and the proposed algorithm to the gray-box modeling of
an actual PAM system, which will be discussed in the next
section.

IV. APPLICATION AND VERIFICATION
USING PRACTICAL PAM SYSTEM

This section shows how the PAM model (1) and the
proposed game-theoretic algorithm works when it is applied
to the gray-box modeling of the practical PAM system. The
PAM system includes a proportional directional control valve
of Fig. 3 and is the same as one used in our previous work
[16]. For the mathematical model of the PAM system, we
try to identify the parameters of the model. Since the iden-
tification procedure requires experimental data set Dexp, we
prepared data sets for each loads: M1 = 1, M2 = 2,..., and
M9 = 9 [Kg], where NM = 9. Following the game setting,
define the parameters (players) as ps = (K, θ,Cq1,− 1

Cq2
, cc)

and pt = (A0, k1,
1
k2

, 1
cv

), set their initial values to
ps(0) = (2.175 × 104, 0.5147, 0.5430, 2.161 × 10−5, 1.414)
and pt(0) = (0.014, 1.4, 0.01, 19.9), and set their step sizes
(actions) to ∆ps = (0.75 × 104, 0.0129, 0.0187, 0.0424 ×
10−5, 0.0488) and ∆pt = (1.45× 10−9, 0.035, 0.025, 0.25).
Those initial parameter values give the well-posedness to
the PAM model (1), which means that simulation can be
successfully done without any numerical errors, such as state
variables taking an imaginary number and division by zeros.
Additionally, we are also interested in specifying a region
of parameters giving the well-posedness, but it requires
reachability analysis of the hybrid nonlinear dynamic system,
which will be discussed another time.
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Fig. 3. Experimental equipment.

Resulting values and interpolated functions of the param-
eters obtained by applying the proposed identification, are
listed in TABLE II. The steady-state and transient responses
before applying the proposed game-learning algorithm are
shown in Fig. 4(a) and Fig. 5(a), and the responses in case of
the parameters learnt by the proposed algorithm are shown
in Fig. 4(b) and Fig. 5(b), respectively, where the load is
supposed to be M1. From those figures, we see that the
game learning properly functions to obtain the desirable
parameter values and functions. In order to show a difference
from our previous work [16], moreover, the steady-state and
transient responses gotten by its heuristically trial-and-error-
based algorithm are shown in Fig. 4(c) and Fig. 5(c). When
looking at them, certainly the previous work seems to attain
good parameters as well, but actually their utility values
−1709 and −4.999×105 are respectively smaller than −1409
and −2.704 × 105 in case of the game-learning algorithm.
This comparison means that the proposed algorithm is more
effective because it automatically searches for the better (or
the best) values in a sense of the utility. Here, processes of the
parameters learning in a game play and of the utility values
increasing toward zeros are shown in Fig. 6. The games in the
steady state and transient responses were respectively played
62 and 43 times to each parameters, and the utility values
go up to be close to the zeros.

It is clear that parameters giving u(a∗) = −d(·, ·) = 0 are
the global solution to the interesting optimization, which is
an ideal situation in which there are no modeling errors, no
sensing noises and the model has an appropriate structure
to be able to catch the PAM dynamics. Such a situation is
not realistic. Now that all of the obtained utility values are
not zeros, the solutions should be local, but we can see how
good the model with the obtained parameters is by checking
the the utility value. In fact, we could obtain the better
parameters than ones obtained by our previously-proposed
algorithm [16].

Consequently, we practically show that the gray-box mod-
eling consisting of the presented PAM model taking into
account the load changes and the proposed game-theoretic
learning algorithm for systematically identifying the physical
parameters, works effectively1.

1Model validation deviates a little from this paper’s aim and there is a
limitation of spaces so please see results of our previous works [14], [16].

TABLE II
IDENTIFICATION RESULTS OF THE PARAMETERS.

D0 = 0.01 [m]
L0 = 0.250 [m]
D1 = −347.8 × 10−6[m3]

D2 = 232.2 × 10−6[m3]

D3 = 27.69 × 10−6[m3]

Ptank = 0.7013 × 106 [Pa]
Pout = 0.1013 × 106 [Pa]
k = 1.4 [-]
R = 287 [J/Kg K]
T = 293 [K] di

re
ct

ly
m

ea
su

ra
bl

e
pa

ra
m

et
er

s

K = (1.005M2 − 0.9175M + 0.6435) × 106 [Kg]

θ = (31.22exp(−0.4332M) + 31.44)π/180 [rad]

Cq1 = 0.1735 log(10.00M) + 0.4183 [−]

Cq2 = (0.1133M − 1.451) × 10−5 [1/Pa]

cc = 1.8121M + 0.2318 [N] fo
r

st
ea

dy
st

at
e

A0 = 0.051 × 10−6[m2]

k1 = 1.42, k2 = 0.28 (extenstion) [-]
k1 = 1.42, k2 = 0.36 (contraction) [-]
cv = 10 [N/(m/s)] fo

r
tr

an
si

en
t

V. CONCLUSIONS

This paper has proposed a systematic method for identi-
fying the parameters of the PAM model, which based on the
game-theoretic learning approach. It has been shown that
the learning enables to automation how to determine the
parameters using an error area between experimental and
simulation data. From verification with the practical PAM
system, we have could illustrate that the proposed game-
theoretic algorithm is effective and enables to obtain the
better parameters simulating the real behaviors of the PAM
well.

As a future work, we have to mathematically analysis the
parameters giving the well-posedness to the PAM system
to specify the feasible parameter region, to incorporate the
mixed strategy for improving the equilibrium, and to develop
a gray-box modeling for antagonistic paris of PAMs to
realize a position/force control system.

APPENDIX
This Appendix shows each components to give the hybrid

model with the load changes (1), which is the generalization
of our previous model [16] in terms of load M .

A. Contracting Force
The contracting force is given by the following equation:

F (P, ϵ, t) = πD2
0

4 (P (t) − Pout)
[

3
tan2 θ {1 − Cq1(M)×(

1 + eCq2 (M)(P (t)−Pout)
)
ϵ(t)

}2 − 1
sin2 θ

]
.

B. Pressure Change
The rate of change in inner pressure of the PAM is given

by the following dynamic equation:

Ṗ (t) = k1
RT

V (t)
ṁ(t) − k2

V̇ (t)
V (t)

P (t),
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(b) After the learning, then u(a∗) = −1409
with ps(62).
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(c) The heuristic algorithm in our work [16], then
−d(Dsim,s, Dexp,s) = −1709.

Fig. 4. Comparison of steady-state responses of experimental data Dexp,s as ‘¤’ and simulation data Dsim,s as ‘⃝’, before and after applying the proposed
game-theoretic learning algorithm to the parameter identification, where ‘△’ denotes a cross point. Areas in red expresses the error, d(Dsim,s, Dexp,s).
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(a) Before the learning, then u(a) =
−2.086 × 107 with pt(0).
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(b) After the learning, then u(a∗) =
−2.704 × 105 with pt(43).
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(c) The heuristic algorithm in our work [16],
then −d(Dsim,s, Dexp,s) = −4.999 × 105.

Fig. 5. Comparison of time responses of experimental data Dexp,t as ‘¤’ and simulation data Dsim,t as ‘⃝’, before and after applying the proposed
game-theoretic learning algorithm to the parameter identification, where ‘△’ denotes a cross point. Areas in red expresses the error, d(Dsim,t, Dexp,t).
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Fig. 6. How the parameters and the utility values are updated during playing the games in the proposed algorithm.

where V̇ is the volume change and k1, k2 ∈ [1, 1.4] are
polytropic indexes determined by the corresponding process.

C. Volume

The volume of the PAM is empirically defined as:

V (t) = D1ϵ(t)2 + D2ϵ(t) + D3,

where D1, D2, D3 are determined from curve fitting with
experimental volume data. Therefore,

V̇ (t) = 2D1ϵ̇(t)(ϵ(t) + D2).

D. Mass Flow Rate in the Valve

The mass flow rate can be characterized by the following
equation with a certain ratio α ∈ [0, 1] [14],

m(t) = α(t)mi(t) − (1 − α(t))mo(t),
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where mi is the mass flow rate from the intake port, which
is specified below with P1 = Ptank and P2 = P ,

mi(t) =



A0
Ptank√

T

√
k
R

(
2

k+1

) k+1
k−1

if P (t) ≤
(

2
k+1

) k
k−1

Ptank,

A0
Ptank√

T

√
2k

R(k−1)

(
P (t)

Ptank

) 1
k

√
1 −

(
P (t)

Ptank

) k−1
k

if P (t) >
(

2
k+1

) k
k−1

Ptank,

and mo is the mass flow rate of the outlet port, which is
specified with P1 = P and P2 = Pout,

mo(t) =



A0
P (t)√

T

√
k
R

(
2

k+1

) k+1
k−1

if P (t)
(

2
k+1

) k
k−1 ≥ Pout,

A0
P (t)√

T

√
2k

R(k−1)

(
Pout

P (t)

) 1
k

√
1 −

(
Pout

P (t)

) k−1
k

if P (t)
(

2
k+1

) k
k−1

< Pout.

As for α, it depends on where the spool is located by a
command voltage u. Then, α is a function of u, i.e., α =
κ(u), where κ is a monotonically increasing function with
respect to u ∈ U := [κ−1(0), κ−1(1)].

E. Dynamic Equation Related to Weight

The dynamic equation of the load can be formulated as

MLϵ̈(t) =
F (P, ϵ, t) − Mg − Ff (t)−

K(M)(L0 − L(1 − ϵ(t)))3, if ϵ(t) ≤ L−L0
L ,

F (P, ϵ, t) − Mg − Ff (t), otherwise,

where K is a coefficient of elasticity (a ratio of the restoring
force to the difference between the measured length of the
PAM and its natural length in the absence of the load), and
Ff is a friction term following the switched dynamic below.
If ϵ(t) ≤ (L−L0)/L, then Fo = F −Mg −K(L0 −L(1−
ϵ))3; else Fo = F − Mg. The friction term is described
below [15]:

Ff (t) =



cvLϵ̇(t) + cc(M)sgn(ϵ̇(t)), if ϵ̇(t) ̸= 0,

cc(M), if ϵ̇(t) = 0 and Fo(t) > cc(M),

Fo(t), if ϵ̇(t) = 0 and

Fo(t) ∈ [−cc(M), cc(M)],

−cc(M), if ϵ̇(t) = 0 and Fo(t) < −cc(M),

where Fo is the net force acting on the PAM system, cc

is the Coulomb friction force and cv is the viscous friction
coefficient.

Note that the weight is hung from the PAM even if the
gauge pressure is zero, i.e., P = Pout. In the zero case, there
is no contraction force generated in F , and there is no force
to balance the weight. To modify the force to balance, the
PAM is considered an elastic body.
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