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Abstract— Configuration space (C-space) plays an important
role not only in motion planning but also in geometric mod-
eling, shape and kinematic reasoning, and is fundamental to
several basic geometric operations, such as continuous collision
detection and generalized penetration depth estimation, that
also find their applications in motion planning, animation and
simulation. In this paper, we developed a new method for
constructing the boundary of the C-space obstacles (C-obst)
of polygons. This method is simpler to implement and is
theoretically more efficient than the existing techniques. Our
main idea is to devote the computation on the discontinuity
in temporal and spatial coherence where the structure of the
C-obst changes. We also developed a method for estimating
the generalized penetration depth by computing the distance
between the query point and the C-obst surface.

I. INTRODUCTION

The Configuration space (C-space) of a movable object
P is the enumeration of all configurations of P . A closed
subset of the C-space that causes P to collide with obstacles
Q is called C-space obstacle (C-obst).

It is well known that computing an explicit geometric rep-
resentation of C-obst is intractable for objects with high de-
gree of freedom [1], and researchers have been successfully
solving difficult problems without computing the C-obst,
e.g., using probabilistic motion planners (see [2]). However,
an explicit representation of C-space remains important to
many problems, including problems that require complete
motion planners (e.g., assembly/disassembly), CAD (e.g.,
Caine’s design of shape [3]), virtual prototyping, object
placement [4] and containment [5]. In addition, C-space
mapping is fundamental to basic geometric operations, such
as continuous collision detection and generalized penetration
depth estimation.

Since the early 1980s to the mid-1990s, many researchers
have proposed several methods to compute and approximate
various types of representation of the C-obst. However, not
until more recently have newer developments (e.g. the idea
of configuration products by Nelaturi and Shapiro [6]) been
made toward improving and generalizing these methods. See
the survey by Wise and Bowyer [7] for a complete review on
these earlier works and see Section II for a brief overview
of the related and recent works.

In this paper, we propose a new method for mapping 2-
d polygons to their 3-d C-obst. Our method represents the
boundary (∂C-obst) of C-obst as a set of ruled surfaces. The
proposed method is simpler to implement than the existing
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methods in the literature [4], [8] and is often more efficient.
These main advantages are provided by a new algorithm
that allows us to map C-obst using the idea of critical
orientations. As a warm-up, we will start our discussion
using convex polygons (in Section IV-A). We then show that
the ∂C-obst of non-convex polygons can be constructed by
updating the M-sum at the critical orientations constructed
from the reduced convolution (in Section IV-B). The time
complexity of our method is O(m3n3 + bTcd) for polygons
with m and n vertices, where b is the number of boundaries
of C-obst, and Tcd is the time for a single collision query. We
also show that the resulting C-obst can be used for efficiently
estimating the generalized penetration depth by computing
the closest feature between the query point and the ruled
surfaces (Section V-B).

II. RELATED WORK

The idea of C-space mapping was first proposed by
Lozano-Pérez [9]. His original idea was to construct the
C-obst by slicing it at a predefined resolution along the
rotational axis, and computing the Minkowski sum (M-sum)

− P ⊕Q = {−p+ q | p ∈ P, q ∈ Q} (1)

of the robot P and the workspace obstacle Q at each slice.
To connect two consecutive slices at θ and θ′, Lozano-Pérez
proposed to use the swept volume (area) of P rotating from
θ to θ′ to replace P in Eq. 1.

Since then, more techniques and representations (including
grids [10], bounding shapes [11], analytical functions [4],
[8], and semi-algebraic sets [1], [12]) have been proposed,
mostly in the context of motion planning. Note that the
mapping techniques for free-flying robots and fixed-base
articulated (manipulator) robots are very different. Since this
paper focuses on free-flying robots, for readers interested in
the manipulator C-space mapping, please refer to the work
by Branicky and Newman [13]; Hwang [14]; and Ward and
Katupitiya [15] for more recent work on this topic.

Among all these techniques, the slicing-based strategy
remains quite popular due to its simplicity. Notably, Zhu and
Latombe [11] generalized the idea to use the outer and inner
swept areas (which are the union and the intersection of the
areas swept out by the robot) to bound ∂C-obst. Kavraki [10]
proposed a method to construct C-obst by computing the
convolution of two polygons (represented as pixels) using
Fast Fourier Transform. Curto and Moreno [16] extended
Kavraki’s method to handle both free-flying and articulated
robots. Later, Sacks and Bajaj [17] proposed to generate
the slices for curved 2-d objects at fixed intervals. There
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are two major drawbacks of the slicing-based approaches.
First, computation can be wasted. There are significant
performance improvements that can be gained by exploiting
the temporal and spatial coherence. Second, the M-sums are
normally separated by a fixed rotational resolution, which is
defined empirically. A better approach is to identify “events”
where the structure of the M-sum changes.

Thus, another line of research focused on the exact repre-
sentations of either the boundary using analytic functions or
the volume using semi-algebraic sets. For example, Donald
[12] dealt with motion-planning problems with a 3-d free-
flying robot amongst polyhedral obstacles. Both robot and
obstacles are composed of a set of convex shapes; the C-obst
are therefore a set of 6-d contact surfaces. The intersections
of these contact surfaces are computed to help the robot
move along the intersection or slide from one surface to
another. Another example is the work done by Halperin et
al. [18]. They studied the motion planning problem of a L-
shaped robot (composed of two line segments) among point
obstacles. In this setting, the C-obst is a set of ruled-surfaces.
The simplicity of the problem allows them to construct the
complete C-obst by identifying all critical orientations to
determine the changes of the line segment arrangements. In
these techniques, the methods proposed by Avnaim et al. [4]
and Brost [8] are the ones closely related to our work.

Avnaim et al. [4] proposed to compute ∂C-obst using
contact regions. A contact region is computed between a
vertex of P and an edge of Q or vice versa. Their method
computes sets of translations that result in contact between
the polygons, while excluding regions which represent con-
tacts that are in collision. This rotation/intersection space is
computed as analytic functions that are put into one-to-one
correspondence with the actual configuration space to com-
pute the general contact regions for a given contact. Their
method pre-computes a discrete set of contacts, and then
computes the contact regions for each contact, which become
the facets of the boundary. Though M-sums are not used
in this method, a similar configuration space is produced.
Their algorithm has time complexity O(n3m3 log nm) for
polygons with n and m vertices.

Similar to Avnaim et al. [4], Brost [8] also considered
all possible contacts. Local information between the contact
vetex/edge pair is used to compute the contact regions. Each
contact region is a ruled surface. For non-convex polygons,
part of the contact region may belong to the interior of
the C-obst. Therefore, all contact regions are tested for
intersection. Finally, each contact region is trimmed around
the boundary created by the intersections and the remaining
area is part of the ∂C-obst.

Note that in both methods a contact region can have
zero area on ∂C-obst. This means that the entire contact
region is trimmed. In fact, even for simple shapes (for
example the star shape shown in Fig. 2), many contact
regions will not be on the surface of C-obst. As a result,
significant computation is wasted on finding the intersections
between contact regions (which is a computational expensive
operation). Our method avoids this problem and accelerates

the mapping process (1) by reducing the number of contact
regions and (2) by detecting and resolving the intersection
in the two dimensional space. Another disadvantage of these
approaches is that no clear means for computing the distance
(e.g., for penetration depth estimation) is presented or easily
derived from the representations.

Recently, Varadhan and Manocha [19] also proposed an
approach that generates polygonal meshes to approximate
the ∂C-obst using a marching cube technique to extract
the iso-surface from a signed distance field. They used an
adaptive cell to improve the robustness and efficiency of their
method. The construction of the non-directional backprojec-
tion for solving compliant motion-planning problems under
uncertainty is also similar to the C-space mapping. Donald
[20] and Briggs [21] have proposed ways to accelerate the
construction by identifying the critical points of topological
changes of the backprojections with respect to the visibility
graph of the workspace. The main difference is that rays,
instead of line segments, are used in these computations.

III. PRELIMINARIES

In this section, we define the notations that are used
throughout the paper. We assume that P is movable while Q
is stationary. Both P and Q are simple polygons composed
of n and m (counterclockwise) ordered vertices, respectively.
Our approach is based on computing and updating the
M-sums using convolution. The convolution of two shapes
P and Q, denoted as P ⊗ Q, is a set of line segments in
2-d that is generated by “combining” the segments of P and
Q [22]. One can think of the convolution as the M-sum that
involves only the boundary, i.e., P ⊗ Q = ∂P ⊕ ∂Q. It is
known that the convolution forms a superset of their M-sum
boundary [23], i.e., ∂(P ⊕ Q) ⊂ P ⊗ Q. If both P and Q
are convex, ∂(P ⊕Q) = P ⊗Q. Otherwise, it is necessary
to trim the line segments or the facets of the convolution
to obtain the M-sum boundary. Recently, Wein [24] shows
a robust and exact method based on convolution for non-
convex polygons. To obtain the M-sum boundary from the
convolution, his method computes the arrangement induced
by the line segments of the convolution and keeps the cells
with non-zero winding numbers. A more detailed review on
the M-sum can be found in our previous work [25].

An edge pipi+1 of P and a vertex qj of Q (or vice versa)
form a segment of P ⊗ Q if −−−−→pi pi+1 ∈ [−−−−→qj−1 qj ,

−−−−→qj qj+1 ),
and we say that pipi+1 and qj are compatible. Equivalently,
pipi+1 and qj are compatible if the outward normal of pipi+1

lies between the normals of the incident edges of qj . For
example, in Fig. 1(a), p3p1 and q1 are compatible. When
rotation is considered, the edges of P are rotated about a
fixed center, c, and an edge/vertex pair is alive if they are
compatible and dead otherwise. Without loss of generality,
we assume that P rotates counterclockwise about c, and c is
the world origin, so that cx = cy = 0.

IV. OUR METHODS

We will first discuss the case of convex polygons in
Section IV-A and then extend the ideas the handle non-
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Fig. 1. (a) Two convex polygons P and Q shown with the edges outward
normals. (b) Events for ~n1, ~n2, and ~n3 (from top to bottom) when P rotates
counterclockwise from 0 to 2π. For example, when P rotates π/4, ~n1 and
~m2 (and ~n2 and ~m3) become aligned and two events are issued.

convex polygons in Section IV-B.

A. C-obst of Convex Polygons

Given two convex polygons P and Q (see Fig. 1(a)), an
edge of their convolution is the sum of an edge pipi+1 of
P and a vertex qj of Q or vice versa. We let θ0 be the
orientation when an edge/vertex pair is born until it dies at θ1
when P rotates counterclockwise, and each edge/vertex pair
forms a parameterizable ruled surface (i.e. contact region).
Let pi = (x0, y0) and pi+1 = (x1, y1). We take a vector
~v = −−−−→pi pi+1 and a vector ~t =

−−→
O qj , where O is the world

origin. Then the surface defined by the pair (pipi+1 and qj)
is parameterized as:

SR(r, θ) =

 (x0 + rvx) cos θ − (y0 + rvy) sin θ + tx
(x0 + rvx) sin θ + (y0 + rvy) cos θ + ty

θ

 ,

(2)
where r ∈ [0, 1], θ ∈ [θ0, θ1).

Surfaces are also formed by the edges of Q as P rotates.
Similarly, we let qj = (x0, y0) and qj+1 = (x1, y1). We take
the vector ~v = −−−−→qj qj+1 and a vector ~t =

−−→
O pi . The surface

for the pair pi and qjqj+1 is parameterized as:

SN (r, θ) =

 y0 cos θ − x0 sin θ + tx + rvx
x0 cos θ + y0 sin θ + ty + rvy

θ

 . (3)

In order to support operations like distance query and line
intersection, each surface is stored as a tuple (p, q, θ0, θ1),
where p and q are the indices to the vertices and edges
of P and Q, and θ0 and θ1 define the birth and death
orientations of the surface. To construct the surfaces in this
representation, we use a sweeping algorithm that updates the
convolution at critical orientations (events). Fig. 1(b) shows
all the events for each edge of P . To handle each event, we
delete two segments from the convolution and create two new
segments. For example, at event ~n3m1 in Fig. 1(b), the pairs
〈p3p1, q1〉 and 〈p1, q1q2〉 both die and the pairs 〈p3p1, q2〉
and 〈p3, q1q2〉 are both born. Note that these changes are
local, therefore each event can be handled in a constant time,
and there can be at most mn events. Moreover the events for
each edge of P is simply an offset copy of the normals of Q,
so all (sorted) events can be built in linear time. Therefore,
the entire computation takes only Θ(nm) time.

For two convex polygons, the surfaces trivially form
∂C-obst, as the surfaces will never penetrate into the interior
of the C-obst. However, in the case where one or both of
the inputs are non-convex, this is not guaranteed to be the
case. This poses fundamental problems in computing the
penetration depth on such a solid; for example, the closest
point on a non-manifold hull to a query point inside the solid
may consequently still be on the interior of the solid.

B. C-obst of Non-Convex Polygons

We now generalize the approach to consider non-convex
polygons. Similar to the algorithm that we proposed for
computing the ∂C-obst for convex shapes, the algorithm for
the ∂C-obst for non-convex shapes also consists of Θ(mn)
events for creating and deleting each contact patch. The
main difference is that each patch is now generated by a
segment (with varying length) in the reduced convolution
[26]. A reduced convolution is a set of convolution segments
pipi+1 ⊕ qj and pk ⊕ qlql+1 and qj and pk must be
convex. In our previous work [26], we have shown a close
relationship between M-sum and reduced convolution. To
compute M-sum, we first identify orientable loops from the
reduced convolution, in each of which all edges have normals
pointing consistently inward or outward. These loops form
potential boundaries of the M-sum and are further filtered
by analyzing their nesting relationship. Finally, the remaining
boundaries are filtered by checking the intersections between
the input polygons placed at the configurations along these
loops. Each of these steps is illustrated in Fig. 2.

In addition to these events, the intersection of line seg-
ments (from the reduced convolution) also changes during
the rotation of P , and these changes can affect the topolog-
ical structure of the M-sum. Therefore, the second type of
event for a given segment s is a list of rotations {θi} where
the intersection status of s changes (e.g., s starts to intersect
or stops intersecting with a segment) when P rotates from
0 to 2π. There can be O(C2) such events, where C is the
size of the reduced convolution.

The data structure that we use for representing the surface
is also a tuple (p, q, θ0, θ1, s1, s2), where p, q, θ0, and θ1 are
the same as the convex case, and s1 and s2 are indices to the
convolution segments intersecting with the segment between
θ0, and θ1. We use the same sweeping algorithm to construct
this data structure. To handle the events where a segment s
is created (or deleted), we simply add (or remove) s to the
reduced convolution and add (or remove) the intersections
due to s. To handle the second type of event, intersections
due to the events are updated.

When a new intersection occurs, s is split into two
segments at the intersection point. One of the new segments
resulting from this split may be degenerate in the case of a
new intersection occuring at an endpoint of s, however this
does not require any special case handling. The degenerate
segment will expand with the movement of the intersecting
segment into a proper line segment and generate the correct
ruled surface. An additional benefit to this is that the result
of the splitting operations guarantees us that at most two
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(a) input/output (b) convolution (c) subset of (b) (d) segment normals (e) orientable loops (f) incorrect loop

Fig. 2. Steps for computing the M-sum of two simple polygons. In (a), the boundary of the M-sum of a star and a slightly rotated copy of it is shown.

line segments intersect each of the resulting segments of the
convolution. This ensures that our data structure is always
sufficient to represent a particular surface patch of the C-obst.

For both events, we check if the event site (i.e., the new or
dead intersection) is locally orientable and manifold to decide
if a loop (of constant size) should be created or deleted as
described above. Note that we will skip the last two filters
(i.e., the polygon nesting and the collision detection filters)
during sweeping. Both filters will only be needed at the end
of the sweep to reject the false 3-d hole boundaries. Similarly,
we can show that only one (2-d) point is needed to verify
each 3-d boundary.

An example of the results generated by our method is
shown in Fig. 4. From the figures, we can see that the interior
part of the C-obst is hollow and all the extra parts of the
reduced convolution are correctly removed.

In the rest of this section, we briefly discuss how to detect
the second type of event. Each of these events can be found in
constant time, though the computation requires us to classify
the types of edges and surfaces, i.e., SR and SN in Eqs. 2
and 3, since they move (and rotate) in different ways.

Consider two rotating edges in the convolution e1 and e2
that may intersect at some θ. We let θ0 be the first value of
θ for which e1 and e2 are both alive. An edge ei lies along a
line Li whose equation is yi(θ) = mi(θ)xi(θ) + bi(θ). The
intersection (x(θ), y(θ)) of Li can be computed so that

x(θ) =
b2(θ0)− b1(θ)

m1(θ)−m2(θ0)
,

where bi(θ) = x0 cos θ + y0 sin θ + ty − mi(θ)(y0 cos θ −
x0 sin θ + tx) and mi(θ) = 1+mi tan θ

mi−tan θ , and mi is the initial
slope of Li. It is trivial to compute y(θ) from x(θ). Then
from the intersection of the lines, we solve for θ such that
the intersection (x(θ), y(θ)) will fall into the range of the
line segments e1 and e2. This is done by classifying the
segments into three cases that involving rotating and non-
rotating edges. We say that the edges that create SR surfaces
are rotating edges and the edges that create SN surfaces
are non-rotating edges. Therefore e1 and e2 can be either
(1) both rotating edges, (2) both non-rotating edges or (3) a
rotating and non-rotating pair. In certain cases, the segments
can be checked quickly to determine if they ever intersect.
The details are shown in our technical report [27].

(a) (b) circle (32) (c) sewing (10) (d) star (44) (e) hand (57)

(f) grate 1 (30) (g) grate 2 (34) (h) (i) grate 4 (43)

(j) dog (145) (k) bird (275)

Fig. 3. Examples used in the experiments. The numbers in the parentheses
are the size of the polygon. (a) bar (4), (h) grate 3 (34). Some of these
models are inspired by those in [28], [24].

V. EXPERIMENTAL RESULTS AND APPLICATION

A. Results

We have implemented the proposed method in C++. In
this section, we will show some of the results that we
obtained from this implementation using the examples shown
in Fig. 3. In these examples, there are two convex polygons
and 9 non-convex polygons. The number of the vertices
of each polygon is also shown. Some of these models are
inspired by those in [28], [24]. All the experiments are
performed on CPUs at 2.13 GHz with 4 GB RAM.

In Table I, we show the computation time for constructing
∂C-obst using the proposed method. The running times range
from a fraction of a second to close to an hour. Since we
have no other public implementation to compare to, it is
important to look at these running times relatively. Therefore,
we list the number of ruled surfaces before trimming (Ns),
the number of ruled surfaces on the final ∂C-obst (ns), and
the number of C-obst (external and hole) boundaries (nb).
From the values of Ns, ns, and nb, it is clear all of them
can affect the computation time. For example, both “star/star”
and “grate 1/grate 2” take about the same time to compute,
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TABLE I
EXPERIMENTAL RESULTS FOR C-SPACE MAPPING. HERE, Ns IS THE NUMBER OF RULED SURFACES BEFORE TRIMMING, ns IS THE NUMBER OF RULED

SURFACES ON ∂C-OBST, ns IS THE NUMBER (BOTH EXTERNAL AND HOLE) C-OBST BOUNDARIES, AND t IS THE TOTAL COMPUTATION TIME IN

SECONDS.

P /Q bar/circle bar/sewing star/star star/hand grate 1/grate 2 bar/grate4 grate 3/grate 4 dog/bird
t 0.1 0.05 4.9 6.8 4.9 0.3 21.7 3350.6
Ns 256 68 2288 3286 1028 244 991 39145
ns 256 82 3499 3034 4097 1027 1947 18500
nb 1 1 1 1 126 17 39 1

but the number of ruled surface patches in “grate 1/grate 2” is
half of that in “star/star.” Therefore, it is the large nb in “grate
1/grate 2” that increases the computation time. Moreover, it
is clear that the reason that the “dog/bird” takes nearly an
hour to finish is because of Ns, which is about 40 times the
Ns of “grate 1/grate 2” and “grate 3/grate 4.” One single
example that we cannot explain directly from Table I is the
time difference between “grate 1/grate 2” and “grate 3/grate
4.” Both Ns and ns are smaller and nb is larger in “grate
1/grate 2.” However if we look deeper into the the number
of segments and the number of intersections in both reduced
convolution, the reason of the time difference becomes clear.
The pair “grate 1/grate 2” has 469 line segments but has only
1204 intersections, and the pair “grate 3/grate 4” has only
400 line segments but has 1544 intersections.

B. Application: Generalized Penetration Depth Estimation

The parameterizations in Eqs. 2 and 3 also yield distance
functions in r and θ which can be used to find the minimum
distance to a given facet relatively easily. Let p be a query
point and let f(r) = (x0 + rvx), g(r) = (y0 + rvy), F (r) =
g(r) cos θ − f(r) sin θ, and G(r) = f(r) cos θ + g(r) sin θ,
then the square distance d(r, θ, p) for the rotating edges:

d(r, θ, p) = (F (r)+tx−px)2+(G(r)+ty−py)2+w2(θ−pz)2

If we fix r, then d is a very well-behaved sinusoid, and
while there does not seem to be a closed-form solution for
the global minimum, it is easy to find the minimum using
simple gradient descent. If by contrast we fix θ, then d is
simply quadratic in r, and finding the global minimum on
[0, 1] is also quite easy.

Computing d(r, θ). In the case of SR (see Fig. 5(a)), the
regularity of the surface of the distance function allows us to
easily calculate a global minimum by finding θ values for the
global minimums at r = 0 and r = 1 by gradient descent,
then finding the global minimums for r when we fix θ at the
values found by fixing r initially. Picking the minimum of the
yielded values gives us the global minimum of the distance
function, as well as yield r and θ values which explicitly
give us the closest point on the facet (see Fig. 5(c)). The
distance function follows similarly for SN (see Fig. 5(b)),
except that because the r term is independent of the rotation,
the surface is somewhat more regular. We still end up with
no clear closed-form solution for the sinusoid however, so
we solve for the minimum using gradient descent as above.

In the case of non-convex polygons, a surface may have a
left-r-bound function rmin(θ) and a right-r-bound function

rmax(θ) that describe how its non-manifold intersections
move as θ changes, so that its associated facet is r-bounded
at a given θ by [max{0, rmin(θ)},min{1, rmax(θ)}]. These
same r-bounds apply to the distance function. As a conse-
quence, finding seed values for r and θ in the general case
is more complicated. To deal with this issue, we choose
to seed at regular intervals. Let segment e have its birth
at θ0 and death at θ1, then seed values are taken for θ ∈
{k |(θ0−θ1)|8 : k ∈ Z, 0 ≤ k ≤ 8}. For each of these θ
values, we seed at max{0, rmin(θ)}, min{1, rmax(θ)}, and
(max{0, rmin(θ)}+ min{1, rmax(θ)})/2±ε, just to the left
and right of the medial axis of the r-bounds.

This gives us a total of 36 seeds per surface. We use
so many seeds largely because the r-bounds are irregular
enough that some descents may get caught along the bound-
ary. This spread however provides good coverage. Because
of the regularity of the surface itself, a particular iteration
of the gradient descent tends to converge in a small number
of iterations and so the total cost of the gradient descent is
relatively low in any case.

Computing penetration depth. Given a configuration p
of P , we would like to find the closest feature on ∂C-obst.
This problem can be decomposed into two steps: (1) find
the closest surface f to p and (2) find the closest point
on f to p. We have already proposed a method for the
second step. For finding the closest surface, ideally, we can
precompute the Voronoi tessellation of the space using each
surface as a site, and then find which cell q is in. However,
both computing the tessellation and finding the enclosing cell
seem to be difficult. The only properties that we know are
that the boundaries of the tessellation are also ruled surfaces,
and each cell forms a single connected component. Based
on these properties, we propose a sampling-based approach.
Initially, a set of uniformly distributed samples are taken,
and the closest surface for each sample point is computed
offline using a brute-force search (through all surfaces). Each
query point is then categorized by its k nearest neighbors,
and only the n ≤ k surfaces associated with those neighbors
are checked. For the results in Table II, we set k = 10
experimentally. For convex polygons, this approach yields a
very high rate (98.3% for bar/circle) of identifying the actual
closest facet and low average error values (< 10−5) when a
facet other than the closest is chosen for distance comparison.
For non-convex polygons, this approach still yields very high
rate (> 95.7%) of identifying the actual closest facet and
low average error values (< 10−3). The accuracy and error
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(a) M-sum (b) C-obst

(c) M-sum (d) C-obst

(e) M-sum (f) C-obst

Fig. 4. (a) and (b) are the M-sum and C-obst of grate 1 and grate 2 in Fig.
3, respectively. The darker (lighter) patches in (b) are SR (SN ) surfaces.
(c) and (d) are generated from bar and grate 3 in Fig. 3. (e) and (f) are
generated from star and hand in Fig. 3.

are estimated by comparing to the results of the brute force
approach.

C. Complexity Analysis

We now analyze the time complexity of the proposed
method. When P and Q have n and m vertices which include
n′ and m′ reflex vertices, respectively, there will be 2mn
segments in the complete convolution; in the reduced convo-
lution there are at most (m−m′)n+(n−n′)m segments. That
is, the arrangement of the reduced convolution is at least 4
times less complex than that of the complete convolution
when n′ = 1/2n and m′ = 1/2m. Thus, the reduction
will further reduce the complexity of the arrangement of 3-
d rule-surface patches by at least 8 times. Note that this
analysis is based on the assumption that a convex vertex is
compatible with Θ(n) edges and in the worst case that each
segment will intersect all the other segments. In the examples
that we have above, the difference between the reduced and
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Fig. 5. (a) An example distance function for SR, c = (0, 0), p =
(10,−5, π), v = (1, 4), x0 = 1, y0 = 1. (b) An example distance function
for SN , same parameters as (a) except that v is elongated. (c) An example
gradient descent for the sinusoid portion zoomed in on the gradient descent.
The descent converges in just 5 iterations (two iterations in which only step-
size is adjusted), and in this case finds not only the local minimum for the
sinusoid at rmax, but also the global minimum.

TABLE II
RESULTS FOR PENETRATION DEPTH ESTIMATION. HERE ε IS THE AVG.

DISTANCE ERROR, t IS THE AVG. QUERY TIME OVER 1000 QUERIES, AND

T IS THE TIME TO PRE-COMPUTE THE DISTANCES FOR ALL SAMPLES.

P /Q bar/circle bar/sewing star/star grate 1/grate 2
ε 0.000004 0.00067 0.0004 0.0001
t 7.8ms 6.5ms 8.5ms 12.0ms
T 50.1s 80.1s 398.2s 862.2s

complete convolutions is more significant (e.g., “star/star”
and “dog/bird”). The time complexity for computing the
M-sum of P and Q is O ((mn+ I) log (mn+ I) + `Tcd),
where I = O(m2n2) is the complexity of the arrangement of
the reduced convolution, ` is the number of loops, and Tcd =
O(mn) is the collision detection time in our implementation.
The time complexity for computing the C-obst of P and
Q is O

(
(mn+ I) log (mn+ I) +m2n2Te + bTcd

)
, where

b is the number of (hole) boundaries in the C-obst, and
Te = O(mn) is the time for handling each event (i.e., finding
all new/dead intersections and update the M-sum locally near
the intersections).

VI. CONCLUSION AND FUTURE WORK

We proposed a new method for constructing ∂C-obst. Our
methods takes O(m3n3 + bTcd) for polygons with m and
n vertices and C-obst with b boundaries, where Tcd is time
spent on collision detection. We believe that this method
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is easier to implement and more efficient than the existing
methods. The main step in our method is the computation
of the Minkowski sum (M-sum) which is based on the
ideas of reduced convolution. Then the M-sum is updated
at each critical orientation to construct ∂C-obst. The main
efficiency gain is that there are significantly fewer segments
and surfaces produced compared to the existing methods.

We consider this work as the first step toward a more
interesting and challenging problem: computing the C-obst
of 3-d polyhedra. Donald [12] and several others have studied
the problems, but we believe that there is still room for
significant improvement. For example, most of these methods
depend on convex decomposition. As we have discussed
above, computing C-obst for convex polyhedra is not dif-
ficult. However, it is unclear how to deal with non-convex
polyhedra without using 3-d convex decomposition, which is
notoriously slow. We hope to provide an answer to this by
using the ideas from the recent development in M-sum and
the ideas from this paper.

Computing the C-obst of 3-d polytopes is similar but
involves more steps in creating and handling events. An
important observation is that the event list of each edge of
P (see Fig. 1(b)) is simply an offset of Q’s Gauss map!
Similarly, given polytopes P and Q, the events for each facet
of P can be constructed by rotating Q’s Gauss map. In 3-d,
the facets of the M-sum can only come from two sources:
fv-facets, generated from a facet of P and a vertex of Q or
vice versa, and ee-facets, generated from a pair of edges from
P and Q, respectively. Similar to polygons, a M-sum facet
(fM ) is valid if the orientations of fM ’s primitives (i.e., a
vertex-facet pair or an edge-edge pair) from P and Q match
each other, and the events occur at these boundary conditions,
where the M-sum structure changes. Finally, all the events
can be enumerated by overlaying all the rotated Gauss maps
(one for each P ’s facet).

The resulting data structure for representing the C-obst
of polytopes is a list of facets. Each facet fM is a tuple
(p, q, r), where p and q are the indices to the vertices, edges
or facets of P and Q, and r is a convex region (in the Gauss
map) in which fM remains valid. One can show that the
complexity of this data structure is O(n2m + nm2), where
n and m are the complexities of P and Q. If a brute force
method is used to enumerate all possible M-sums, it will take
O(n3m2 + n2m3).
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