
Experiences with model-centred design methods
and tools in safe robotics

Geoffrey Biggs∗, Takeshi Sakamoto†, Kiyoshi Fujiwara∗ and Keiju Anada‡
∗Intelligent Systems Research Institute, National Institute of Advanced Industrial Science and Technology, Japan

†Global Assist Co., Ltd., Japan
‡CATS Co., Ltd., Japan

Abstract—Development of a system is complex, requiring a
well-structured process to manage the range of tasks involved
and their work products. There are many models and processes
available for structured development, including the well-known
Waterfall and Agile models. Recent standards for safety-critical
system development utilise the V-model, such as the process
given in the ISO 26262 standard for functional safety of road
vehicles. However, the process clashes with the commonly-
expressed desire for greater reuse of development artifacts in
robotics. We have experimented with applying a process, the
Object-Oriented Systems Engineering Method, to the design of
a robotic wheelchair. This paper describes our application of the
process to a safety-critical robot, as well as our use of SysML
for managing design information and ZipC for code generation
and verification. We discuss our experiences, both good and bad,
in order to inform other robot developers of what to consider
when choosing a process and tools.

I. INTRODUCTION

The development of a complete system is a complex
process. It involves several phases, including design, imple-
mentation, verification and operation. A large number of work
products are produced that must be tracked for completeness
and their relationships to each other. The management of
the work and its work products to produce a correct system
requires the application of a structured development method,
using suitable tools to manage it. This applies as much to
robotics as to any other type of system.

There is very little published work in the literature regard-
ing development processes for robotics. Most commonly, a
paper makes a brief mention of its “process,” and describes
something very simple and high-level (for example, [1]
and [2]), or describes an architecture designed to support a
style of development (such as [3]).

Outside the world of robotics, there are, of course, a large
number of development processes available, specified at a
range of levels of detail. They range from the traditional
Waterfall model of development and the more recent Agile
model, to well-regarded processes such as the INCOSE sys-
tems engineering process, to any number of ad-hoc method-
ologies with questionable outcomes. However, it is still more
common for a process to be specified at a high level than
in detail. The lack of detailed descriptions of steps and work
products can make application of a process, and development
of a correct system, more difficult.

One of the most detailed and well-structured process
specifications currently available can be found in the ISO

26262 standard for functional safety of road vehicles. ISO
26262 describes in detail a development process based on a
combination of three V-model processes: one each for system,
hardware and software development. The standard provides
details on how the steps are to performed, and specifies the
work products for each step. (ISO 26262’s older brother,
IEC 61508 [4], only specifies a very general V-model for
development.)

However, the ISO 26262 process is not necessarily ideal
for robotics and reflects the static approach found in safety-
critical systems standards, where recognition of the need for
practices such as iteration and refinement are still not well
represented.

1) It does not provide explicit iteration points, which can
assist developer decision making.

2) It is based on a develop-once-use-once concept, where
reuse of development artifacts, designs in particular, is
not encouraged.

Another well-structured process is the Object-Oriented
Systems Engineering Method (OOSEM) [5]. This process
was designed by the creators of the Systems Modelling
Language (SysML) [6] as a way to extend the popular
object-oriented approach beyond software, and as a method
to structure model-based systems engineering. Like the ISO
26262 process, it describes specific steps and work products.

As part of an investigation into applying structured system
development in robotics, we have experimented with applying
OOSEM to the development of a robotic wheelchair. This
paper describes our experiences in order to inform other robot
developers when selecting a development process. This paper
does not present an empirical evaluation of the process.

As part of this work, we also report on our experiences
using the Systems Modelling Language (SysML) for system
design [6], and the ZipC tool for formal state machine
specification, verification and code generation [7]. The use
of tools to support the development process, providing in-
formation management and formality, is now regarded as
software engineering best practice, particularly in critical
systems development.

OOSEM is well integrated with model-based techniques
and SysML. We selected OOSEM because it is oriented
towards the model-based development concepts supported by
SysML and specifies many work products to be produced in
SysML, which we were already using to model the robot’s

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3915

design. Although some other processes make use of models,
such as the INCOSE System Engineering process, none have
as explicit support for model-based techniques as OOSEM.
We also selected it based on its explicit support for re-
usability of design artifacts. SysML was being used based
on its popularity (there is a wide, and expanding, range of
tooling available) and on its ability to represent the entire
robot design, not just hardware or just software.

The next section describes the robot system. Following that,
section III briefly describes SysML. Section IV describes the
OOSEM process, with some examples from our robot design.
Section V discusses using ZipC to generate and verify the
state machine code. Discussion and comments on the process
and tools are given in section VI.

II. ROBOT WHEELCHAIR

The target application for this work is a robot wheelchair.
The wheelchair provides safe motion to the rider, who pro-
vides the control input directing that motion. “Safe motion”
means that the robot avoids collisions whenever possible
and minimises impact when a collision is inevitable. The
wheelchair must be robust to internal software and hardware
failures to achieve this safety.

The robot design is based on partitioning the safety-
critical and non-safety-critical parts into separate sub-systems.
This technique is often known as a “safety bag” in safety-
critical systems design [8], and has been applied in robotics
before [9].

The safety-critical part is contained in a black-box sys-
tem that presents a simple interface for motion control. It
is responsible for guaranteeing the safety of the robot by
monitoring the area around the robot for obstacles and by
detecting contacts with the robot and altering the robot’s speed
as appropriate to the current safety level. It is also responsible
for monitoring the health of the robot’s critical software and
hardware and stopping the robot in the event of a failure.

The non-safety-critical part uses the safety-critical part
as a black-box provider of mobility. It is free from all
responsibility for the safety of the robot.

The advantage of this design is it frees the high-level
motion control of the robot, such as a path planner, from
the constraints of being safety-critical. This allows for the
application of less expensive development methods and sys-
tem components, while still ensuring the specified level of
safety in the system as a whole.

This application required a multi-person development team.
For example, the hardware was built from scratch, rather
than just loading the software into an existing robot body.
This required that the development team include both a
software engineer and a hardware engineer. We also employed
a professional SysML modeller to assist with the modelling
process, and an expert in using the ZipC tool for state machine
verification.

The robot is shown in Figure 1. The robot design was
specified using SysML, described in the next section.

(a) CAD hardware design

(b) Constructed robot

Fig. 1: The safe robot wheelchair

III. SYSTEMS MODELLING LANGUAGE

SysML is a profile of the Unified Modeling Language
(UML), designed for systems engineering. It has been stan-
dardised by the OMG. As well as reducing the emphasis on
software found in UML, it also adds additional diagrams.

1) Requirements diagrams for managing requirements, an
important part of any systems engineering process.

2) Parametric diagrams for simulation and quantitative
system analysis, allowing the integration of engineering
analyses into the system model.

SysML’s capability to represent the full range of sys-
tems engineering tasks, including requirements, behaviour,
structure and even verification and design trade-off analyses,
makes it well-suited to systems engineering.

As with any visual modelling language, and like its parent,
UML, SysML relies heavily on tool support to avoid becom-
ing unwieldy. Tools provide facilities for managing model
packages and element databases, for generating implemen-
tations from models and for conducting model simulations.
Recent tools can even call out to specialised tools, such as
Matlab, to perform these simulations. In this work, Enterprise
Architect [10] was used as the modelling tool.

Unlike other domains, which have a large body of literature
on applying SysML-based approaches, there has been little
prior contact between SysML and robotics. Notably, [11]
argues that SysML profiles for robotics should be created.

3916

These profiles would ease the use of modelling in robotics
and drive its adoption. [12] investigated using SysML to
model a manipulation task. [13] used SysML to model a
robot application that was then transformed automatically
into software components for RT-Middleware (notably, they
used a Platform-Independent Model/Platform-Specific Model
approach). [14] used SysML and Simulink in combination
to model the controller of an inverted pendulum robot, and
found the combination to be of benefit. However, none of the
above articles have discussed the process guiding the use of
SysML.

We applied SysML to specify the robot design. It was used
for:

1) specifying the domain in which the robot would operate,
including other entities;

2) specifying the use cases (including their scenarios) and
requirements;

3) designing the system decomposition;
4) designing the connections between system components,

including the type of information flowing between
them;

5) specifying tests to perform to verify the design; and
6) managing traceability of the requirements.
Space limitations prevent us from presenting the entire

model in this paper. Example diagrams are shown in Fig-
ures 2, 3 and 4. Figure 2 shows the activity diagram defining
the behaviour of the robot as it moves. Figure 3 gives an
internal block diagram showing the abstract design of the
robot’s implementation. Figure 4 gives an internal block
diagram showing the implementation of the Controller from
Figure 3.

The creation of the SysML model was managed with
OOSEM, described in the next section.

IV. OBJECT-ORIENTED SYSTEMS ENGINEERING METHOD

The Object-Oriented Systems Engineering Method
(OOSEM) is a methodology for the analysis, design,
specification and verification of any kind of system. It is
based on object-oriented methodology and the Systems
Modeling Language (SysML).

OOSEM is capable of specifying any part of the system,
including:

• requirements and constraints;
• logical and physical implementations;
• tests;
• processes and usage patterns; and
• people, including users, operators, maintainers and by-

standers.
OOSEM uses the top-down process commonly found in

object-oriented methodologies. It is based around specifying
system requirements and the scenarios for them. Techniques
such as model-based abstraction and traces are used to adapt
the system as requirements and targets change.

As with all Model-Based Systems Engineering processes,
OOSEM relies heavily on a system model, in this case
specified using SysML. The model contains all aspects of the

system, from requirements through to behaviour descriptions
and implementation descriptions.

An important property of the artifacts produced by OOSEM
is their re-usability. Following OOSEM ensures that an
abstract model of the system, independent of any specific
implementation, is available. This is known as the “logical
decomposition” or “logical implementation” in OOSEM and
more generally as the Platform Independent Model (PIM).
It can be adapted for any target environment by repeating
the final step in the OOSEM process within the constraints
for that target environment. The adapted design is sometimes
known as a Platform Specific Model (PSM).

OOSEM is illustrated in Figure 5. Note the separation
between black-box system specification, logical system spec-
ification and physical implementation specification. For a
complete description of the process, we refer the reader to [5].

In applying OOSEM to the wheelchair, we split the model
into two phases to follow the logical/physical split.

1) A PIM for a mobile robot base that provides safety.
2) A concrete implementation (PSM) built around the base

(the robotic wheelchair).
The robot wheelchair model includes and uses an abstract

model of a generic safe mobile base. It defines its own
requirements, activities, etc. to complement those from the
abstract model, which only specify aspects related directly
to safe motion. Splitting the model in this way had two
advantages for our design process.

First, the design process was able to concentrate initially
on the safety aspects of the robot, which are relatively simple
compared with the complexity of the full wheelchair system.

Second, the safe mobile robot base design is re-usable.
If, for example, we were to design a dependable robotic
transporter for warehouses, we would be able to begin with
the general safety aspects of a mobile robot already complete,
needing only to add the safety aspects and new requirements
of the new application.

V. ZIPC
Safety-critical system development standards, such as IEC

61508 and ISO 26262, recommend the use of automated
tools for any task that can be automated. The most common
example of automation is code generation. Safety standards
also recommend tool-based verification of correctness.

ZipC is a tool for embedded system design and imple-
mentation. It can be used for specifying, testing, verifying
and inspecting Finite State Machines. It is used to specify a
model of an FSM, from which C code implementing that
FSM is generated. The model can also be simulated to
check for correctness. The generated code can be executed
and monitored in real-time using the tool. This feature is
particularly used for detecting when the FSM enters states
it should not given the inputs, which indicates a flaw in the
logic. ZipC is also capable of other verifications, such as
finding states that cannot be reached, or multiple transitions
from a state being triggered at the same time.

The controller of the robot uses an FSM to monitor the
robot’s level of safety. After initially modelling this FSM in

3917

Fig. 2: An activity diagram specifying a use case scenario

Fig. 3: The internal wiring of an abstract safe mobile robot

3918

Fig. 4: The internal wiring of the abstract safe mobile robot’s controller

SysML as part of the OOSEM process (behaviour specifica-
tion), we used ZipC for verification and code generation. The
FSM model was re-constructed in ZipC.

From the model, a complete state machine implementation
was generated in C, which was dropped into the robot
controller’s source code. The FSM was executed by the
component responsible for safety monitoring, with events for
the FSM being linked to data received on its ports.

The generated code was executed on the robot hardware
with ZipC connected. ZipC recorded the inputs, outputs and
states of the FSM over time. It used this data to display which
states had been correctly entered, which had been incorrectly
entered, and which had been incorrectly not entered. This
information is displayed in a matrix format, such as that
shown in Figure 7 (Japanese original shown in Figure 6. The
important aspect of this diagram is the tabular layout with
events down the left side, states across the top, and cells repre-
senting the behaviours to perform in each state corresponding
to each event (a slash indicates no action for an event in
that state). Cells with no colour are behaviours that were not
executed during testing. Coloured cells were executed, with
red cells being executed the most and green cells executed the
least. The number of executions corresponding to each colour
are set prior to testing based on the goal of the analysis.

VI. DISCUSSION

In this section, we present our observations on applying
OOSEM to the robot wheelchair development, as well as on
using SysML/Enterprise Architect and ZipC.

A. Benefits

1) Re-usability of design artifacts: A strength of OOSEM
is its allowance for reuse of design artifacts through the
explicit creation of a logical architecture, which is then refined
into a physical architecture. The structure of OOSEM even
allows for multiple levels of reuse by fitting further-refined
logical architectures between the initial logical architecture
and the final physical architecture.

We were able to apply this method of reuse to the
robot wheelchair with no difficulty. The system concept
was divided into the core “safe motion” concept and the
“robot wheelchair” concept. We found that this allowed us
to concentrate on the needs of safe motion in general before
thinking about how to apply safe motion in the specific case
of a wheelchair, not to mention the large number of other
requirements involved in building a robot wheelchair.

This reuse occurred at all levels of the design phase, from
requirements and behaviour specification through to imple-
mentation specification, and will be immediately recognised
by anyone familiar with object-oriented software concepts. Of
particular benefit, due to the use of SysML, was that the reuse
of both hardware and software designs was possible.

For example, the “safe motion” concept design, part of
which is shown in Figure 3, contains a “Controller” element
with certain interfaces and properties. When refining the
design in the “robot wheelchair” concept, a “LogicalCon-
troller” element was added (the internal design of which is
shown in Figure 4) that inherits from the “Controller” element
its design, but also extends and refines it with information

3919

Start failure check

Failure detection

Finish stuck check

Rotate

Process failure

-

Start stuck check

Check stuck

Stop failure check
Engage brake

Stop

Process failure

-

Release brake

Rotate

Finish stop check

Rotate

Stop failure check

Moving

Process failure

-

Start stop check

Check stopped

Finish stuck check
Engage brake

Stop

Process failure

-

Finish stop check
Engage brake

Stop

Process failure

-

□0
Safety monitor

TE 0 1 2 3 4 5

0

1

2

3

4

Wheel encoder value

No wheel
encoder value

Stick not centered

Stick centered

Decision time
elapsed

Stop Check stopped Rotate Check stuck Failure check Failure

else

Increment stop check timer

Finish stuck check
Process failure

Failure

else

Increment stuck check timer

Finish failure check
Process failure

Failure

else

Increment failure check timer

[1]

[476]

[1]

[476]

[477]

[55]

[2]

[1]

[1]

[2]

[56]

[57]

[1]

[1]

[18]

[19]

[1]

[1]

[19]

[19]

[19][19]

[19]

[1]

[1]

[1]

[1]

[1]

[1][1]

[1]

Fig. 7: Verifying the state machine using ZipC

Fig. 5: A very brief overview of the OOSEM process

Fig. 6: Verifying the state machine using ZipC (Japanese
original)

specific to the design choices made at that point. For example,
the use of torque control rather than the generic “MotorCon-
trolSignal” output. In an alternative design, a different method
of motor control may be used; such a controller would inherit
from the “Controller” element to reuse its properties but refine
them in a different way. SysML provides strong support for
the concept of refining a design, and OOSEM leverages this.

We believe that this method of re-usability will be very
important in future robot development. Rather than starting a
design from scratch, a base robot application concept with an
existing model can be selected and refined to a complete de-
sign by adding the requirements and constraints for the target
application. We also believe that, combined with a repository
of existing implementation models and software components,
the ability to automatically generate implementations of the
software parts of a system will be well-supported by OOSEM.

2) Unified high-level hardware/software design: SysML
is capable of representing both hardware and software at
an abstract level as system components. This allowed us
to reason about the “internals” of the controller (i.e. its
software) in the same model as its external hardware design.
This extended to designing the individual software modules
and their interfaces, which were later realised as software
components in RT-Middleware.

3) Correspondence of software design to implementation:
We used a component-based software architecture to im-
plement the controller software. This turned out to fit well
with SysML’s specification of design, which is similarly
component-based. Although code generation was not avail-

3920

able, the direct correspondence between each SysML com-
ponent within the controller and the software component
to implement it, including the ports connecting them, made
creation of the software component network simple.

The similarity of SysML to UML (due to it being a
UML profile) made it well-suited for much of the software
modelling needs.

On a related note, traceability was simple to ensure using
SysML. Its support for linking requirements, implementations
and tests together made it easy to track what requirement
was implemented by what system components, and how they
should be tested.

4) High-level models: We found SysML to be particularly
good for abstract design models. For example, it was simple
to adjust the design of the system, such as what information
two components exchange, in the model during design review
meetings, and review the impact of this change on other parts
of the system.

The abstractness of the design representation was also an
aid to understanding. Although the design team included a
hardware engineer and a software engineer, they were able
to communicate their design concepts easily. By contrast,
the software engineer was not able to read the hardware
engineer’s circuit diagrams without needing to ask what
specific symbols meant. The system model was a benefit to
understanding and communication.

5) Code generation: The ZipC state machine model was
sufficiently formal to allow automated code generation. This
removed a significant potential source of faults from the
development process. Manually translating between a model
of a state machine and the implementation of that model
would have been error prone and could have introduced faults
into the system implementation that would not have been
detected for some time. This would have raised development
costs, especially when an introduced fault led to a failure,
which would have required debugging and repair effort and
impacted on certification.

The code generation also eliminated the time usually re-
quired to implement the state machine.

6) Automated verification: ZipC allowed the state machine
design and implementation to be verified more comprehen-
sively than manually-specified tests would have. This gave us
greater confidence in the correctness of the robot’s design and
implementation. We were rewarded for using an automated
tool by a controller implementation that had no faults in its
state machine after implementation.

B. Difficulties

We encountered several difficulties, which we hope will
inform other robot developers in their choice of tooling and
development process.

1) Difficulties with OOSEM: Although OOSEM is strong
in producing re-usable design artifacts, we did encounter
problems when we applied it.

The lack of states beyond design led to an inconsistency
in the complete development process. This inconsistency was
caused by a mis-match between the final work products of

the OOSEM process and the next stages of development.
Although to be expected when using a process that does
not cover the entire system life cycle, this inconsistency was
found to be a greater problem than expected in terms of
guiding the development. This lead, in particular, to problems
with verification of work products and the design. Any sys-
tems engineer looking to apply OOSEM must find additional
processes to support the other phases of the system life cycle.
In our opinion, this makes it harder to choose OOSEM over
a more completely-specified process, such as the ISO 26262
process.

We also found that OOSEM placed most of its emphasis
on system structure. For example, while it explicitly provides
for specifying the interfaces of a component, it makes no
allowance for specifying the timing of information going into
and coming out of that interface. Steps should be added to the
process to specify timing information, using SysML’s timing
diagrams.

Finally, the OOSEM process made no allowance for com-
mon safety-critical system development activities, such as a
hazard analysis. Although this is not a problem for a non-
safety-critical robot, it is a significant gap for safety-critical
systems.

2) Tool problems: We used Enterprise Architect version 9
as the SysML modelling tool in this project. We found its
support for SysML to be incomplete, which required ad-hoc
methods to work around and reduced the benefit of using a
model to achieve consistent design. Additionally, its model
checker did not support SysML, which made it difficult for
inexperienced modellers on the development team to know if
their model was semantically correct.

We encountered difficulties in using Enteprise Architect
and SysML for requirements management. The large number
of requirements involved was difficult to manage using the
SysML graphical views. Other tools, such as IBM’s Rhap-
sody, solve this by using tabular requirements management
and only visually modelling specific requirements for analysis
purposes. At the back end, all requirements are still stored in
the model so consistency and traceability are ensured. (Re-
quirements management is a well-known problem in systems
engineering.)

The lack of code generation from the SysML model was
also a problem. Although code generation of the controller’s
state machine was used, no code generation for the remainder
of the software was available. This is a significant gap in the
tooling used. We recommend that robot developers choose
tools that provide code generation of as much as possible.

Tool integration was a notable concern: Enterprise Archi-
tect and ZipC share no common formats. We had to re-model
the state machine in ZipC to use its code generation and
verification capabilities. This is a potential source of faults
that would not exist with better tool integration.

3) High-level models: Although SysML was good for
specifying the high-level design model, specifying detailed
models was considerable effort. Without some benefit to this
effort, such as code generation (whether software source
code or hardware description language specifications), it is

3921

difficult to justify the cost of producing a design that is
more detailed than necessary for experienced engineers to
implement accurately. Such tools do exist; we neglected to
recognise all our eventual needs at the start of development,
and did not choose a tool that met those needs.

We also believe that, given its use of a component-based
construction style, designing a system in SysML will lead
directly to generating complete software systems from the
modelled components combined with a repository of pre-
created software components. This method of system con-
struction is not yet available in the tooling, however.

4) Correspondence of hardware design to implementation:
Unlike the software design correspondence, hardware design
corresponded less well between the model and actual designs.
Hardware can be modelled and designed in tools such as
Modelica, CAD (utilised in this project) and electrical circuit
design tools (also utilised). However, there was a greater
disconnect between the SysML model and the CAD model/-
circuit diagrams than there was between the software design
and the system model.

5) Determining “completeness”: During the modelling
process, we found that the hardest part was knowing when
to stop. Given enough time, it is possible to model even the
smallest detail of a system in SysML; however, this would
not be much use to the development process. On the other
hand, the model must have sufficient detail to unambiguously
describe the system. Knowing this point is, in the view of the
authors, dependent on the needs of the system, the capabilities
of its implementors (for example, inexperienced software
developers require more guidance), and probably something
that can only be learned from experience.

We theorise that code generation can ease this problem:
when to stop modelling finer and finer details is when a
complete system can be generated.

VII. CONCLUSIONS

The need to use structured development methods to ensure
correct system development is well-known, although rarely
applied to robotics. There is little guidance in the literature
to assist robot developers in choosing a process or tools. We
have experimented with applying a development process with
explicit reuse to the development of a robot wheelchair. As
part of this work, we have also applied SysML and ZipC,
tools for model-based development.

Our experience has shown that OOSEM brings a strong
focus on re-usability to the development process. We be-
lieve that, when coupled with a repository of hardware and
software components, OOSEM will be well-suited to model-
based system development and can contribute to reduced
development times. We also found that SysML contributes in
the same way, due to its focus on component decomposition
and interface specification for system design. The ZipC tool
turned out to be the most usable, allowing us to model, verify
and automatically generate the controller’s state machine
implementation.

However, we cannot fully endorse the use of OOSEM in
robotics. Its focus on system structure ignores aspects such as
timing which are very relevant in real-time robot applications.
It also only specifies the design phase, meaning a systems
engineer must look for additional processes for the other life
cycle phases and ensure that those processes fit with OOSEM.
We recommend that robot developers seek out a development
process that covers the complete system life cycle while
providing strong support for model-based design and reuse.

In future work, we plan to experiment with the ISO 26262
process, which is an obvious candidate for developing safe
UGVs. In particular, we wish to understand how it can support
iterate-and-refine development of robots and the use of model-
based design reuse.

REFERENCES

[1] J. Osada, S. Ohnaka, and M. Sato, “The scenario and design process
of childcare robot, papero,” in Proceedings of the 2006 ACM SIGCHI
international conference on Advances in computer entertainment
technology, ser. ACE ’06. New York, NY, USA: ACM, 2006.
[Online]. Available: http://doi.acm.org/10.1145/1178823.1178917

[2] R. Hanai, H. Saito, Y. Nakabo, K. Fujiwara, T. Ogure, D. Mizuguchi,
K. Homma, and K. Ohba, “Proposal of architecture and implementa-
tion process for IEC61508 compliant, dependable robot systems,” in
Proceedings of the IEEE International Conference on Robotics and
Biomimetics, 2012, pp. 1218–1223.

[3] G. Hirzinger and B. Bauml, “Agile robot development (ard): A prag-
matic approach to robotic software,” in Intelligent Robots and Systems,
2006 IEEE/RSJ International Conference on, Oct., pp. 3741–3748.

[4] “IEC 61508-2 Functional safety of electrical/electronic/programmable
electronic safety-related systems - Part 2: Requirements for electrical/-
electronic/programmable electronic safety-related systems,” 2010.

[5] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML:
The Systems Modeling Language. Morgan Kaufmann, 2009, ch. 16.

[6] (2010) OMG Systems Modeling Language (OMG SysML). [Online].
Available: http://www.omg.org/spec/SysML/1.2/

[7] (2013) CATS Co., Ltd. – ZipC. [Online]. Available: http://www.zipc.
com/english/guide/products.html

[8] P. Klein, “The safety-bag expert system in the electronic railway
interlocking system elektra,” Expert Systems with Applications,
vol. 3, no. 4, pp. 499 – 506, 1991. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/095741749190175E

[9] F. Py and F. Ingrand, “Dependable execution control for autonomous
robots,” in Intelligent Robots and Systems, 2004. (IROS 2004). Pro-
ceedings. 2004 IEEE/RSJ International Conference on, vol. 2, Sept.-2
Oct., pp. 1136–1141 vol.2.

[10] (2013) Enterprise Architect. [Online]. Available: http://www.
sparxsystems.com/products/ea/index.html

[11] H. Bruyninckx, “Robotics software: The future should be open [posi-
tion],” Robotics Automation Magazine, IEEE, vol. 15, no. 1, pp. 9 –11,
march 2008.

[12] K. Ohara, K. Iwane, T. Takubo, Y. Mae, and T. Arai, “Component-based
robot software design for pick-and-place task described by SysML,”
in Ubiquitous Robots and Ambient Intelligence (URAI), 2011 8th
International Conference on, nov. 2011, pp. 124 –127.

[13] M. A. A. Rahman, K. Mayama, T. Takasu, A. Yasuda, and
M. Mizukawa, “Model-driven development of intelligent mobile robot
using Systems Modeling Language (SysML),” in Mobile Robots -
Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion
Planning and Operator Training, J. B. edkowski, Ed. InTech, 2011,
ch. 1, pp. 21–38.

[14] D. Phaoharuhansa and A. Shimada, “An approach to SysML and
Simulink based motion controller design for inverted pendulum robots,”
in SICE Annual Conference (SICE), 2011 Proceedings of, sept. 2011,
pp. 2190 –2193.

3922

