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Abstract— In this paper we address the problem of visibility
in position-based visual servoing. It is well known that the
observed object may leave the field of view in such schemes, as
there is usually no control in the image. Recent control schemes
try to cope with this issue by defining an image-based constraint
such that the object stays in the image. We propose to increase
the convergence domain of such schemes by defining a new
constraint that allows the observed object to leave partially
the field of view. The general formulation is exposed and the
computation of this constraint is detailed. Experiments show
that controlling the visibility loss allows performing position-
based visual servoing tasks that were impossible to perform
while keeping the whole object in the image.

Index Terms— Visual servoing, visibility constraint, visual
tracking

I. INTRODUCTION

The definition of visual servoing is to control a robot by
using features extracted from the image of a camera. If the
corresponding interaction matrix is correctly estimated [1]
then the chosen visual features will usually converge to their
desired values with an exponential decrease of the error.
The main concern is about the actual trajectory of the robot.
Indeed, depending on the visual features that are used, the
corresponding 3D trajectory may be very satisfactory and
predictable (such as a straight 3D line from the initial to the
desired position) or quite unpredictable if the visual features
are not suited for the task that the robot has to perform.

The two classical classes of visual features have opposite
approaches to this issue. Image-based visual servoing (IBVS)
consists in using only 2D geometric features from the image.
The goal is thus to find 2D features that have good properties
in terms of induced 3D trajectory. For instance it is known
that using the Cartesian coordinates of 2D points is not
suited when large rotational motions around the optical axis
of the camera are involved. On the opposite, position-based
visual servoing (PBVS) schemes use the image to retrieve 3D
information on the robot position. Is it then possible to get
nice 3D trajectories, but the observed object may leave the
field of view during the task as the control is not performed
in the image anymore.

In this paper we focus on PBVS and propose a framework
that improves current methods to keep the object in sight
while trying to follow a straight 3D line. The main existing
approaches are detailed and classified in Section II. We
then propose a new formulation that allows the observed
object to leave partially the field of view. The corresponding
criterion is called the partial visibility constraint. It consists
in controlling the object visible area in the image, which is
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less restrictive than keeping the whole object visible. This
criterion is detailed in Section III with the corresponding
control law. Finally, experiments show that controlling the
visibility loss allows performing position-based tasks that
were impossible to perform while keeping the entire object
in the image.

II. 3D VISUAL SERVOING AND VISIBILITY

In this section we recall the behavior of classical PBVS
schemes and detail the main approaches to the visibility
issue.

A. Position-based visual servoing

Visual servoing schemes consist in defining a robot task
by an error function to be minimized:

e = s− s∗ (1)
where s is a vector of m visual features with s∗ being their
desired values. In the following, we assume m ≥ 6. Once
the visual features have been chosen, the time variation of s
is directly related to the camera velocity screw v by:

ṡ = ė = Lsv (2)
where Ls is the interaction matrix related to s and can usually
be computed analytically [1]. Assuming the robot can be
controlled with the camera velocity, (2) leads to the following
control law:

v = −λL̂s
+e (3)

where L̂s
+ is an estimation of the Moore-Penrose pseudo-

inverse of Ls, that ensures at best that the error e is
exponentially minimized in terms of euclidean norm.

Position-based visual servoing consists in using directly
the 3D pose (position and orientation) of the camera as visual
features [14]. This scheme is known to be globally asymp-
totically stable if the pose is sufficiently well estimated.

The main advantage is that the decrease of the error (1) in-
duces a 3D straight line trajectory of the end-effector, which
is of course a predictable and very satisfactory behavior.
Computer vision methods are used to retrieve the 3D pose of
the camera. If a CAD model of the object is known, tracking
the edges of the object [3], [5] is a popular pose estimation
approach. On the other hand, a model-free method has been
presented in [10], allowing for the homography estimation
from a set of corresponding points. The pose matrix that
transforms points from object frame to camera frame is an
element of the group of rigid body transformations SE(3)
and can be written:

cMo =

[
cRo

cto
0 1

]
(4)

where cRo ∈ SO(3) is a rotation matrix and cto ∈ R3 is a
translation vector.
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In order to draw a 3D straight line, the 3D features have
to be chosen as :

s = (c∗tc,
c∗θuc) (5)

where c∗tc expresses the 3D translation and c∗θuc expresses
the angle and the axis of the 3D rotation that the robot has
to achieve. The corresponding interaction matrix is bloc-
diagonal, inducing decoupled translational and rotational
motions. The main drawback of such a PBVS is that there is
no control at all in the image (actually, the observed object
frame does not appear at all in the features (5)). The observed
object can thus leave the field of view (FoV), which of
course would result in the task not being performed. We
now summarize the main approaches to this issue.

B. Classical approaches

Several different approaches have been proposed to im-
prove PBVS with regards to the visibility issue. They consist
in choosing slightly different 3D features, relying on parti-
tioned or switching systems, or directly taking the visibility
constraint into account.

1) Better 3D features: Instead of using the 3D features
(5), another popular choice is s = (cto,

c∗θuc) where cto
expresses the translation between the camera and the ob-
served object frame. The corresponding interaction matrix
is bloc-diagonal, and the resulting control law is globally
asymptotically stable and ensures that the reference point
of the object frame draws a straight line trajectory in the
image. Similarly, in 2 1/2 visual servoing [10], some of the
3D features are replaced by 2D information, leading to a set
of 6 features that allow analytical proof of convergence and
study the sensibility to calibration errors. Popular choices are
to use 2D coordinates of an image point together with 3D
translation (respectively rotation) along the z-axis and the
whole vector for 3D rotation (respectively translation). In
this case, the chosen image point (typically the centroid of
the observed object) draws a straight line in the image. Yet,
the induced trajectory of the end-effector is not a straight
line anymore, the object may partially leave the FoV and
no control is done on the reliability of the tracking with
regards to the sole visible part of the object. Finally, in [12]
another 6-feature-set is designed to cope the visibility issue:
2D coordinates and 3D rotation together with the radius of
the circumcircle of the object projection. Yet, this shape may
not be suited for all 3D objects, and a planning scheme must
be used in the general case.

2) Partitioned and switching systems: In [2], PBVS trans-
lational and rotational motion are switched when the image
points are near to the border. The goal is to perform only the
3D motion that will keep the points in the image. Isolating
the z-axis is also considered in [4] with a partitioned strategy.
In practice, this leads to backward translational motions
which is not an optimal 3D trajectory. In [6], a switching
between IBVS and PBVS is proposed. A maximum error is
defined for each scheme, that makes the system switch to
IBVS (resp. PBVS) if the 2D (resp. 3D) error norm is too
high. However the maximum acceptable 2D error may be
difficult to define: if too high, a point may be able to reach

im
a
g

e
 b

o
rd

e
r

Fig. 1. Whole area (large red polygon) and visible area (small green
polygon) of the 3D object projection in the image plane. While all points
of the red polygon belong to the object (Pi), the green polygon may involve
intersection points (Ii) and corner points (Ci).

the image border. If too small the scheme may stay in IBVS
mode. Similarly, a hybrid control law has been proposed in
[7] with a 5D-objective function that allows determining the
best weighting between IBVS and PBVS. Once again, the
tuning may be difficult in practice and does not ensure the
visibility because the 2D weights are bounded.

3) Constrained visual servoing schemes: The visibility
can also be seen as a constraint to be ensured while per-
forming the PBVS. As PBVS schemes are rank 6, classical
avoidance approaches such as Gradient Projection Method
(GPM) [15] are usually not suited in this case. In [9] we
have proposed a hybrid approach that tries to perform a
PBVS but that adds 2D information when some parts of
the object are about to leave the FoV. The induced end-
effector trajectory is as near as possible to a straight line,
with only the minimal changes allowing for the visibility.
The framework of cascaded quatradic programming (QP) [8]
could also be used to model the visibility as a constraint.
These approaches ensure the object is always entirely visible
in the image. Paradoxically this may also be seen as a
too important constraint that may prevent the system from
reaching its desired position. Indeed, the tracking can usually
be performed even if some parts of the object are out of the
FoV, as long as enough of the object is visible.

III. PARTIAL VISIBILITY

In our approach we rely on the constrained control for-
malism. However, compared to previous works [9] we do
not define the constraint as keeping the whole object in the
FoV. Here, the constraint is just to keep a sufficient part of
the object in the FoV. The corresponding visual feature, that
we call the visibility ratio, is defined in this section together
with its interaction matrix. We assume a 3D object is being
observed. We denote a the area of the projection of the object
in the whole image plane, and av the area of the projection
of the object in the actual image (see Fig. 1). The visibility
ratio is defined as :

r =
av
a

(6)

r is of course equal to 1 if the object is entirely visible, and
equal to 0 if the object is entirely out of the FoV. The partial
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visibility constraint consists in imposing a lower bound rmin
for r, which will be considered as a constraint during the
control law. In order to ensure at best an exponential decrease
of the PBVS error, such a control law can be written [8]:

v = argmin ‖Lsv + λe‖
s.t. r ≥ rmin

(7)

where v is the camera velocity screw and λ is the control
gain. Ls and e refer to the position-based visual task.
rmin is the minimum acceptable value for the visibility ratio.
It may be a given percentage, or depend on the current visual
tracking confidence. An efficient way to take such constraint
into account is to transpose it to a constraint on ṙ:

ṙ ≥ α(r − rmin) (8)
where α > 0 tunes the constraint. It is easily shown that if
(8) is verified then r ≥ rmin at all time. The control law thus
involves the time variation of r, which is linked to v through
its interaction matrix Lr. From (6), Lr yields:

Lr =
1

a
Lv −

av
a2

La (9)

where Lv and La are the interaction matrices of the visible
area av and of the whole area a. To be performed, the control
law (7) thus requires the knowledge of a and av together
with their interaction matrices. We now expose the proposed
formulation, before going into computational details.

A. General formulation

In the sequel we assume the knowledge of the 3D points
corresponding to the object 3D envelop. This is typically the
case when an object is tracked with a CAD model, which
is a common situation in PBVS. If the camera pose cMo

is known, then the points defining the 3D envelop can be
expressed in the image as 2D virtual points. Indeed, denoting
oX the coordinates of a 3D point in the object frame, the
corresponding coordinates cX = (X,Y, Z) in the camera
frame yield:

cX = cMo
oX (10)

and 2D coordinates can then be expressed by:{
x = X/Z
y = Y/Z

(11)

As shown in Fig. 1, the polygon corresponding to the whole
area a is called the large polygon. Similarly, the polygon
corresponding to the visible area av is called the small
polygon.

We use Green’s theorem that allows computing the area
of any polygon defined with the points (xi, yi), i ∈ [1, n],
sequenced counterclockwise [13]. In this case, the area can
be expressed as:

a =
1

2

n∑
i=1

xi−1yi − xiyi−1 (12)

with (x0, y0) = (xn, yn). For readability reasons, and as we
are only interested in the area ratio (6), the factor 1

2 is ignored
in the sequel. From (12), the time variation of a yields:

ȧ =

n∑
i=0

ẋi−1yi + xi−1ẏi − ẋiyi−1 − xiẏi−1 (13)

=

n∑
i=0

[
yi −xi

] [ ẋi−1
ẏi−1

]
−
[
yi−1 −xi−1

] [ ẋi
ẏi

]
(14)

The corresponding interaction matrix La can thus be ex-
pressed as:

La =

n∑
i=1

RiLi−1 −Ri−1Li (15)

where Ri =
[
yi −xi

]
and Li is the well-known inter-

action matrix of the 2D image point (xi, yi) [1].
Hence, the partial visibility ratio (6) and the interaction

matrix (9) can be computed as soon as the vertices defining
the large and the small polygon have been determined,
together with their interaction matrices.

At each iteration, the first step is thus to determine the
sequence of points that corresponds to the large polygon. A
simple algorithm to do so is to initialize the sequence with
the point that is the most far from the centroid, as this point
necessarily belongs to the contour. The following points are
then added counterclockwise until the initial point is found
again. From (12) the computation of the whole area a is then
straightforward. Similarly, from (15) the interaction matrix
La can be computed. The visible area av and its interaction
matrix Lv are more complex to compute. Indeed, as shown
in Fig. 1, the small polygon is defined by a sequence of
points that may involve intersection points between the image
borders and the object 2D envelop, and corner points that
are simply the corners of the image. We now detail the
corresponding algorithm and computation.

B. Determining the visible area

In this section we first expose how to retrieve the sequence
of points corresponding to the small polygon. The computa-
tion of the visible area av and its interaction matrix Lv are
then presented.

a) Finding the small polygon: From the large polygon
(P1, . . . , Pn), Algorithm 1 exposes the retrieving of the small
polygon sequence. We assume that the point P0 = Pn is
visible, which can always be ensured by choosing another
starting point for the sequence. If no points are visible, other
3D points can be defined along the envelop.

The algorithm behavior is illustrated on Fig. 2. Starting
from P0 = P6, the next point P1 is visible, hence it is added
to the polygon (Fig. 2a). P2 is not visible, the intersection
I1 is thus computed and added to the polygon (Fig. 2b). P3

is not visible either, but [P2P3] has two intersections I2 and
I3 with the image borders. They are added to the polygon
(Fig. 2c). P4 and P5 are not visible, thus nothing happens for
them. Since P6 is visible, the intersection I4 is computed. As
it does not belong to the same side as I3, the intermediary
corner C1 is first added to the polygon, then I4 and finally
P6 (Fig. 2d). In the next section we expose the computation
of the interactions matrices of the intersection points.
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(a) Initial segment P6P1 (b) Segment P1P2 adds I1 (c) Segment P2P3 adds I2 and I3 (d) Segment P5P6 adds C1, I4
and P6

Fig. 2. Sequence followed to find the small polygon. Several configurations may exists depending on the segments crossing the image borders.

Data: Large polygon (P0 = Pn, P1, . . . , Pn)
Result: Small polygon Ps

Ps ← P0;
inside ← true;
for i ∈ [1, n] do

if inside then
if Pi is visible then

add Pi to Ps;
else

find intersection Iout of [Pi−1Pi] with the
image sides;
store the side Sout that has been crossed;
add Iout to Ps;
inside ← false;

end
else

if Pi is visible then
find intersection Iin of [Pi−1Pi] with the
image sides;
store the side Sin that has been crossed;
if Sout 6= Sin then

add corners Ci between Sout and Sin;
add Iin to Ps;
add Pi to Ps;
inside ← true;

else
check for intersections of [Pi−1Pi] with the
image sides;
if Found two intersections Iin and Iout then

add potential corners as above;
add Iin to Ps;
add Iout to Ps;
store the last crossed side as Sout

end
end

end
end

Algorithm 1: Get the sequence of points defining the small
polygon.

b) Intersection interaction matrix: The corner points
being motionless, their interaction matrix is null. To retrieve
the interaction matrix of the intersection points, we actually
need to compute the corresponding 3D intersection. Indeed,
the sole 2D intersection would prevent from knowing the
Z-depth that appears in the interaction matrix. Denoting
(x−, x+, y−, y+) the image limits, the borders correspond
to the four 3D planes of equation:
X = x−Z, X = x+Z, Y = y−Z, Y = y+Z (16)

We denote aX + bY + cZ = U>X = 0 the equation of
such a plane. Denoting X1 and X2 two 3D points, the 3D
intersection I of (X0X1) and a 3D plane yields:

I = X0 + k(X1 −X0) (17)
with:

k =
−U>X0

U>(X1 −X0)
=
N

D
(18)

The intersection is considered valid only if k ∈ [0, 1], that is
I ∈ [X0X1]. From (17) and (18), the interaction matrix L3D
of the 3D point I yields:

L3D =L0 − (X1 −X0)

(
DU>L0 +NU>(L1 − L0)

D2

)
+ k(L1 − L0) (19)

with L0 and L1 being the interactions matrices of the 3D
points X0 and X1. L3D is thus known and verifies:

İ = (Ẋ, Ẏ , Ż) = L3Dv (20)
The image coordinates (x, y) of the 2D intersection can

be expressed from (11) and (17). Their derivative are related
to the 3D coordinates derivative:[

ẋ
ẏ

]
=

[
1/Z 0 −x/Z
0 1/Z −y/Z

] Ẋ

Ẏ

Ż

 (21)

Finally, from (20) and (21), the interaction matrix LI of
the 2D intersection (x, y) can be expressed with:

LI =

[
1/Z 0 −x/Z
0 1/Z −y/Z

]
L3D (22)

The coordinates and the interaction matrices of the points
defining both the large and the small polygons have been
exposed, making it possible to compute the visibility ratio
(6), and its interaction matrix from (9) and (15). We now
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detail the control law that ensures the partial visibility.

C. Control law

The control law (7) is expressed through the quadratic
programming formalism with active sets [8]. First the un-
constrained law is computed:

v1 = argmin ‖Lsv + λe‖ = −λL+
s e (23)

The partial visibility constraint is then checked:

ṙ = Lrv1

?
≥ α(r − rmin) (24)

If (24) is verified then v1 is applied on the system. If
not, the constraint is changed to equality and the following
optimization problem is considered:

v = argmin ‖Lsv + λe‖
s.t. Lrv = α(r − rmin)

(25)

which can be solved through Lagrangian method. The joint
limit constraint is considered with the same formalism.
Experiments now illustrate the proposed approach.

IV. EXPERIMENTS

In this section the proposed approach is exposed and
compared to a visual servoing under full visibility constraint.
Experiments are carried on a 6 DOFs gantry robot (see the
video accompanying this paper). The camera and the robot
are calibrated. The camera observes a mechanical object, the
3D model of which is known. The edges are tracked to allow
for the pose estimation at camera rate [3]. The control law
and tracking are performed using ViSP software [11].

A. Full visibility constraint

The robot joint limits have been defined such that the
visual servoing cannot be performed with the full visibil-
ity constraint. In this configuration, joint q1 approximately
corresponds to a backward motion of the camera. This is
represented in Fig. 3, where the final image (Fig. 3b) shows
the object is very near to the border. The joint q1 that
would allow performing the servoing has already reached
its limit as shown in Fig. 3a (normalized joint positions
are represented). Consequently, the best solution is the null
motion: the system stops as it is not possible anymore to
minimize the position error without violating the constraints.
The final position is thus the local minimum corresponding
to the steepest gradient descent under the visibility and joint
avoidance constraints. We now try to perform the same task
with a partial visibility constraint.

B. Partial visibility constraint

The same experiment is carried, but this time the visibility
constraint is to have at least rmin = 90% of the object visible.
The robot quickly reaches a configuration which is similar to
the one previously shown in Fig. 3b but this time the object
is allowed to partially leave the FoV, as shown in Fig. 4a.

Fig. 4 represents camera images at iterations 200 (94%
visibility), 700 (90%) and 1400 (98%). The tracking is the
same as before but only the small polygon is represented
here, as in Fig. 2. We can point out that the tracking still
performs well in this configuration, although only 90% of

the object is visible (see the video accompanying this paper).
The visibility ratio occasionally drops below 90% because of
the tracking noise but still stabilizes around the acceptable
value.

At iteration 1400 (Fig. 4c) the object is about to be fully
visible again and the scheme is near from convergence.

Fig. 5 shows the behavior of the proposed scheme. As in
the full visibility case, joint 1 quickly reaches its limit as
shown in Fig. 5a. This time the robot does not have to stop,
as a solution can be found by making the object partially
leave the FoV. Fig. 5b represents the partial visibility ratio
that decreases very quickly below 96%. The lower bound of
the visibility ratio is reached around iteration 700. Joint 1 is
still laying on its limit, but this does not prevent the scheme
from being performed.

Once the low-visibility phase has been passed, the ratio
starts to increase again and is equal to 1 (full visibility)
a few iterations before convergence. We can see that the
object is entirely visible again around iteration 1500, while
Fig. 5c shows the position error is becoming null at the same
time. Most of the scheme thus performs while controlling the
visibility loss.

V. CONCLUSIONS

A new approach has been proposed to cope with the visi-
bility constraint in position-based visual servoing. Compared
to previous approaches, we do allow the observed object to
leave the FoV but the visibility loss is actively controlled.
The approach shows that a CAD model of the observed
object makes it possible to compute the interaction matrix of
the partial visibility ratio and to ensure this value keeps above
a given percentage. This leads to an improved 3D trajectory
compared to schemes that keep the entire object in the FoV.
As shown in the experiments, controlling the visibility loss
can also make a task possible, while there was no solution
with the full visibility constraint. As the minimum visibility
ratio rmin is likely to depend on the model characteristics
and may be difficult to define, a possible improvement is to
take into account the visual tracking confidence in order to
adapt the acceptable visibility ratio. This would typically be
the case if there are not enough visible segments to track the
observed object.
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