
Efficient Enumeration of Modular Robot Configurations and Shapes

Kasper Stoy and David Brandt

Abstract— A modular robot consists of a set of mechatronic
modules that can be connected in many different ways, which
makes it possible to build robots of many different shapes
from the same basic set of modules. The main contribution
of this work is an algorithm that, given the parameters of a
module and the number of modules, efficiently can calculate
how many different configurations and shapes can be built.
These numbers are important because the first is a measure
of the self-reconfigurability and the second, given there is a
relationship between form and function, the versatility of a
modular robot. As an experimental contribution, we enumerate
the configuration and shape spaces of square, two-dimensional
modules with all possible connector configurations. We proceed
to three dimensions and enumerate the spaces of the theo-
retically interesting sliding cube module, and the M-TRAN
and SuperBot modules. Several observations are made, an
important one is that the shape spaces of the two physical
modules are large even for a small number of modules (103
different shapes using 3 modules). This implies that it is not the
lack of shape diversity that holds these modular robots back
from being versatile. A result that suggests that if modules are
designed right, versatility can potentially be reached even with
few modules, which is contrary to the common belief in the
community that more is better.

I. INTRODUCTION

There is a tight relationship between the shape of a robot
and the tasks it can perform [13], in other words, between the
form and function of a robot. Modular robots are a special
kind of robots designed to take advantage of this relationship
[17], [16], [12]. Modular robots are built from mechatronic
modules that can be connected in different ways, which
makes it possible to build robots of many different shapes
from the same set of modules. Contributions in modular
robotics are often specific module implementations or dis-
tributed control algorithms, in particular, self-reconfiguration
algorithms, for these modules. However, the contribution of
this work is at a more theoretical level. Our overarching goal
is to move up from specific module implementations and
understand how we from a theoretical point of view should
design modular robots. To this end, we propose an algorithm
for evaluating a potential module design by calculating the
number of different configurations and shapes it can assume.

We calculate the number of shapes and configurations that
can be built given the geometry and connector topology of
a module and the number of modules. A shape is defined
by the positions and orientations of its constituent modules.
A configuration is defined as a shape with the addition that
connectors and their gender types are also considered. The
motivation for choosing these metrics is that the variety of

IT University of Copenhagen and Universal Robots, respectively. The
work was done at University of Tarapacá, Chile and University of Southern
Denmark ksty@itu.dk, dbr@universal-robots.com.

shapes is an indication of the versatility of a modular robot
and the number of configurations of its self-reconfigurability.
These metrics are of course not the only factors in evaluating
the versatility and self-reconfigurability of a module design,
the distribution of sensors, actuators, materials, control, etc.
are also important factors, but for this paper we limit
ourselves to consider the potential indicated by the variety
in shapes and configurations.

The main obstacle to enumerating the configuration and
shape spaces is the computational and spatial complexity of
enumeration given that we are faced with a combinatorial
explosion. Our strategy for reducing the spacial complexity is
to store only one representative for all configurations that are
isomorphic. That is, configurations that with permutations,
translations, rotations, or mirror operations can be made
to overlap. An important question is which of a set of
isomorphic configuration to use as a representative. The
solution is to impose an order on configurations and only
represent the smallest configuration. Asadpour et al. use a
similar strategy and refer to the smallest configuration as the
signature of a configuration [2], [1]. We will also call it a
signature because the function is the same here even though
the content and how we calculate it differ. Overall, our
approach builds on the work by Golestan et al. [9]. However,
where they focus on self-reconfiguration planning, we focus
on enumeration. A concrete contribution is that we improve
the computational complexity of calculating a configuration
signature from O(n2) to O(nlogn) where n is the number
of modules. A result that help us in enumeration, but also
can be used to improve self-reconfiguration planning.

A complementary study to ours is the work by Brener
et al. who use discrete displacement groups to categorize
and compare modular robots [3]. Other groups have also
used configuration space analysis to understand specific
module designs either based on graphs [14], [6], [5] or
matrices [7], [8]. However, we improve on this work by
using configuration signatures to represent configurations,
which lead to a significant reduction in time and space
complexity of performing configuration enumeration. The
aim of our work is also different in that we focus on shape
and configuration enumeration as a general design tool and
not only for analysis of existing designs.

Our experimental contribution is an enumeration of the
shape spaces of all possible, nontrivial, two-dimensional
square modules. We also contribute with an enumeration
of the configuration space of the theoretically interesting
three-dimensional sliding cube module for n ≤ 12, and
the SuperBot and M-TRAN robots for n ≤ 3 which is
low, but still allows us to compare shape spaces and assess

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4296

the differences between the configuration spaces of these
three modules. The most important insight obtained from
these experiments is that even for this low number of M-
TRAN and SuperBot modules 103 different shapes can be
made. This leads us to conclude that it is not the number of
potential shapes that reduce the versatility of modular robots,
but rather the number of useful shapes. Another insight is
that the configuration space of the two physical modules
quickly become four orders of magnitude larger than the
configuration space of the sliding cube module hence making
it questionable to use the sliding cube as a representative
modular robot in theoretical work.

Overall, we conclude that the use of configuration enumer-
ation is a useful tool for analyzing module designs and hence
is a much needed contribution to the theoretical foundation
of modular robotics.

II. CONFIGURATION AND SHAPE ENUMERATION
ALGORITHM

Our enumeration algorithm is essentially a breath-first
search algorithm where the level in the search tree corre-
sponds to the number of modules n in a configuration and
the width of the tree is the number of non-isomorphic con-
figurations. The root of the tree is the configuration signature
of the module under investigation. We find the children of a
parent by finding all the possible, legal ways a module can
be attached to the parent configuration. A legal attachment is
one where modules do not overlap and at least one connector
pair match in terms of gender, position and orientation.
If a child is legal, we calculate its configuration signature
and check if it already known. If not, we insert it into a
sorted array, one for each n, of configuration signatures. This
process is repeated until a specified n is reached. At the end
of the search the lengths of the configuration lists are equal
to the sizes of the configuration spaces.

In order to find the sizes of the shape spaces, we iterate
through the configuration lists and remove all connectors,
calculate a new signature of the shape alone, and check if
this shape has been discovered before. If not, it is inserted
into another sorted array, one for each n. At the end the
lengths of these arrays are equal to the the sizes of the shape
spaces.

In practice, in order to improve memory efficiency, we
extract the number of configurations and shapes and delete
the lists belonging to n− 1 before moving on to n.

An extension to this basic algorithm is necessary in case a
module has internal actuation. In this case, the starting point
for the search is a list containing all the unique configuration
signatures that can be generated through different actuator
positions constrained to right angles (e.g. for M-TRAN the
number of unique configuration signatures is 5, for SuperBot
8. See Table III).

III. THE CONFIGURATION SIGNATURE

A configuration signature is a unique representative of
a set of isomorphic configurations. That is, a signature
configuration is a unique representative for all configurations

that can be obtained by the following operations or any
combination thereof: permutation translation, rotation, and
mirror. Before describing how to calculate the configuration
signature we will present how to represent modules and
configurations to make this calculation efficient.

A. Module Model

The class of modular robots that we consider in this work
is modular robots organized in a cubic lattice. A module may
have a connector on each of its six sides of type male, female,
unisex or none. The choice of the cubic module is based on
the fact that it is a simple generalization of the square module
that Liu et al. use in related work [10]. The cube is also often
used for theoretical work. Finally, since we can also handle
compound modules of several cubic modules we can model
SuperBot and M-TRAN and other similar modules since they
essentially consist of two connected cubic modules.

Modules are assumed to be able to connect if they have
faces that touch each other, the gender of the connectors
match, and they are rotated 0, 90, 180, and 270 degrees
around the axis of connection. For our comparison with
existing work we also use two-dimensional square modules
in some experiments. The algorithm can be generalized
to use other module geometries as long as the rotation,
translation, and mirroring operations are well-defined.

B. Order of Modules

We define a trivial order on modules based on their posi-
tion and orientation: a module is less than another module
if its x coordinate is less than the x coordinate of the other
module, or if they are equal we compare the y coordinates,
and if they are equal the z coordinates, and if they are all
equal finally the orientation. The orientation is ordered as
follows ~x, ~y, ~z,−~x,−~y,−~z. In practice, the orientation is
represented as an integer since there are only six possible
orientations of a module in a cubic lattice.

C. Order of Configurations

A configurations is an array of modules sorted using the
order of modules. We also define an order of configurations
based on the order of its constituent modules.

C1 < C2 ⇐⇒ ∀i ∈ n|Ci
1 < Ci

2 (1)

Here Cj
i is module j in configuration i and n is the number

of modules. Notice, that to determine if one configuration is
smaller than another configuration is a linear operation on
the arrays where elements are compared pairwise using the
order of modules.

D. Calculating the Signature Configuration

We now aim to calculate the configuration signature of
a configuration represented as described above. The repre-
sentation of a configuration as a sorted array of modules
immediately gives us a unique representation of a set of
configurations that are just permutations of each other. We
then translate this configuration so that the first module

4297

coincide with the origo of the coordinate system. This
removes configurations that are just translated with respect
to each other.

In order to find a unique representative of a set of
isomorphic configurations we eliminate configurations that
are just rotations or mirrors of each other. This is done
by iterating over all possible orientations and mirrors of a
configuration and find the minimum configuration based on
the order defined above. For the two-dimensional case there
are eight isomorphic configurations for each configurations
(four ninety degree rotations times two mirror operations).
For the three-dimensional case this is increased by a factor
of three to twenty-four (four ninety-degree rotations times
two mirrors times three dimensions).

We now consider the computational complexity of the
signature calculation since the lowering of this complexity
is one of our contributions. It is clear that there is a constant
maximum number of rotational isomorphic configurations
given rotations are restricted to ninety degree increments. For
each of these configurations we perform a rotation and/or a
mirror operation which is linear, we then sort the modules
in an O(nlogn) operation, translate the configuration so the
first module is at the origo of the coordinate system, again
a linear operation. Finally, compare the smallest candidate
for the signature configuration with the current configuration
which has worst-case linear time complexity. It can now be
realized that the dominating term is the O(nlogn) of sorting
and hence this is the bound for our signature calculation
algorithm.

IV. CONFIGURATION ENUMERATIONS

We may be interested in measuring the configuration space
in several different ways to better highlight advantages and
disadvantages of different module designs. The following are
the metrics we calculate:

All configurations
Not counting translations and permutations.

Non-isomorphic configurations (c)
As above but also not counting rotations or mirrors

Non-isomorphic shapes (s)
As above but also not counting configurations that
have the same shape but different positions of
connectors or connector genders.

The measurement all configurations is of practical impor-
tance in self-reconfiguration planning, because sometimes
there is a need to represent configurations that only differ
in terms of orientation. It may be that a chair made from a
self-reconfigurable robot has fallen over and a plan needs to
be made that can transform it into an upright chair. Hence
both the initial configuration and the final configuration are
identical except for their orientation.

The measurement non-isomorphic configurations is also
important in self-reconfiguration planning, because in those
cases where rotations of configurations are not significant
the configuration space can be significantly reduced and
facilitate planning as exploited by Golestan et al. [9]. These
two measurements were proposed by Liu et al. [10].

n Non-isomorphic Symmetric Available Time (ms)
conf. conf. conf. t̄ σ

1 1 1 1 0.00 0.00
2 1 1 4 0.00 0.00
3 3 2 6 0.00 0.00
4 7 3 24 0.00 0.00
5 21 7 68 0.02 0.14
6 60 10 248 1.07 0.26
7 208 24 814 4.94 0.40
8 704 36 3216 19.89 1.05
9 2542 86 12164 81.17 2.35

TABLE I: For the Liu Module, this table shows as a func-
tion of the number of modules, how many non-isomorphic
configurations exist, how many of those are symmetric, and
the total available number of configurations. In addition, the
mean and standard deviation of the computation time in ms
of one hundred experiments are given.

The measurement non-isomorphic shape is the measure-
ment that is unique to our study here and is a measure
of the number of shapes of a modular robot. The practical
assumption is that the position of external connectors does
not influence the function of the configuration. This may
often be true, but sometimes connectors do provide robots
with functionality (in particularly for attaching tools or
augmenting the robot in different ways) and in this situation
the previous measure is better.

V. EXPERIMENTS

A. Liu Modules: Confirmation, Validation, and Performance

Liu et al. [10] describe an alternative approach to config-
uration enumeration based on a matrix representation. Liu et
al. use a simple two-dimensional square module with female
connectors on opposite faces and male connectors on the
other two opposite faces. We will refer to this module as the
Liu Module. Running the proposed enumeration algorithm
using the Liu Module produces the result shown in Table I.
Columns one to four of this table are identical to the ones
published by Liu et al. ([10], Table 1, page 63). confirming
their results and validating our own algorithm in the two-
dimensional case.

When we consider performance Liu et al. report that it
takes 56943.825s to enumerate the configurations of a nine-
module robot, it takes our algorithm on average 0.081s. Part
of the difference can be attributed to difference in hardware
since Liu et al. report using an Intel 2.00 GHz Pentium 4
CPU with 256MB RAM and we use an Intel Core i5, 1.7Ghz
CPU with 4GB RAM. However, it is clear that this cannot
entirely explain this difference and hence the performance
also rests on our more efficient algorithm. In our implemen-
tation we do not use a multi-threaded implementation which
could be used to reduce computation time even further.

B. From Analysis to Design of Square Modules

It may appear that the number of non-isomorphic config-
urations is a fair representation of the number of shapes that
can be created. However, in practice this may not be the case.
In Figure 1, the possible non-isomorphic configurations using

4298

Fig. 1: The 21 possible non-isomorphic configurations using five Liu Modules. A module is represented by a box and female
and male connectors are represented by a large red and a small blue circle, respectively. Note, that several configurations
are isomorphic and only differ by gender of connectors (e.g. 1st and 5th configurations in the first row). If we disregard
connectors there are only 12 non-isomorphic shapes.

five Liu Modules are shown, which is identical to the result
reported by Liu et al. ([10], Figure 5, page 63). This figure
helps us realize that many configurations are only different
due to the gender and position of connectors and not module
positions. Assuming that functionality is derived from the
shape of the configuration and not the position of connectors
we think the number of non-isomorphic shapes is a better
representation of the potential functionality of a modular
robot than non-isomorphic configurations. Based on this we
get for the Liu Module the results of Table II column two.
We can see that for the Liu Module the number of shapes is
approximately half that of the number of configurations.

The motivation for our work on enumeration is to use
it as a module design tool given the assumption that more
available shapes lead to more functionality. Hence, a natural
question is how many shapes can be made using Liu Modules
compared to other similar modules? What impact does it
have on the shape space to remove a connector and thus
reduce the complexity of the module? What impact does it
have to change the gender of a connector in case female con-
nectors are simpler than male connectors? These relatively
important questions regarding the mechanical design of an
improved Liu Module can relatively quickly be answered
by enumerating all combination of connectors of a square
module.

However, first we would like to understand the maximum
number of shapes a square module potentially can generate.
In order to understand this we run the enumeration algorithm
using a square module with unisex connectors on all four
faces. This provides the upper limit for how many shapes
can be generated using a square module. The result of this
is shown in Table II, column two. A basic observation is that
the number of non-isomorphic configurations is equal to the
number of non-isomorphic shapes. This is due to the fact that
all connectors are identical, unisex, and hence permutations
of connectors do not change the configuration. The second
observation and the answer we are after is that the Liu

Module in fact can generate the entire shape space of a
square module as can be seen by comparing columns two and
three. This is an encouraging result; if only shape space is
important there is no reason to use unisex connectors which
are likely to be more complex than gendered connectors.

In order to find the optimal connector configuration of
a square module let us find all possible non-isomorphic
connector configurations except for trivial ones or symmetric
ones and enumerate the corresponding shapes. The result is
shown in the remaining columns of Table II. The first result
is, looking at columns 2, 3, 4, and 8 that as long as there are
connectors on all sides and at least one of each gender all
shapes can be generated. The only change is in the number
of ways these shapes can be generated. This result can be
used to inform design if a male connector is simpler than a
female connector. The second result is, looking at columns
6, 7, and 8, that if one connector is removed then if two
connectors of identical gender are adjacent to each other
the number of shapes is only reduced from 1285 to 1214
corresponding to a 5.5% reduction, hence making this an
attractive design if strength of the structure is not important
(all modules are only connected to one other module). The
final result is trivial: using less than three connectors causes
a complete break down and very few shapes can be built.

C. Enumeration in Three Dimensions

In three dimensions we generalize the square to a cube
with up to six connectors one on each side. This is an im-
portant module model because it has been used in numerous
studies (e.g. [15], [4]) and hence an enumeration can shed
light on the properties of this configuration space compared
to that of physically implemented modules which we will
consider afterwards. A cubic module with unisex connectors
on all sides also serves as an upper bound for the size of
the configuration and shape spaces of all cubic modules.
The enumeration of the configuration and shape spaces of
the cubic module is shown in column 2 of Table III. An

4299

U
U U

U

M
F F

M

M
F F

F

M
F F

N

M
M F

N

M
F N

N

M
F M

F
Time (ms)

n c s c s c s c s c s c s c s t̄ σ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.0 0.0
2 1 1 1 1 2 1 1 1 4 1 4 1 2 1 0.0 0.0
3 2 2 3 2 7 2 3 2 20 2 8 2 14 2 0.0 0. 0
4 5 5 7 5 29 5 7 4 112 5 12 2 84 5 1.0 0.0
5 12 12 21 12 127 12 17 7 646 11 20 4 610 12 7.5 1.2
6 35 35 60 35 598 35 42 16 3878 34 32 5 4582 35 61.8 5.8
7 108 108 208 108 2869 108 110 35 23698 103 32 5 35828 108 647.5 35.4
8 369 369 704 369 14048 369 287 85 147155 353 52 9 285675 369 6151.6 243.7
9 1285 1285 2542 1285 69366 1285 756 203 923172 1214 84 12 2315618 1285 62390.8 1019.0

TABLE II: Enumeration of the configuration spaces for two-dimensional square modules. Specifically, non-isomorphic
configurations c and non-isomorphic shapes s as a function of number of modules n and connector morphology (connector
abbrev.: F: female, M: male, U: unisex, and N: none). For the computationally hardest module the mean execution time and
standard deviation of ten experiments are shown.

Cubic module M-TRAN M-TRAN SuperBot SuperBot
All unisex Original Unisex Gendered Original
connectors connectors connectors

M F
M F

M F

U U
U U

U U

M F
M F

M F

U U
U U

U U
Time (ms) Time (ms)

n c, s c s t̄ σ c s c s c s t̄ σ
1 1
2 1 5 1 0.0 0.0 4 1 10 1 8 1 0.0 0.0
3 2
4 8 685 6 11.8 1.0 811 6 2799 6 3184 6 84.7 3.0
5 29
6 166 153929 103 3437.1 106.0 384698 103 1307878 103 3003064 103 90918.7 239.4
7 1023
8 6922 41627711 3482
9 48311

10 346543
11 2522522
12 18598427

TABLE III: This figure shows the number of non-isomorphic configurations c and shapes s as a function of type and number
of modules n. For the original M-TRAN and SuperBot the mean execution time and std. dev. of ten experiments are shown.
In the last four columns only every second row is filled because these modules consist of two cubic modules and hence an
odd number of modules impossible. Also note, that for the cubic module with unisex connectors on all sides c equals s.

astounding result is that from only 12 modules 18,598,427
different shapes can be built.

D. M-TRAN and SuperBot
M-TRAN and SuperBot are two of the recent self-

reconfigurable robots. One of the differences between the
two is that SuperBot has a rotational joint between the
two halves of the module. While this intuitively seems to
expand the capabilities of the module, in particular when it
comes to movement in a fixed configuration e.g. locomotion,
it is unclear how this extra rotational degree of freedom
influences the configuration space. Also, SuperBot has six
unisex connectors and M-TRAN has three female connectors
on one half-module and three male connectors on the other.

M-TRAN and SuperBot are based on the cubic model
and hence we can enumerate their configuration spaces. In
practice, a single module is represented as a two-module con-
figuration. The actuators’ positions are indirectly represented
by inputting all non-isomorphic connector configurations that

a two-module configuration can generate by any combination
of actuators positions limited to right angles. In other words,
actuators are not modelled and configurations that only differ
in terms of positions or orientations of actuators are not
counted. The enumeration is shown in Table III. Enumerating
the configuration spaces of these modules is computationally
expensive and could not be extended beyond three modules
because the workstation runs out of physical memory and
hence relies on swap-space causing the computation to slow
to a crawl. We did manage to enumerate for 4 M-TRAN
modules using a powerful Core i7 with 8Gb of RAM. Note,
we have to keep all configurations in memory to check if
generated configurations have been encountered before.

Looking at the results, the first observation is that both M-
TRAN and SuperBot are able to assume the same number
of shapes. However, the number is slightly less than that of
a cubic module with a corresponding number of modules.
This is due to the limited flexibility of the two module

4300

halves being permanently attached. The second observation
is that the configuration space of SuperBot is vastly larger
than that of M-TRAN. This implies that shapes can be
reached in many different ways making the physical self-
reconfiguration capabilities of SuperBot superior to those of
M-TRAN. In columns four and five we also consider the
effect of improving M-TRAN with a rotational joint and
unisex connectors in isolation. The results show that the
rotational joint increases the configuration space significantly
more than upgrading the M-TRAN with unisex connectors.
However, both play a role in giving SuperBot its larger
configuration space.

VI. DISCUSSION & FUTURE WORK

The main contribution of this work is an algorithm that
efficiently calculate configuration signatures. This allows
us to enumerate the configuration spaces of a number of
practically interesting modules. A common observation from
these enumerations is that a large number of configurations
can be obtained using a limited number of modules. It was
expected that there would be an exponential relationship
between the number of modules and configurations, but the
astoundingly large numbers we calculated make it more clear.
For instance, any three-dimensional modular robot with just
ten modules can assume more shapes than we could possibly
use for any practical application. The consequence of this is
that it is not the number of configurations generated that is
holding modular robotics back from real applications, but to
make robots that can generate useful shapes. This insight -
although a bit trivial - may lead us to design new modular
robots that contain few modules as opposed to the traditional
view that more is better. Further evidence supporting this is
that the Thor heterogeneous modular robot [11] only uses
few modules to obtain useful robots.

Configuration enumeration as a design tool has received
little attention and hence there are many open questions.
We have only looked at square and cubic modules, but it
is also interesting to study other shapes to understand the
relationship between module shape and configuration space
better. As long as the geometry of configurations are lattice
structures our algorithm can be applied with only a few
modifications. However, our approach does not work for soft
modular robots. In this case one has to rely on the slightly
less efficient approach using configuration signatures instead
as described by Asadpour et al. [1].

A final remark is that in this work we consider the number
of shapes that are possible assuming that all modules are
connected to the configuration with at least one connector.
However, not all these configurations are practically useful
because the internal physical limits of the modules, e.g.
the stress on connectors arising from gravitational pull on
connected modules, are not considered. In future work we
plan to consider the internal physical limitations and consider
what shapes can meet a given set of external requirements.

VII. CONCLUSION

The main contribution of this work is an efficient algorithm
for calculating configuration signatures. A configuration sig-
nature is a unique configuration that represents all isomor-
phic configurations. This efficiency and the fact that we
can reduce our exploration to non-isomorphic configurations
allow us to enumerate the configuration spaces of modular
robots. In this paper we have argued that configuration
enumeration is a useful design tool for modular robots and
have demonstrated this in experiments with the theoretical
square and cubic modules and with the existing M-TRAN
and SuperBot modules. The hope is that enumeration can
form part of a theoretical basis for module design.

REFERENCES

[1] M. Asadpour, M. Ashtiani, A. Sproewitz, and A. Ijspeert. Graph
signature for self-reconfiguration planning of modules with symmetry.
In Proceedings, IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5295–5300, St. Louis, MO, USA, 2009.

[2] M. Asadpour, A. Sproewitz, A. Billard, P. Dillenbourg, and A. Ijspeert.
Graph signature for self-reconfiguration planning. In Proceedings,
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 863–869, Nice, France, 2008.

[3] N. Brener, F. Ben Amar, and Ph. Bidaud. Characterization of lattice
modular robots by discrete displacement groups. In Proceedings,
IEEE/RSJ Int. Conf. on Robots and Intelligents Systems, pages 1133–
1139, Tapei, 2010.

[4] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generic de-centralized
control for lattice-based self-reconfigurable robots. The Int. Journal
of Robotics Research, 23(9):919–937, 2004.

[5] A. Casal and M. Yim. Self-reconfiguration planning for a class of
modular robots. In G.T. McKee and P.S. Schenker, editors, Proc.,
Sensor Fusion and Decentralized Control in Robotic Systems II,
volume 3839, pages 246–257. SPIE, 1999.

[6] A. Castano and P. Will. Representing and discovering the configuration
of conro robots. In Proc., IEEE Int. Conf. on Robotics and Automation,
volume 4, pages 3503–3509, Seoul, Korea, 2001.

[7] I.-M. Chen and J.W. Burdick. Enumerating the non-isomorphic
assembly configurations of modular robotic systems. The International
Journal of Robotics Research, 17(7):702–719, 1998.

[8] C.-J. Chiang and G.S. Chirikjian. Modular robot motion planning
using similarity metrics. Autonomous Robots, 10(1):91–106, 2001.

[9] K. Golestan, M. Asadpour, and H. Moradi. A new graph signature
calculation method based on power centrality for modular robots. In
Proceedings, 10th Int. Symposium on Distributed Autonomous Robotic
Systems, pages 505–516, Lausanne, Switzerland, 2013.

[10] J. Liu, Y. Wang, S. Ma, and Y. Li. Enumeration of the non-isomorphic
configurations for a reconfigurable modular robot with square-cubic-
cell modules. International Journal of Advanced Robotic Systems,
7(4):58–68, 2010.

[11] A. Lyder, K. Stoy, R.F.M. Garciá, J.C. Larsen, and P. Hermansen.
On sub-modularization and morphological heterogeneity in modular
robotics. In Proceedings, 12th International Conference on Intelligent
Autonomous Systems, pages 1–14, Jeju Island, Korea, 2012.

[12] S. Murata and H. Kurokawa. Self-Organizing Robots. Springer, 2012.
[13] R. Pfeifer and C. Scheier. Understanding Intelligence. MIT Press,

1999.
[14] D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with

compressible unit modules. Autonomous Robots, 10(1):107–124, 2001.
[15] K. Støy. How to construct dense objects with self-reconfigurable

robots. In Proc., European Robotics Symposium (EUROS06), pages
27–37, Palermo, Italy, 2006.

[16] K. Stoy, D. J. Christensen, and D. Brandt. Self-Reconfigurable Robots:
An Introduction. MIT Press, 2010.

[17] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G.S. Chirikjian. Modular self-reconfigurable robot
systems. In IEEE Robotics & Automation Magazine, pages 43–52,
March 2007.

4301

