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Abstract— The noninvasive brain-machine interface (BMI)
is anticipated to be an effective tool of communication not
only in laboratory settings but also in our daily livings. The
direct communication channel created by BMI can assist aging
societies and the handicapped and improve human welfare. In
this paper we propose and experiment a BMI framework that
combines BMI with a robotic house and autonomous robotic
wheelchair. Autonomous navigation is achieved by placing
waypoints within the house and, from the user side, the user
performs BMI to give commands to the house and wheelchair.
The waypoint framework can offer essential services to the user
with an effectively improved information-transfer rate and is
an excellent examples of the fusion of data measured by sensors
in the house, which can offer insight into further studies.

I. INTRODUCTION

The current forefront of noninvasive brain-machine inter-
face (BMI) is coming along with attempts to assist aging
societies, but still BMI’s information-transfer rate is limited
to 35 bits per minute (bpm) for the best subjects [1],
which is not enough. This fact necessitates a framework
to execute commands safely and reliably to let the elderly
and physically impaired to use BMI in their life even with
insufficient accuracy of BMI. To this end, the combination
of BMI with robotics can provide a promising framework
by enhancing the limited information-transfer rate through
the application of effector devices, sensing networks, and
autonomous navigation embedded in a smart home environ-
ment.

Smart homes [2], [3] offer essential automation services
for the elderly and physically impaired; e.g., automation for
doors and windows, lighting adjustment, indoor temperature,
etc. As a step forward to comfortability in houses, we
constructed a smart house system that can be controlled
by commands from the user through BMI. A central server
in the house controls house appliances, detects the status
of them, and remotely receives commands through wireless
network.

BMI is an input technology that connects the brain directly
to external effectors. With this interface, people do not need
to rely on commands provided by speech, a joystick, or a
computer to interact with their physical world and to navigate
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(b) House entrance.

(c) The height of kitchen is automat- (d) The elevator for wheelchairs at
ically adjusted to the height of the the entrance works automatically.
wheelchair user. Water supply is also

controlled from the server.

(e) Household electrical appliances (f) Doors are controlled according to
are controlled from the server. the navigation plan.
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Fig. 1.  Overview of the smart house. Installations are fully electrical
powered. It has an area of 95.25 square meters.
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through it. Conventional BMI wheelchair controllers [4], [5]
continuously reads brain activities during the entire operation
period, following user’s instant commands. This continuous
control requires the user to persistently concentrate, making
the user tired. Therefore this is not always suitable for daily
living without a practical design. Although many researchers
have devoted their efforts in increasing the information-
transfer rate by improving decoding techniques, currently it
is reaching the ceiling.

As output means for mobility, we use a robotic wheelchair
that can navigate autonomously between different locations
in a living environment. Decision making of the target loca-
tion is given by the user through BMI whereas the wheelchair
navigates to its destination passing through doors and de-
tecting and avoiding obstacles. The wheelchair manages a
multi-map system in which maps are switched according to
the status of the environment installations, i.e., the states
of doors, curtains, etc. This characteristic allows mobile
platforms to adapt to the dynamic status of the environment.
The wheelchair localizes itself with a particle filter that
corrects the position of the robot based on laser scans where
a pre-processing method of laser data allows the robot to
localize itself even in the presence of multiple people around.

Here in this paper we use a moderately low information-
transfer rate decoding technique but we increase an effective
information-transfer rate by exploiting the robotic home
environment. Based on two kinds of available information,
i.e., 1) the status of household equipment and electric ap-
pliances and 2) the position of the user (wheelchair), we
design an efficient framework, which we call waypoint-
based BMI. Basically BMI is used for sensing the user’s
wants; for the navigation task, BMI read the location in
the house that the user wants to go, and robotics executes
the command in an automatic and safe manner. Waypoints
are located on landmark spots in the living environment;
they are selected manually at the front of the entrance door,
living room, bedroom, kitchen, in front of television, etc.
At each waypoint there is a list of possible actions, from
which the user chooses one to be executed. The user controls
the wheelchair and house equipments only by conducting
BMI at the waypoints. Our framework stands independently
with specific BMI tasks and in principle can be applied to
any task. In addition, to provide safe mobility to users, we
propose the use of a semi-autonomous robotic wheelchair
which communicates with the house installations achieving
smooth navigation. This is the first report that constructed
the brain-controlled robotic home.

The rest of the paper is organized as follows: Section II
presents the related works, Section III describes the system
overview, Section IV describes the field trials and reports
the experimental results, with discussion of the system
advantages and limitations. Finally Section V presents the
conclusions and future works.

II. RELATED WORKS
A. BMI

Blankertz et al. [1] examined nine subjects and reported
only three subjects achieved the peak information-transfer
rate of BMI above 35 bpm, above 23 bpm for two subjects,
and above 12 bpm for three, while one subject could not
control BMI. Noninvasive BMI has been used for the control
of electric devices including electric wheelchairs, mainly
using P300, motor imagery, and SSVEP (steady-state visual
evoked potential). They can be divided into two categories:
synchronous and asynchronous. In a synchronous scenario,
subjects only performs BMI at discrete timings, and thus
subjects are able to relax often. Aloise et al. [6] proposes
a synchronous P300-based approach, where a threshold
classification system for domotic appliances is described;
however, they did not performed experimentation in a real
home environment. Ituratte et al. [7] developed a BMI
navigation system with subgoals that are combinations of the
distance (close, mid, and far) and direction (left, ahead, and
right). Benefits from asynchronous approaches include that
subjects can determine the timing of BMI control, but they
have to concentrate continuously. Carlson and Millan [4],
[8] presents asynchronous motor-imagery BMI approaches
where a shared control architecture couples the user’s desires
with the precision of a powered wheelchair. Rebsamen et
al. [9] integrated a slow but reliable P300-based BMI to
select a destination amongst a list of predefined locations
with a wheelchair which can autonomously follow smooth
trajectories towards selected destinations in virtual environ-
ments, with a similar philosophy to our work. Mandel et
al. [10] used SSVEP with a continuous control design with
an extra monitor attached to the wheelchair.

In this work we use two-class motor imagery (left or right
hand) to select destinations of the wheelchair and to control
the electric appliances in our smart house, because it can be
naturally associated with the direction of movement, has rel-
atively solid justifiability from neuroscience background, and
does not require an extra monitor for destination selection.

B. Robotic Wheelchairs

Robotic wheelchairs provide users with mobility auton-
omy and safe navigation [11]. Autonomous wheelchairs
providing mobility services have been product of previous
research and implemented [12], [13], [14]. For example,
regarding navigation, [15] proposes a system which inte-
grates a multiple representation of the spatial knowledge
for navigation. Regarding BMI controlled wheelchairs, [5]
proposed a wheelchair controlled by BMI in which the
user can continuously give locomotion commands to the
wheelchair. The main difference of the wheelchair presented
in this work and previous works is the seamless interaction
with the user and the smart house. Through seamless com-
munication the wheelchair can report its pose and velocity
and the smart house can report its facility present state
(doors, windows, etc.). In this way, the wheelchair can switch
between a multiple map system to localize itself and the
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house can operate doors to allow the wheelchair navigation.
This design avoids the necessity to have additional hardware
to manipulate and handle the house installations. To increase
user comfortability, in the proposed system, the user on
the wheelchair does not need to concentrate and control it
continuously, he just need to take decisions in waypoints set
in the house to decide his destination.

C. Smart Houses

Domotics as a research field has been established as an
extension of ubiquitous computing [16] and contributes to
enhance research and development of in ambient intelligence
for smart environments [17]. There is research reporting
advances in smart rooms and homes [18], however, a home
system involving direct human control through a brain in-
terface combined with a robotic wheelchair has not been
reported. In addition to the common characteristics of a
smart environment, this work proposes the addition of user
mobility with a robotic wheelchair as an extension of the
ambient intelligence. The wheelchair communicates to the
house through a central server, as the house is equipped
with laser sensors, it can inform the wheelchair navigational
system if a certain path is free and clear to go through.

In this work we present a BMI system which fully controls
the smart house and the mobility in it in the shape of a robotic
wheelchair.

III. SYSTEM OVERVIEW
A. Brain Data Acquisition

One healthy male subject (23y; right-handed) participated
in a series of experiments to construct and test the waypoint
BMI system. EEG signals were recorded with a mobile EEG
amplifier (2.MOBIlab+ by g.tec medical engineering GmbH,
Austria) using 8 Ag/AgCl electrodes at FC3, FC4, C3, Cz,
C4, CP3, CP4, and Pz in the extended 10-20 system to cover
motor-related areas and sampled at 256 Hz.

To build a database for BMI classification, the subject
conducted the two-class motor imagery task in which one
of left/right-hand movements was imaged for 5 seconds
according to different visual cues (“<” for left and “>" for
right). Over 11 days, 71 runs with 30 trials of each motor
condition were recorded (71 x 30 x 2 = 4260 trials in total).

B. BMI Decoder

To estimate the subject’s intention, we constructed a BMI
decoder utilizing the database. Usually BMI decoders consist
of two steps: feature extraction and classification. We applied
a widely-used spatial filter called a common spatial pattern
(CSP) [19], [20] with appropriate regularization [21], and
employed the log power of the first two CSP components
in the alpha band (9-13 Hz) as the input feature. A CSP
component has large variances in one motor condition, while
its variance is small in the other case, which can enhance
pattern differences of rhythmic brain activities between the
two classes. As is known in neurophysiology literature,
we usually observe event-relate desynchronization (ERD) in
the motor areas contralateral to the imagined hands. The

obtained CSP filters have weights with opposite signs on
the bilateral motor areas in order to capture the contralateral
ERD in the alpha band.

Although linear classifiers such as linear discriminant
analysis (LDA) with appropriate regularization are com-
monly used to determine the imagined limbs [22], in our
implementation, we used k-nearest neighbor classifier with
k = 10 based on the tagged brain patterns stored in the
database. Our motivation behind the choice is that a data-
driven approach is more suitable for BMI. In the smart
house, more and more data are obtained and stored anyway
during daily usage of BMI and, in contrast to standard linear
classifiers, no re-training or online adaptation are necessary
to utilize the growing dataset.

C. Waypoints

Since our BMI decoder can only make a binary decision,
at each waypoint the system makes a branch for two actions.
At some waypoints two actions correspond to two moving
directions, and at other waypoints two actions are associated
with commands to appliances; for examples, at the waypoint
just after entering to the living room, the user can choose
the way to go from “in front of TV” or “the kitchen,” and at
the waypoint in front of TV, the action list consists of two
TV channels.

D. Smart House

To increase the reliability of daily life using a BMI-
based wheelchair, we use a smart house that monitors and
supports the wheelchair and the user living there. The smart
house installations are fully electrical powered and controlled
from the central server, and many kinds of sensors are
installed to understand behavior of people and provide safe
navigation of the wheelchair. Since BMI-based control is still
not very stable, the smart house server will stop or modify
the command from user when it will result in collision the
smart house system. Fig. 1 shows the overview of the smart
house.

1) Control System: The central server communicates with
peripheral devices and controls a relay system for the
manipulation of the electrical facilities. Fig. 2 shows the
block diagram of the smart house system. The wheelchair is
connected to the central server through a wireless connection.
Air-conditioners, televisions, water pots, doors, windows,
curtains, wheelchair lift, etc. can be electronically controlled
through socket connection. Output of a BMI decoder that
analyzes brain activities gives control commands to the
server. The field together with the wheelchair constitutes
a fully autonomous ubiquitous system. For example, in the
case of doors, when the central server sends a target waypoint
to the wheelchair, the server checks the status of the doors
on the way, opens the doors if closed, and closes the doors
as the wheelchair passes as the server receives notifications
from the wheelchair position. When the wheelchair (or the
user) comes to a waypoint, the central server invokes a BMI
and waits the decision. The server sends a command to a
device defined on the waypoint.
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Fig. 3. Sensing system in the smart house.

2) Sensing System: The sensing network system in the
smart house consists of depth sensors and laser range finders
(LRFs) (Fig. 3). Pairs of LRFs (Hokuyo URG-04LX) are
put on the wall at each location to track the positions
of moving target precisely and recognize types of moving
objects. Depth sensors (Microsoft Kinect) are installed on
the ceilings to understand various daily behaviors. Household
electrical appliances and doors are connected to the central
server and the server understands behavior of the people in
the house through their status.

The LRF system used in this work [23] tracks the positions
at intervals of 5 cm and a frequency of 10 Hz. The system
assigns a consistent ID to each moving object and performs
object recognition to detect the type of target (human or
wheelchair). Fig. 4 shows the LRF system track people in
the living room.

Fig. 4. People tracking using LRFs. The blue circle is the location of a
person, whose trajectory is the blue line, and the white arrow points toward
the moving direction of the person. Green, yellow, and red lines are the
observations from LRFs. A unique ID is assigned to each moving object.

Fig. 5.

Autonomous robotic wheelchair equipped with wheel encoders,
three laser sensors, and a depth RGB infrared camera.

E. Autonomous Robotic Wheelchair

The robotic wheelchair is equipped with wheel encoders,
three Hokuyo UTM-30LX laser sensors, and one ASUS
Xtion PRO sensor tilted down (Fig. 5). See Fig. 6 for
data flow. The laser sensors are used for map-building,
localization, and obstacle avoidance. The ASUS infrared
camera is used to detect obstacles at different heights.

1) Map Building and Handling: House maps were built
from laser scans and odometry data from the robot man-
ually driving through the environment by using SLAM
(simultaneous localization and mapping) framework [24]. We
built several grid maps with a cell resolution of 5 cm in
pgm format representing the different states of the house.
According to the information provided by the central server,
maps are switched and used for robot localization. Fig. 7
shows the grid map, where the robot can traverse on white
areas, black areas represent solid objects, red lines represent
the doors, and the blue square the wheelchair lift.

2) Localization: We used a particle filter with 200 parti-
cles for wheelchair localization towards the grid map. Each
particle contains a pose given by state vector & = {x,y, 0},
with positions = and y and orientation 6 of the robot. We
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Fig. 7. Grid map of the smart living environment. Doors are represented
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used the ray tracing approach likelihood model in [25] to
compute the particle weights and the vehicle pose is given
by the average weight of the particles.

3) Autonomous Navigation: For autonomous navigation,
we pre-defined points in which the wheelchair can freely
navigate such as entrance, living room, kitchen, bedroom.
The person on the wheelchair through the BMI decides the
goal location, the smart house opens and closes the doors
to clear the path and the wheelchair moves towards the goal
location. Autonomous navigation reduces stress and load of
the user of having to control the wheelchair continuously
with BMI. In the case of obstacles, the wheelchair would
try to avoid them using a variant of the dynamic window
approach [26], in the case there is no free space to pass it
would stop and call an operator.

IV. EXPERIMENTAL RESULTS AND
DISCUSSION OF SYSTEM LIMITATIONS

This section presents the experimental results of the
wheelchair autonomously navigating in the smart living
environment. Fig. 8 presents the localization results of the
wheelchair after autonomous navigation runs. First, the tra-
jectories in light blue present the results of seven different
runs of the wheelchair starting outside the main entrance (1),
entering through the main door (2) (Fig. 9(a)), changing level
through the elevator (3) (Fig. 9(b)) and entering the living
room (4) (Fig. 9(c)). The trajectories in dark blue show seven
different routes of the wheelchair navigating inside the living
environment, between the kitchen (5) (Fig. 9(e)) and the
bedroom (6) in both ways. Fig. 9 shows a series of images

T T

GridMap ®
Inside the living environment = = ~

Entering the living environment

Elevator

(1)
Entrance |
i Corridor

Fig. 8. Trajectories of the wheelchair during autonomous navigation. The
grid map is shown in black, objects not visible at the height of the laser
(table and sofa) are shown in dotted lines.

of the BMI user using the wheelchair.

We performed an open demonstration of the whole oper-
ating system on November 1st, 2012, where the success ratio
of the BMI decoding in the live demo was 11/12 = 91.7%.
From the current state of the EEG-BMI technology, this
accuracy is an excellent performance. However, once among
the 12 trials, the subject went to the kitchen, although he
wanted to move to the bedroom, which should not occur
in daily life usage. Since it is impossible to achieve 100%
precision by BMI, a practical solution would be introducing
a mechanism to stop in the middle to the selected goal and
retry BMI there.

EEG signals show non-stationary changes and session-to-
session variabilities by many reasons: impedance changes,
concentration levels, learning effect, fatigue and so on. The
subject’s performance can drop to about 70% on some days
when he cannot concentrate to generate discriminative brain
activities. This is still one of the unsolved important topics
in BMI. We need to understand backgrounds of such non-
stationarity and to develop robust machine learning tech-
niques against it.

Our BMI decoder based on 10-nearest neighbors search
from the database achieved 78.1% accuracy by offline cross-
validation analysis with a part of the acquired data, while a
linear classification technique (SLR; sparse logistic regres-
sion), predicted 79.8% of test trials correctly on average. It is
known that with an appropriate input feature, usually simple
linear classifiers work best for motor imagery tasks. Thus,
in this problem, the more flexible data-driven decoder was
not better than the state-of-the-art methods in classification
performance, in particular, with the current middle-sized
database.

V. CONCLUSIONS AND FUTURE WORKS

We implemented a waypoint BMI system for controlling
wheelchair and electric appliances in a smart house to assist
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(a) Entering the vestibule through the (b) Getting on the lift towards the
front door. living room level.

(c) Branch point between going to-
wards the television or the kitchen.

(e) Going towards the kitchen.

(f) Turning on the kitchen.

Fig. 9. Experimentation in the living environment.

daily-life activities of its users. It was demonstrated online
by a subject who achieved an excellent performance. Further
works should be done to ensure reasonable performance
everyday dispute of day-to-day variability of EEG signals
and to make the waypoint BMI system more flexible, e.g.,
including a mechanism for correcting previous commands
and retrying BMI in the middle of trajectories towards wrong
destinations.

ACKNOWLEDGMENT

We thank T. Condon, T. Ochi, and H. Moriyama for
software development, J. Abdur-Rahim, S. Morimoto, and
Y. Shikauchi for experimental and K. Fujii and Y. Ishiyama
for network assistance. Some facilities were installed by
Sekisui House, Ltd. EEG device was provided by Shimadzu
Corporation.

REFERENCES

[1] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Miiller, and G. Curio,
“The non-invasive Berlin brain-computer interface: fast acquisition of
effective performance in untrained subjects,” Neurolmage, 2007.

[2] J. L. Ryan, “Home automation,” Electron. Commun. Eng. J., vol. 1,
no. 4, pp. 185-192, 1989.

[3] C. Reinisch, M. J. Kofler, and W. Kastner, “Thinkhome: A smart
home as digital ecosystem,” in IEEE Int. Conf. Digital Ecosystems
and Technologies (DEST), 2010, pp. 256-261.

[4] T. E. Carlson and J. d. R. Millan, “Brain-actuated wheelchairs: A
robotic architecture,” IEEE Robot. Autom. Mag., vol. 20, no. 1, pp.
65-73, 2013.

870

[51

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

F. Galan, M. Nuttin, E. Lew, P. W. Ferrez, G. Vanacker, J. Philips, and
J. d. R. Millén, “A brain-actuated wheelchair: Asynchronous and non-
invasive brain-computer interfaces for continuous control of robots,”
Clin. Neurophysiol., vol. 119, no. 9, pp. 2159-2169, 2008.

F. Aloise, F. Schettini, P. Aricé, F. Leotta, S. Salinari, D. Mattia,
F. Babiloni, and F. Cincotti, “Toward domotic appliances control
through a self-paced P300-based BCL” in Int. Conf. Bio-Inspired
Systems and Signal Processing (BIOSIGNALS), 2011, pp. 239-244.
L. Iturrate, J. Antelis, A. Kubler, and J. Minguez, “A noninvasive brain-
actuated wheelchair based on a P300 neurophysiological protocol and
automated navigation,” IEEE Trans. Robot., vol. 25, 2009.

J. d. R. Millan, F. Galan, D. Vanhooydonck, E. Lew, J. Philips,
and M. Nuttin, “Asynchronous non-invasive brain-actuated control of
an intelligent wheelchair,” in Annu. Int. Conf. IEEE Engineering in
Medicine and Biology Society (EMBS), 2009, pp. 3361-4336.

B. Rebsamen, C. Guan, H. Zhang, C. Wang, C. Teo, M. H. Ang,
and E. Burdet, “A brain controlled wheelchair to navigate in familiar
environments,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 6,
pp. 590-598, 2010.

C. Mandel, T. Liith, T. Laue, T. Rofer, A. Griser, and B. Kreig-
Briickner, “Navigating a smart wheelchair with a brain-computer in-
terface interpreting steady-state visual evoked potentials,” in IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS), 2009.

E. Wistlund, K. Sponseller, and O. Pettersson, “What you see is
where you go: testing a gaze-driven power wheelchair for individuals
with severe multiple disabilities,” in Symp. Eye-Tracking Research &
Applications (ETRA), 2010, pp. 133-136.

E. Prassler, D. Bank, and B. Kluge, “Key technologies in robot
assistants: Motion coordination between a human and a mobile robot,”
Trans. Control Autom. Syst. Eng., vol. 4, pp. 56-61, 2002.

Y. Kobayashi, Y. Kinpara, T. Shibusawa, and Y. Kuno, “Robotic
wheelchair based on observations of people using integrated sensors,”
in IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), 2009.
A. A. Argyros, P. Georgiadis, P. Trahanias, and D. P. Tsakiris, “Semi-
autonomous navigation of a robotic wheelchair,” J. Intell. Robot. Syst.,
vol. 34, 2001.

P. Beeson, M. MacMahon, J. Modayil, A. Murarka, B. Kuipers,
and B. Stankiewicz, “Integrating multiple representations of spatial
knowledge for mapping, navigation, and communication,” in AAA/
Spring Symp. Interaction Challenges for Intelligent Assistants, 2007.
E. Aarts and B. de Ruyter, “New research perspectives on ambient
intelligence,” J. Ambient Intell. Smart Environ., vol. 1, pp. 5-14, 2009.
D. J. Cook, “Multi-agent smart environments,” J. Ambient Intell. Smart
Environ., vol. 1, pp. 51-55, 2009.

C. D. Kidd, R. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa, B. Macln-
tyre, E. D. Mynatt, T. Starner, and W. Newstetter, “The aware home: A
living laboratory for ubiquitous computing research,” in Int. Workshop
Cooperative Buildings, Integrating Information, Organization, and
Architecture (CoBuild), 1999, pp. 191-198.

K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed.
Academic Press, 1990.

Z. Koles and A. Soong, “EEG source localization: Implementing the
spatio-temporal decomposition approach,” Electroencephalogr. Clin.
Neurophysiol., vol. 107, pp. 343-352, 1998.

F. Lotte and C. Guan, “Regularizing comon spatial patterns to im-
prove BCI designs: Unified theory and new algorithms,” IEEE Trans.
Biomed. Eng., vol. 58, pp. 355-362, 2010.

F. Lotte, M. Congedo, A. L Secuyer, F. Lamarche, and B. Arnaldi,
“A review of classification algorithms for EEG-based brain-computer
interfaces,” J. Neural Eng., vol. 4, 2007.

D. F. Glas, T. Miyasita, H. Ishiguro, and N. Hagita, “Laser-based
tracking of human position and orientation using parametric shape
modeling,” Adv. Robot., vol. 23, pp. 405-428, 2009.

G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with Rao-Blackwellized particle filters,” IEEE Trans.
Robot., vol. 23, no. 1, pp. 3446, 2007.

D. Fox, W. Burgard, S. Thrun, and A. B. Cremers, “Position estimation
for mobile robots in dynamic environments,” in Nat. Conf. Artificial
Intelligence (AAAI), 1998.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
tocollision avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp.
23-33, 1997.



