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Abstract—Tracking multiple moving targets in video is still a
challenge because of mutual occlusion problem. This paper
presents a Gaussian mixture probability hypothesis
density-based visual tracking system with game theory-based
mutual occlusion handling. First, a two-step occlusion reasoning
algorithm is proposed to determine the occlusion region. Then,
the spatial constraint-based appearance model with other
interacting targets’ interferences is modeled. Finally, an
n-person, non-zero-sum, non-cooperative game is constructed to
handle the mutual occlusion problem. The individual
measurements within the occlusion region are regarded as the
players in the constructed game competing for the maximum
utilities by using the certain strategies. The Nash Equilibrium of
the game is the optimal estimation of the locations of the players
within the occlusion region. Experiments conducted on publicly
available videos demonstrate the good performance of the
proposed occlusion handling algorithm.

I. INTRODUCTION

Tracking multiple moving targets in video is crucial in
intelligent video surveillance system. It is helpful to activity
analysis or high-level event understanding. However, the
mutual occlusion problem makes it a challenge.

Recently, Gaussian mixture probability hypothesis density
(GM-PHD) filter [1-3] to multi-target tracking in video has
received considerable attention. Compared with the
traditional association-based techniques, the difficulty caused
by data association is avoided in the GM-PHD filter.
However, the standard GM-PHD filter-based tracking system
fails in tracking the individual targets when the mutual
occlusion occurs among them. This paper focuses on
proposing an effective algorithm to handle this problem.

Extensive methods [4-9] have been presented to solve the
mutual occlusion problem. Though, the problem of tracking
multiple interacting targets in mutual occlusion is still far
from being completely solved and remains a challenge. For
example, Xing et al. [5] build a dedicated observation model
that maintains three discriminative cues including appearance,
size and motion. The target appearance is modeled as the
color histogram in HSV color space in discriminative region
of the target. The mutual occlusion problem is then handled
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by a two-way Bayesian inference method. Vezzani et al. [6]
generate two different images to represent the target model:
the appearance image and a probability mask. The appearance
image contains the RGB color of each point of the target and
the corresponding probability mask reports their reliability.
However, the appearance models proposed above cannot
handle the situation when interacting targets have similar
color distributions. To remedy this, Papadourakis and
Argyros [7] model the target by using an ellipse and a
Gaussian mixture model (GMM). The ellipse accounts for the
position and spatial distribution of an object and a GMM
represents its color distribution. The occlusion handling
method proposed is based on both the spatial and the
appearance components on a target’s model. Similarly, Hu et
al. [8] model the human body as a vertical ellipse and use the
spatial-color mixture of Gaussian appearance model to model
the spatial layout of the colors in a person. The occlusion is
deduced using the current states of the interacting targets and
handled using the proposed appearance model. However, the
aforementioned appearance models do not consider the
mutual interferences between the interacting targets, which
may affect the tracking precision as mutual occlusion occurs.
To remedy this, a robust appearance model that considers
both the spatial constraint of the target and the interferences
of the other interacting targets is proposed. Follow it, an
effective mutual occlusion handling algorithm based on the
game theory is proposed.

Game theory is the study of multi-person decision making,
which was first proposed by Nash [10]. He stated that in
non-cooperative games there exist sets of optimal strategies
(so called Nash equilibrium) used by the players in a game
such that no player can benefit by unilaterally changing his or
her strategy if the strategies of the other players remain
unchanged. Game theory has been applied to disciplines
ranging from economics to engineering [11]. However, to the
best of our knowledge, there are a few applications in visual
tracking [4, 12] and fewer in mutual occlusion handling [4]
based on the game theory. In this paper, we develop a
GM-PHD filter-based system with game theory-based mutual
occlusion handling to track multiple moving targets in video,
especially to track the interacting targets in mutual occlusion.

The remainder of this paper is organized as follows. Section
II presents basic knowledge on the GM-PHD filter. Section III
first introduces the occlusion reasoning algorithm, and then
describes the game theory-based mutual occlusion handling
algorithm. Some experimental results on publicly available
videos are discussed in Section IV, and followed by
concluding remarks in Section V.
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II. GM-PHD FILTER

The kinematic state of a target { at time f is denoted as

J A i _ g7 i i 4
xi={visiy o L =000 . vi=0,v,) and
st ={wl,h} are the location, velocity and bounding box
size of the target, respectively. i=L...,N, and N, is the
number of targets at time /. Similarly, the measurement
model of a target j at time / is denoted as z/ ={l/,,8/,}.
J=L.,N,, and N, is the number of measurements at
time /. The target states set and the measurements set are

N,
denoted as X, ={x;,...X)"} and Z ={z,...7,"} |
respectively. The measurements are obtained by object
detection. Any object detection method can be incorporated
into our system. Because the contribution of this paper mainly
focuses on handling the mutual occlusion problem, a simple
background subtraction algorithm proposed in [13] is used to
obtain the measurements.

This paper develops a visual tracking system based on the
GM-PHD filter. In our visual tracking scenario, we assume
that all targets consist of survival targets and newborn targets.
According to [14], the GM-PHD filter for visual tracking is
implemented by:

Prediction: Suppose the prior density [)_(X,_;) has the
form:  Dyy(% ) =55 f ING_;m{, BY) . then the
predicted intensity Dt‘H (X,) is given by:

Dy (%) =35+ o i ef NGl P, (1)
where N(;mP) denotes a Gaussian component with the
mean M and the covariance P. J,_ and a)t(ll) are the number
and weight of the Gaussian component, respectively. X, is the
element of X, . 7,(X,)is the birth intensity of the newborn

targets, which is determined by using the method proposed in
[13]. p,, is the survival probability of the survival targets.

Update: Dt‘H(Xt) can be expressed as a Gaussian

mixture: Dt‘t_l(xt)zz-]itfl af? N(Xt;mf) PD ), then the

-1 f=1° "1
posterior intensity 1)(X,) is given by:
D(x,) :(l_pd)D;‘[A(Xt)"'ZthDg,z(xz;zz) (2)

Dy (%:2) =51 cf U (z)Nx: (2, P)(z,)) (3
Pacd) N(z,;mi)) P)

-1
, — (4)
A+ pa s of) Nz smf) B

where p; is the detection probability and Z, is the element of

afgi,)l(’?azl):

Z,. / is the average rate of the Poisson distributed clutters.
¢,(z,)is the probability density of the spatial distribution of
-1 :Emg?l , PO =Q, +Ft]?t<i)1ET > m(gi,)t(zt):
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Fig. 1. Illustration of occlusion prediction and determination. {a) Occlusion
prediction. (b) No occlusion. {¢) Occlusion occurs and occlusion region is
determined.
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E and H, are the transition and the measurement matrices,
respectively. Q, and R, are the covariance matrices of the
process noises and the measurement noises, respectively.

It can be shown the number of components of the predicted
and posterior intensities increases with time. This can be a
problem in implementation. Therefore, we use the pruning
and merging algorithms proposed in [14] to prune those
components that are irrelevant to the target intensity and to
merge those components that share the same intensity peak
into one component. The peaks of the intensity are points of
the highest local concentration of the expected number N, of

targets. The estimate of the multi-target states is the set of N,

ordered of the mean with the largest weights.

The standard GM-PHD filter-based visual tracking system
fails in tracking individual targets when mutual occlusion
occurs. To remedy this, an effective algorithm based on the
game theory is proposed.

III. GAME THEORY-BASED MUTUAL OCCLUSION HANDLING

A. Occlusion Reasoning

A simple occlusion reasoning algorithm that includes
occlusion prediction and determination is proposed.
1) Occlusion prediction: In Fig. 1(a), C (or Cj) is a

J
sz\z—l H )-

li\z—l and si\z—l are the location and size of the predicted

circle at center li\z—l (or lﬁ .y ) with radius HS;‘HH (or

target state Xﬁ‘t—l , respectively. ||.|| is the Euclidean norm

(hereinafter the same). The candidate occlusion region is
predicted only when C;NC; #O (i# j). That s,

<

i
Sz\z—l H +

U V) J
lt\t—l lz\z—l Sz\z—lH )

Otherwise, no occlusion occurs.

2) Occlusion determination: Two situations are possible
in the candidate occlusion region: no occlusion and occlusion
(shown in Fig. 1(b) and 1(c), respectively). According to the
fact that overlapping between the occlusion targets always
increases gradually, the size of the first detected merged
measurement is always larger than the size of the
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corresponding single target. Therefore, if a measurement

n

z; ={[,,s7,} ( n=L..,N,, ) within the candidate

occlusion region satisfies Eq. (6), this measurement is
regarded as an occlusion region.

n
sz,t

;\t—l > s{tlH} ©)
where & is a scale factor. The size of the detected target may
slightly be changed between consecutive frames because of
the changes in the target’s pose or because of the depth of
view. Compared with the size of the target before occlusion,
the size of the target after occlusion is largely changed
because it is merged with other targets. Consequently, & is set

to 1.2 to determine the occlusion region correctly.

> g

B. Game Theory-Based Mutual Occlusion Handling

As mutual occlusion occurs, the measurement Z; is
determined by the occlusion reasoning. Once it is determined,
the identities and number N, of the targets involved in this

occlusion region are determined. To track them, we firstly
model the appearances of the corresponding targets obtained
at time f—1 . We then propose an effective game
theory-based algorithm to determine the locations of the
targets in the occlusion region.

1) Target appearance modeling

The appearance of a target [ is modeled as a GMM

qi zqi(ai,, ,Ll,i(,Z}.c) , representing the color distribution of
target pixels. k=L..,K and (af,z4,%%) represents the

weight, mean and covariance matrix of the kth Gaussian
component of the mixture. K is the number of Gaussian

components. The measure of the similarity B(p',q')
between the candidate pi (for a target [ after occlusion) and
the model ql (for a target i before occlusion) is defined as
the probability that pi ’s colors are drawn from q’ [9]:
P r-eol s E el s} o
i & k=1
where ¢; =(%:,&,1; ) is the color of the pixel located in I

within the support region € of target 7. N, is the number

of foreground pixels in € . g, =G (R, +G; +B;) ,
I/ii :Rll /(Rll +Gll +Bll) and Ill = (Rll +(;ll +Bll)/3

However, the aforementioned appearance model may fail
when targets have similar color distributions. For such case, a
Gaussian spatial constraint is applied according to [15]. Aside
from similar color distributions, interferences by other
interacting targets p’ within the occlusion region are also
need to be considered. To take the above points into account,
the measure of the similarity is then improved as:

R/ .4 |p)=

em{%%log(zvai).q% %glog(zvaim)} ®

o

Bl Merged foreground E*

L ! Occlusion region

Fig. 2. A schematic diagram of mutual occlusion handling.

K . - N K . <
where ] :kzla)/’cN(ﬁi;ﬂllm k)a 62 = zlkzla)/‘{N(Cll"Lt]é 72]() >
= Jj=lk=
NI =NI3ET), ¥ =0 - NQ;, Py =N and
5 =[] /2),0,0,(% /2)°].
In Fig. 2, given the merged foreground K" and the
predicted target states {x;\z—l }IJZ"; (N} =3 in Fig. 2), the goal

is to obtain the optimal individual measurement of each target
within the occlusion region. In other words, the optimal

solution (Z}*,...,vaz*) is obtained by maximizing the

similarity probability between the (z.,.. .,Ziv‘? ) and the F".

7', ) =agnax P,...7," [B) =argmex Pz, 7;" [F")
Zy% Zy%
=argmax Pz, |F', 2, )P(z;" |F) ©)
%

where 7" ={z/ }?El =i - To obtain the optimal solution of Eq.

(9), a game theory-based mutual occlusion handling
algorithm is proposed to bridge the joint measurements
estimation and the Nash equilibrium of a game.

2) Game theory-based mutual occlusion handling

In game theory [10], a non-cooperative game is one in
which players make decisions independently. As mutual
occlusion occurs, the individual measurements involved in
the occlusion region compete to independently maximize the
similarity probability between the measurements and the
foreground. Therefore, it is reasonable to construct a
non-cooperative game to bridge the joint measurements
estimation and the Nash equilibrium. In this paper, we
construct an 7-person, non-zero-sum, non-cooperative game
and assume that the target’s size keeps the constant during the

occlusion. The estimation of measurements (z.,..,z"% ) is
simplified as the estimation of the locations (ILJ,. . .,l?{g) of
the measurements. The player, strategy and utility are defined
as follows: 1) Player: The individual measurement Zi

originating from the target { within the occlusion region; 2)
Strategy: Motion of the player, i.e. the location
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I, = {li,z ,l;,t} € Rz of the player. 3)
T 4 i i - RA
U (llzl ’lZ,lt) =Hz ‘En Z;' )Rz ) lzlz {léz ¥ 2,

To find a Nash equilibrium of the game, the best-response

should be defined first.
Definition I [11]: The best-response of a player ito the

Utility:

strategies lZ + 18 the strategy for that player such that:

U’ﬂz,t, z,’t)ZU’ﬂzt, . VIzteR (10)
Definition 2 [111: (IL,....12¢")is a Nash equilibrium for
the game with utility {{' (li,tal;,it)}i:b_’]vg , if every player’s
strategy is a best-response to the other players’ strategies:
Ul(llz*t, ;’:) >U(I t,l;i:) , for every player I (11)
Given lz,, , the goal is to determine the best-response of

the player 7. That is:
mex U (I, I7) ocmax Pz} ‘F” zZ

*

(12)

Maximizing the A(Z [,z )is equal to maximizing the

measure of similarity P.(/,q' l’Zt, we set
é,t to zero.
i o]
zl’ NI A U e (13)

2 ¥, O)
where N ;18 the number of foreground pixels in the support

region ‘F. lZ + 18 caleulated by Eq. (13) and regarded as the

best-response lz,tofthe player i:

r, [21’ +3 .1’} [N;+ZEJ (14)
b4l ¥, O3 ¥, O3

The location liZt of the player 7 is initialized by the

corresponding predicted target’s location I Given the

-1 -
initialized locations th , the best-response lz,t of the player

i can be calculated by Eq. (14). 17, is iteratively updated

until the process reaches an equilibrium. The equilibrium is
obtained when the maximum component of the difference
vector Al satisfies Eq. (15). Al is the difference of the
best-response sets between consecutive iteration cycles.
max(A) < T
R Vi B A
where Al = Z,t0° vlz,? }iteralion J T ¥z 3lzt }zteralion Jj-1

LI

(15)

Zl, Viterasion 0 18 the initialized locations set. Thg is

the given threshold. The smaller 75z is, the more iteration
time needed, while the more precise results obtained. In our
experiments, we set 7pp =1 pixel to achieve a trade-off
between the efficiency and the precision. When the iteration
terminates at iteration cycle j, the final best response set

*
Z foe an Viteration ; 1 determined as the Nash equilibrium

of the game. This Nash equilibrium is regarded as the optimal
locations of the measurements. The measurements

ZNo* : I* N, *
@",...2°") with the L5128 Yioaion ; are  then

incorporated into the GM-PHD filter to update the states of
the targets within the occlusion region.

IV. EXPERIMENTS AND DISCUSSIONS

In the experiments, the state transition model is a constant

velocity model with: E =[I,,71,,0,; 0,,1,,0,;0,,0,,1,],
Q 203[7—‘412/4>T312/2702;T312/27 T212,02;02,02,T212],
where 0, and I are the nxnzero and identity matrices.

T'=1 frame, is the interval between two consecutive time
steps. oy, =3is the standard deviation of the state noise. The

measurements follow the measurement likelihood with:

I—I,‘ :[[27%7%;%7%712]5 Ri‘ 20314, where Oy =2 isthe

standard deviation of the measurement noise. The values of
the parameters used in the GM-PHD filter are: p;=0.99,
P =0.95, 4=0.01 and c,(z,)=(image area)™.

The proposed system is evaluated on the following
publicly available videos: 415 frames from the ‘ViSOR’ ' 951

frames from the ‘PETS2006’2, 922 frames from the
‘CAVIAR”, and 795 frames from the ‘PETS2009°*,

A. Qualitative Analysis

We compare our improved tracking system (ITS) with the
standard GM-PHD filter-based tracking system (STS).

In Fig. 3 (for ‘ViSOR’), two targets with similar color
distributions are involved. The numbers involved in the
figure are the targets’ identities (IDs), which are managed
using the algorithm proposed in [14]. Without occlusion
handling, the STS fails in tracking the target 1 while tracks the
merged measurement as the other target 2 from t=166. As
targets split, target 1 is re-tracked as a newborn target 3 from
t=245. On the contrary, the /7S can succeed in tracking them
during the whole occlusion period even when they are in total
occlusion (shown as t=191 in Fig. 3).

In Fig. 4 (for ‘PETS2006°), targets frequently merge and
split. The STS loses the targets (shown as t=508 and t=777 in
Fig. 4) as mutual occlusion occurs (targets merge), and then
re-tracks the merged measurement as a newborn target
(shown as t=778 in Fig. 4). Similarly, as they split, they are
tracked as the newborn targets. On the contrary, the I7S
performs robustly no matter that targets merge or split. In
particular, the /7S can handle the situation when three targets
with similar color distributions merge together (shown as
t=777 and t=778 in Fig. 4).

Similarly in Fig. 5 (for ‘CAVIAR’) and Fig. 6 (for
‘PETS2009°), the STS fails in tracking the targets as mutual
occlusion occurs, while the /7S can successfully track the

1Availa‘ble: http://imagelab.ing. unimore.it/visor/video _categories.asp
Available: http://www.cvg.rdg.ac.uk/PETS2006/data.html
*Available: http://homepages.inf.ed.ac.uk/rbf/  CAVIARDATAL1/.

*Available: http://’www.cvg.rdg.ac.uk/PETS2009/a.html
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Fig. 3. Tracking results of the “ViSOR’. First row: detection results.
Second row: tracking with the STS. Third row: tracking with the ITS.

=508 =777

b h ,
Fig. 4. Tracking results of the ‘PETS2006’. First row: detection results.
Second row: tracking with the STS. Third row: tracking with the ITS.

TABLEI
TRACKING PERFORMANCE COMPARISON BETWEEN THE /TS AND THE STS

t=333

=455

Fig. 5. Tracking results of the ‘CAVIAR’. First row: detection results.

Second row: tracking with the STS. Third row: tracking with the ITS.

t=507

Fig. 6. Tracking results of the ‘PETS2009’. First row: detection results.
Second row: tracking with the STS. Third row: tracking with the I7S.

TABLEII
TRACKING PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART

MOTP MOTA FPR MR MMR
Dataset  System ) (%) (%) (%) (%) TRACKING SYSTEMS ON THE DATA SET ‘PETS2006°
ITS 8546  99.36 013 038 0.13 Joo and Torabiand  Zuvikifley
ViSOR System Our ITS Chellappa Bilod 13 and Moran
STS 6792  89.53 013 1008 026 [17] ilodeau [18] [19]
ITS 62.92 86.16 6.43 7.12 0.29 MOTP (%) 62.92 49.8 56.87 58.16
PETS2006
STS 42.86 34.4 49.21 14.65 1.74 MOTA (%) 86.16 92.21 96.56 98.75
ITS 80.64 78.65 19.56 0.96 0.83 .
CAVIAR STS 6578 3393 5273 1013 321 CLEAR MOT metrics.
’ ’ ’ ’ ’ Comparison with the STS: As mutual occlusion occurs,
pETS2000 I the STS may lose the targets or track the merged measurement
STS 4976 46.17 023 1994 6.12 as one target. This results in a large MR (shown as in Table I).

targets in occlusion. Particularly, as several occlusions
simultaneously occur in different targets groups (shown as
t=723 and t=728 in Fig. 6), the ITS still can robustly track the
targets in each occlusion region.

B. Quantitative Analysis

The CLEAR MOT metrics [16] are used to evaluate the
occlusion tracking performance. The metrics return a
multi-object tracking precision (MOTP) score and a
multi-object tracking accuracy (MOTA) score. The MOTA is
composed of the miss rate (MR), the false positive rate (FPR),
and the mismatch rate (MMR). We compare the ITS with the
STS and the state-of-the-art tracking systems according to the

On the contrary, the I7S can robustly handle the mutual
occlusion problem. The results in Table I show that the ITS
outperforms the ST both in MOTP and MOTA.
Comparison with the state-of-the-art tracking systems:
We also compare the I7S with the state-of-the-art results
reported in [17-19] for the data set ‘PETS2006’ (shown as in
Table II), and in [20-22] for the data set ‘PETS2009° (shown
as in Table III). The results in Table II show that the ITS
achieves a better MOTP score while gets a lower MOTA
score. The results in Table III show that the ITS outperforms
the results reported by Breitenstein et al. [21] and Yang et al.
[22] both in precision and accuracy. When compared with the
results reported by Andriyenko et al. [20], the ITS achieves a
better MOTP score while gets a lower MOTA score. The
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TABLE III
TRACKING PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART
TRACKING SYSTEMS ON THE DATA SET ‘PETS2009’

Andriyenko Breitenstein Yang et al.
System — OurlIS "o 41 20] etal. [21] [22]
MOTP (%) 58.47 56.4 56.3 53.8
MOTA (%) 87.21 89.3 79.7 75.9

reason for a lower MOTA score is that we only use a simple
background subtraction method for object detection. This
may generate a large amount of noises due to the variable
environment, and finally many false positives. This could be
improved by using a more robust object detection method.

C. Discussions

Although aforementioned experiments have validated the
effectiveness of the proposed occlusion handling algorithm,
some other issues need to be discussed furthermore.

1) Tracking newborn group targets: As targets firstly
enter into the scene in group (e.g. target 23 at t=1122 in Fig. 4
and target 29 at t=507 in Fig. 6), the occlusion handling
algorithm cannot be invoked. In such cases, the targets are
tracked as one newborn group target. To solve this problem,
some more effective object detection methods should be
incorporated to accurately detect the targets as they firstly
appear in the scene.

2) Processing speed: The proposed tracking system is
implemented in Matlab using a computer with Inter Core 2
Duo 2.20 GHz and 2 GB of memory. Without any code
optimization the average runtimes for the above four data sets
are about 0.4~1.2 frames per second. More than 95% of the
runtimes are consumed in searching the Nash equilibrium of
the game, because it is a pixel-wise iteration process. To
remedy this, employing a more efficient appearance model
will be helpful and will be explored in our future works.

V. CONCLUSION

We have developed a GM-PHD filter-based multi-target
visual tracking system with the game theory-based mutual
occlusion handling algorithm. We proposed a simple
occlusion reasoning algorithm to correctly determine the
occlusion region. We proposed a robust game theory-based
mutual occlusion handling algorithm based on the proposed
target appearance model to deal with the mutual occlusion
problem. The proposed appearance model improved the
conventional color histogram-based appearance model with
the spatial constraint and other interacting targets’
interferences, which was more robust as the targets in
occlusion had similar appearances. We constructed an
n-person, non-zero-sum, non-cooperative game and selected
the Nash equilibrium of the game as the optimal estimation of
the locations of the players within the occlusion region.
Experiments conducted on publicly available videos showed
that the proposed tracking system achieved promising results
in handling mutual occlusions.
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