
HiDDeN: Cooperative Plan Execution and Repair
for Heterogeneous Robots in Dynamic Environments

Thibault Gateau
ISAE / CAS

31055 Toulouse, France
Thibault.Gateau@isae.fr

Charles Lesire
ONERA- The French

Aerospace Lab
31055 Toulouse, France

Charles.Lesire@onera.fr

Magali Barbier
ONERA- The French

Aerospace Lab
31055 Toulouse, France

Magali.Barbier@onera.fr

Abstract— This paper presents HiDDeN, a high-level dis-
tributed architecture for multi-robot cooperation. HiDDeN aims
at controlling a team of heterogeneous robots in environments
with uncertain communications. It relies on a mission plan de-
fined as an instantiated HTN, i.e. a hierarchical decomposition
of robots’ tasks. This hierarchical structure also benefits to
plan repair operations in case of failure detections. This repair
is made as local as possible, in order to avoid unnecessary
communications between robots.

I. INTRODUCTION

Robots have already reached a high level of autonomy in
term of decision making. Most of the time, this autonomy
relies on a well-defined embedded software architecture [1],
[2], [3], [4], [5], [6]. Most of these architectures are currently
in use for complex real-world situations where autonomous
robots must manage the execution of their own tasks.

The complexity of missions increases with the develop-
ment of robots and of their abilities. The progress of the
work in this field has led researchers wonder for many
years to what extent autonomous heterogeneous robots with
complementary functions would be able to cooperate as a
team. We can already assume that robots, and therefore the
team, will be deployed incrementally, due to the cost and the
time required for setting up such technologies. For instance,
in spatial exploration, robots (rovers, satellites, etc.) are
deployed one after the other, and missions can last a couple
of decades. Robots will then be intrinsically heterogeneous,
as they will be developed gradually, and probably by different
manufacturers. Hence, their embedded architecture may be
different. Therefore, it would be worthwhile to reuse all the
robots’ skills, often developed in a mono-robot concern, to
allow a team of robots to achieve a specific mission cooper-
atively, without re-designing all their control architecture.

Even assuming that this interoperability issue is solved, the
dynamic aspect of the environment remains a key problem
for a team of robots. The initial plan can take into account
some constraints but not all the uncertainties on actions’
achievements and environment changes. When executing the
mission in a real context, failures will occur in the plan, as
the robots will have to face real unexpected events. At the
decision level, for failures concerning more than one robot,
a plan repair procedure has to be defined from the point of
view of the team.

In this paper, we propose a distributed multi-robot archi-
tecture for team cooperation that deals with two major issues:
• cooperation between heterogeneous robots while retain-

ing their own embedded control architecture;
• minimal communication needs by:

– distributing cleverly the mission plan to each robot;
– applying a distributed plan repair strategy.

This paper first presents some of the existing multi-robot
architectures, focusing on how they handle communications.
Afterwards, we describe our HiDDeN architecture. We fi-
nally present a successful experiment campaign.

II. STATE OF THE ART

The BErkeley AeRobot (BEAR) project1 studies multi-
agent probabilistic pursuit-evasion games with heterogeneous
robots. They developed a distributed, hybrid and hierarchical
architecture system in order to manage partial knowledge
of states among the team [7]. They take into account a
dynamic environment, heterogeneous agents, fault on robots,
and sensor imperfections. Contrary to the sense-plan-act
architectures, robot’s dynamics is taken into account at
a higher level of the decision process, and they take a
particular care to limit communications to the minimal needs.
However, in spite of the modular aspect of this architecture,
connections between modules are still numerous, which leads
to a complex adaptation process to re-use existing mono-
agent architectures.

The ALLIANCE architecture [8] is a behavior-based ap-
proach to cooperation and allows the robot team members
to respond robustly, reliably, flexibly and coherently to un-
expected environmental changes. They demonstrate success-
fully the feasibility of their architecture in an implementation
example. In our work, we lean upon some of their ideas, even
if we are not working with motivational behavior. In the same
way, Chaimowicz [9] proposes an architecture system for
tightly coupled multi-robot cooperation. The robot team is
organized in a flexible leader-follower structure in which the
local robot architecture is independent from the robot control
manager. However, permanent communication is required.

Tambe [10] points out that the more the team is flexible
and robust, the higher communication load is required. He

1 http://robotics.eecs.berkeley.edu/bear

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4790

thus emphasizes the importance of managing the communi-
cation in team mission execution, as it represents the most
critical resource and may lead to a mission failure. Several
approaches study the management of the team mission
execution with communication constraints. STEAM (a Shell
of TEAMwork) [10] proposes a general model of teamwork
where the mission is built around the teamwork core, and not
conversely. STEAM is based on the Joint Intention Theory.
Similar work is done in [11] and [5], where the architecture
is based on the BDI framework. This framework may bring
consistency issues when communications are interrupted. For
the moment, it seems difficult to overcome this problem
using this framework.

Based on Contract Net Protocols [12], some authors have
focused their work on allocating the mission tasks among
agents [13], [14]. These studies are explicitly avoiding as
much as possible the loss of communication between agents
by allocating some of them to the maintenance of local
communication links. This issue is then divided into local
communication constraints, leading to an even more critical
situation when data transfer cannot be ensured during exe-
cution. Therefore, this method cannot be applied in contexts
where communication is uncertain.

Temporary lack of communication can be experienced
during the mission execution. Joyeux [15] proposes a plan
execution that allows situations where communication is not
permanent. However, like in [16], the plan is distributed to
the agents, but there is no local or global repair. Sotzing [17]
takes communication constraints in consideration in multi-
AUV operations. Mission execution and multi-robot coordi-
nation are supported by BIIMAPS (BlackBoard Integrated
Implicit Multi-Agent Planning Strategy). All robots have a
complete copy of the BIIMAPS plan, so robot actions can
be predicted when there is no communication. When com-
munication is anew available, robots refresh the knowledge
coming from other team members.

Our contribution allows a robot to react to a disturbing
event and makes plan repair as local as possible, based
on a hierarchical organization of a global mission plan.
We assume that communication is unpredictable. Contrary
to Legras and Tessier [18] who define a team depending
on communication contact, we define a team by robots’
participation into the achievement of a task. We also want
to keep an explicit view of the sub-teams’ plans. Finally, we
want to reuse local architectures that already exist and are
mature for local control of a robot.

III. THE HIDDEN ARCHITECTURE

In this paper, we propose HiDDeN, a High level Dis-
tributed DecisioN layer for multi-robot mission monitoring.
Each robot has a HiDDeN instance, the local supervisor,
which is interfaced with the existing robot control archi-
tecture (Fig. 1). This abstract layer chooses which action
must be executed by each autonomous robot of the team,
while controling coordination between teammates. Figure 2
shows a global plan of a HiDDeN local supervisor, from a
robot’s point of view. Local supervisors are decomposed in a

modular structure, according to most of the architectures in
the state of the art. If interfaces are well defined, modularity
brings good genericity, possibility of unit testing and means
to implement them separately. These modules are described
in the following.

Local Supervisor
Com. Com.

The HiDDeN layer

Local
control

architecture

Local Supervisor

Local
control

architecture

Local Supervisor

Local
control

architecture

Dynamic Environment

Fig. 1: The HiDDeN layer for monitoring a team of robots.

Com.

- communications
- sensors
- actuators

Internal
robot
data

Mission data
(goals, layout models...)

Control
Architecture

Task to be
executed

Execution
result

Plan to execute

Distant local
supervisor
(vehicle 1)

HiDDeN Layer

Coop
Messenger

Exec
Messenger

Planner
Manager

Mission
Manager

Local supervisor (vehicle i)

Embedded
planner(s)

Replanning request

Distant local
supervisor
(vehicle n)

...

Data flow

Request / Answers

New partial
plan

Data
Manager

Fig. 2: Overview of a local supervisor.

A. DataManager: providing mission-related information

The DataManager is responsible of updating and pro-
viding information about the mission. It relies on Koper [19],
an instance of an ontology that contains information about
the robots’ states, the current plan, the robots’ actions, the
mission goal, etc. It distinguishes local data (i.e. managed
by the robot the Koper instance is embedded on), that
are directly get/set from the robot control architecture, and
remote data (i.e. managed by other robots) that is updated
when a communication is explicitly made with teammates.

B. ExecMessenger: interfacing with control architectures

The ExecMessenger module represents the interface
of the local supervisor with the control architecture of
the robot. In general, autonomous robots own a specific
communication protocol allowing interaction with a human
operator, or at least, an internal supervision system that
indicates which task has to be achieved. The current task
selected by the MissionManager is then translated by
ExecMessenger into a form understandable by the local
architecture. Execution results are then translated from the lo-
cal architecture to the MissionManager. This interaction

4791

is also supported by Koper [19], where the services provided
by the robots are described. This description contains the
name of the services, their parameters, their pre/post condi-
tions, and the protocol used for calling them on the control
architecture.

C. MissionManager: managing plan execution

The MissionManager module is the core of the local
supervisor. It manages the plan execution, detects failures,
and triggers synchronization tasks between robots and the
repair process. Its behavior is detailed in section IV-C.

D. PlannerManager: hierarchical plan repair

The PlannerManager takes care of the interaction
between the local supervisor and the embedded planners.
These planners allow a repair or replan of the mission plan
according to the encountered failures and according to the
current situation. Its behavior is detailed in section IV-E.

E. CoopMessenger: communication and synchronization

The CoopMessenger deals with synchronization ex-
changes and is compulsory for team cohesion. It allows
local supervisors to interact, using communication means
provided by the autonomous robots. Its behavior is detailed
in section IV-F.

IV. PLAN EXECUTION AND REPAIR

A. Plan Representation

The HTN (Hierarchical Task Network) formalism [20] is
used to model the mission plan. An HTN is a hierarchical
set of abstract and elementary tasks. One or more methods
are assigned to an abstract task and describe the way to
achieve it, using other abstract or elementary tasks. The
selection of a method is constrained by the fulfillment of
preconditions. The advantages of HTNs are their flexibility,
their hierarchical structure and their convenient modeling
of human knowledge. Besides that, HTNs are classically
used to represent planning problems and some multi-agent
planners have been specifically developed to deal with this
formalism [21]. HiDDeN directly uses an instantiated HTN
of the mission plan (noted iHTN in the following) as the
core model of plan execution monitoring.

Definition 1. An iHTN H is a tuple
(E, V, Pre, Post, Te, Ta,<,M, tr):
• E is the set of labels of tasks and methods;
• V is the set of instantiated variables;
• Pre is the set of preconditions;
• Post is the set of postconditions;
• Te ⊂ 2Pre × 2V × 2Post is the set of ele-

mentary tasks. An elementary task te is a triplet
(Pre(te), V (te), Post(te)) with Pre(te) a list of pre-
conditions, V (te) a list of parameters, and Post(te) a
list of post-conditions;

• Ta ⊂ 2V × 2M × 2Post is the set of abstract tasks. An
abstract task ta is a triplet (V (ta),M(ta), Post(ta))
with V (ta) a list of parameters, M(ta) a list of methods,

M(ta) 6= ∅ (to which preconditions are associated), and
Post(ta) a list of post-conditions;

• < is a set of partial ordered relations applied to the
set of tasks (Ta ∪ Te). We consider that rel ∈ < is
either sequential (noted rel =≺) or non-ordered (noted
rel =∼);

• M ⊂ Ta × 2Pre × 2(Ta∪Te) × < is a set of methods.
A method m is a quadruplet (tm, P re(m), st, rel) with
tm the abstract task to which the method is applied,
Pre(m) a list of preconditions, st a set of tasks, rel
a sequential or a non-ordered relation between the st
elements. rel provides a mean to define an execution
order for tasks of the st set;

• tr is the root abstract task that must be executed; this
is the highest level of abstraction in the H tree.

Note that this definition is similar to the general HTN
definition: an iHTN is a subset of an HTN where the planner
previously decides the methods and the variables to use. With
deterministic planners (as the one we actually use), the plan
contains one method per abstract task.

B. Plan Distribution

The team mission plan is supposed to be computed off-
line, prior to mission execution, for instance using a classical
HTN planner [20]. As the HiDDeN supervisors are dis-
tributed among the team robots, this plan has to be distributed
to robots. We propose a distribution process that will help
minimize communication needs by:
• removing unneeded tasks from the plan, leading to a

local plan adapted to the robot. This cleaning process
helps maintaining plan consistency during plan repair:
modifying the plan of a subteam has no impact on the
plan of robots not involved in the repaired task.

• adding necessary communication tasks that are implicit
in the mission plan, determined by dependencies be-
tween tasks achieved by several robots.

More precisely, the global plan T is distributed to the
team of robots, providing each one with a local plan H. For
a robot r, this local plan is computed using an algorithm
summerized in the following process:

1) when a method is unordered, the sub-tasks in which r
is not involved are removed;

2) when a method is ordered, the sub-tasks in which r is
not involved that do not immediately precede a task in
which r is involved are removed2; other sub-tasks not
involving r are replaced by synchronization tasks, i.e.
robot r has to wait a communication from the distant
robots which are responsible of these sub-tasks.

The distribution algorithm scans the iHTN in a bottom-up
manner (from elementary tasks to the root task), apply-
ing previously described operations, and removing methods
whose all sub-tasks have been removed.

The resulting robot local plan is then a reduced iHTN
that contains either original tasks that directly concern the

2These tasks have no direct influence on a task of r.

4792

robot, or generated synchronization tasks useful to maintain
the precedence dependency between distributed tasks. Note
that original tasks may also contain communication tasks that
have been planned, contrary to synchronization tasks that are
not present in the original team plan.

C. Plan Execution

Plan execution is carried out by the MissionManager.
It executes the robot local plan by scanning it in a depth
first (i.e. descending to elementary tasks) and left first
(i.e. enforcing the ordered relations between tasks) manner
(Fig. 3).

Abstract
Task

Elementary
Task

Task successfully
executed

Task currently
executed

E1T1

Execution : step1 Execution : step2 Execution : step3

R

T1 T3 T5

E3 T4 E6T2 T6

E1 E2 E7E4 E5

R

T1 T3 T5

E3 T4 E6T2 T6

E1 E2 E7E4 E5

R

T1 T3 T5

E3 T4 E6T2 T6

E1 E2 E7E4 E5

Fig. 3: Execution of an iHTN: HiDDeN processes root task
R, descends to task E1. When E1 is successfully achieved,
the following task is E2, then E3, and so on as long as no
fault is detected.

When an elementary task (a leaf) is reached, the corre-
sponding action is executed. This execution is devoted to
the ExecMessenger if the task is a robot task (resulting
in a request sent to the control architecture) or to the
CoopMessenger if the task is a synchronization task.

D. Failure Detection

During the execution of the mission plan in a real context,
faults or disturbances may occur. We introduce several means
to detect such failures in HiDDeN. This failures are classified
as follows:

• invalid preconditions: before executing a task, the
MissionManager checks that the task preconditions
are fulfilled, i.e. that the action can be executed in the
current state; otherwise, it raises an invalid precondi-
tions failure;

• error: when a service request is sent to the robot control
architecture, an execution report is expected; this report
can be either a success report or a failure report, in
which case an error is raised;

• invalid effects: when a service reports successfully,
the MissionManager checks that the system state
is consistent with the expected effects of the service;
otherwise, it raises an invalid effects failure;

• timeout: in the case when a maximal duration is defined
for the service, the MissionManager raises a timeout
failure if the service has not reported before the duration
expired.

When one of these failures is raised, the robot plan must be
repaired.

E. Plan Repair
The basic idea of plan repair in HiDDeN is that when a

task fails, we have to replace this task (and only this one)
by an alternative task that allows to achieve the mission.
If such an alternative does not exist, we take advantage of
the hierarchical structure of the iHTN plan to re-plan only a
sub-tree of the plan that has a valid alternative, not the entire
mission. More precisely, when a task t fails, we ask a planner
to solve a new local planning problem. This planner could
be the same as the initial planner, or a dedicated planner,
as long as it provides a hierarchical plan. This new local
planning problem is generated as a planning request by the
PlannerManager according to the current system state
and the failure status.

A planning request is composed of a domain (actions that
can be used to modify the state of the world) and a problem
(one instance of the state of the world, i.e the initial and goal
states). We define D our initial domain, and P = (s, g) our
initial problem, with s the initial state of the world and g
the goal state to achieve. During the repair process, we can
define the planning request R = (D′,P ′) such as:
• D′ the updated domain taking into account the failure;
• P ′ = (s′, g′) the updated problem, with s′ the

current state of the system (available through the
DataManager) and g′ the new state goal to achieve
(i.e. the abstract task that must be replanned).

The domain must be modified to integrate that the faulty
elementary task is not applicable any more (in the current
situation). We first define D′ by adding the negation of
current state s′ into the preconditions of the faulty elementary
task. This prevents the planner to propose a repair result as
the one that has just failed. More elaborate definitions of D′
are discussed in the future works.

This planning request is then sent to the embedded plan-
ner. If the planner returns a new plan, this plan then replaces
the failing task t in the iHTN. Otherwise, we have to go up
in the iHTN structure to repair the parent task in an iterative
manner, until we find a valid alternative or we reach the root
task (Fig. 4).

R

T1 T3 T5

E3 T4 E6T2 T6

E1 E2 E7E4 E5

R

T1 T3 T5

E3 T4 E6 T6

E7E8

T4

E4 E5

T4

E8

Task failure : T4

New
alternative
plan found

Successfull
repair

No alternative
plan found :
backtrack in
the HTNiR

T1 T3 T5

E3 T4 E6 T6

E7E4 E5

T3

E3 E6T4Task Failure: T3

ok

ko

Test

Test
And so onT2

E1 E2

T2

E1 E2

Fig. 4: The repair process: elementary task E5 fails, which
implies a repair of task T4 (top, left). If a new plan is found,
the iHTN branch is replaced (top, right); otherwise, the repair
process is applied to T3 (bottom).

4793

Fig. 5: Example of resulting timelines.

F. Synchronization for Plan Repair

When repairing a task t, we must take into account
that this repair will affect all the robots involved in the
achievement of t (where t is an elementary task or an
abstract task that ”failed” because of the bottom-up repair
process). The repair of a multi-robot task will therefore need
a synchronization among the involved robots, carried out
by their CoopMessenger modules. This synchronization
is enforced by a protocol described into predefined iHTN
schemes. This process is illustrated with the sequence dia-
gram of Fig. 6, described below. In this example, robot R1
has to repair the failing task E4. As no local plan is available
to repair E4, the repair process goes up to the parent task
T2, that is a task involving both R1 and R2. We then apply a
cooperative repair process, that is modeled as an iHTN and
inserted into the current plan, replacing E4. The execution of
this iHTN is emphasized by the RepairingPattern block of the
sequence diagram: the HTN-FAIL call warns R2 that a repair
is needed; in return, R2 sends its Koper database so that R1
can update the current state (message BDD-UPDATE); R1
proceeds to the repair of task T2 (resulting in a new task
T6); and R1 sends T6 to R2 (message PLAN-UPDATE)3.
Then T6 is inserted into the plan, replacing T2, and the plan
execution can go on for both robots.

If the HTN-FAIL call fails, meaning the communication
between R1 and R2 is not possible at the moment, a similar
CommunicationPattern is applied to help R1 establish the
communication with R2. This pattern tries several prede-
fined recovering strategies: communication relaying via other
robots, area exploration to find R2, etc.

V. EXPERIMENTATION AND EVALUATION

We have experimented our HiDDeN architecture on a
real mission involving two robots: an AAV (an autonomous
rotorcraft, Fig. 7a) and an AGV (a custom rover based on
a Segway base, Fig. 7b). The two robots have to explore
a rural area in order to find a possible intruder. Several
executions of this mission permited to test and evaluate
the HiDDeN architecture in several cases: (a) with different
goto failures, resulting in several repairs (e.g., one based on
relative vision-based localization, another one based on laser-
based mapping); (b) varying communication failure cases (no
failure, failure in a planned communication, failure in the
repairing pattern); (c) detection of an intruder involving a
plan repair. In all these cases, HiDDeN has succeeded in
managing the plan execution and the repair process.

3Note that the plan distribution process described in section IV-B ensures
that the task T2 will be present in the local plans of both R1 and R2.

:R1.CA :Planner :R1.LS :R2.LS :R2.CA

E4

Failure
Repair(E4)

NoPlan

HTN-FAIL
stop

ok

BDD-UPDATE
Repair(T2)

T6

PLAN-UPDATE

RepairingPatternRepairingPattern

E5 E6

Fig. 6: Sequence diagram of synchronization of two robots
for a plan repair. R.CA represents the Control Architecture
of robot R, R.LS the Local Supervisor of robot R.

(a)

(b)

G1

G3

G4

G5

G_B2

G_B1

A1
A2

G_tmp

A3

A4

A5

A6

G2

(c)

Fig. 7: Experimentation vehicles and result samples.

Trajectories for a particular mission run are presented
in Fig. 7c, and the associated timeline showing motion
and communication actions is depicted on Fig. 5. The plan
mission consists in reaching (and exploring) eleven different
waypoints of the area: six for the AAV (noted A1 to A6 on
Fig. 7c) and five for the AGV (noted G1 to G5 on Fig. 7c).
Four rendez-vous between the robots are also expected. The
robots encountered the three following failures during the
plan execution:

1) The AGV fails while reaching its second waypoint
(goto G2 error), due to its individual localization

4794

process which is only vision based; AGV’s local
supervisor tries first a local plan repair, but since it
is lost, the AGV is unable to find a new path on its
own; then, going up in the plan hierarchy, a new plan
is computed (applying the RepairingPattern): the AAV
has to reach G tmp, the last known position of the
AGV, provided by the data knowledge of the AGV, and
has to localize the ground robot; the plan execution can
then continue as initially planed.

2) Trying to reach G4, the AGV is blocked by an un-
expected obstacle; AGV’s local supervisor tries first
a plan repair attempt which fails (no alternative plan
can be found in the current AGV map); then, a team
repair must be done; this time, communication is
not available between the robots: the communication
recovery pattern applied in this experiment was for the
AGV to wait until the AAV finds it; meanwhile, the
AAV has reached a rendez-vous point and a failure
is detected as the communication was not possible
(the AGV is not there); the communication recovery
pattern for the AAV was to explore the area until a
communication with the AGV is possible; once the
communication link is recovered, the RepairingPattern
can be applied, leading to a new plan: the AAV maps
the area surrounding the AGV position, then sends it
to the AGV that can now find a new path to join its
next waypoint.

3) The AGV finally detects an intruder, and its plan is
repaired into a tracking action while trying to inform
the AAV of its movement.

VI. CONCLUSIONS

In this paper, we have presented a high level distributed
architecture, HiDDeN, for multi-robot systems composed
of robots that are already autonomous but not necessarily
built in a multi-robot concern. The system is composed
of local supervisors that are embedded on each robot,
and interfaced with their local architecture. A complete
fault detection management is proposed, which determines
when a recovery process is needed and increases as much
as possible fault tolerance during the mission execution.
The main contribution of our work is that we use as
little communication as possible, by first distributing the
global mission plan to each robot (removing unneeded
tasks and adding necessary communication tasks), and
second repairing the plan as locally as possible, while
communicating only with the robots involved in the repair
process.

An improvement would concern the definition of a local
planning problem in case of failure. For now, we just update
the current state, and avoid using the same action again by
modifying its preconditions. We are currently considering the
possibility to apply, on-line, a learning algorithm in order to
update the planning and environment models all along the
mission execution. We also want to explore the possibility of
having conditional plans, i.e iHTNs where different methods

are available and are instantiated, to allow an adaptation of
the plan execution to the dynamic environment without a
systematic repair. In these plans, the execution may also be
improved by heuristics choices in the tasks method where
preconditions are satisfied, improving efficiency according
to the current observed environment state.

ACKNOWLEDGMENT

This work has been partially supported by the DGA
funded Action project (http://action.onera.fr) and
the ANCHORS project (http://www.anchors-project.
eu), funded by the German Federal Ministry of Education
and Research (BMBF) and the French National Research
Agency (ANR).

REFERENCES

[1] I. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon, T. Es-
tlin, R. Madison, J. Guineau, M. McHenry, I. Shu, and D. Apfelbaum,
“CLARAty: Challenges and steps toward reusable robotic software,”
in Int. Journal of Advanced Robotic Systems, vol. 3, no. 1, 2006.

[2] N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C. Plaunt, “IDEA:
Planning at the core of autonomous reactive agents,” in Int. NASA
Workshop on Planning and Scheduling for Space, 2002.

[3] S. Lemai and F. Ingrand, “Interleaving temporal planning and execu-
tion in robotics domains,” in AAAI, San Jose, CA, USA, 2004.

[4] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and
R. McEwen, “A deliberative architecture for AUV control,” in ICRA,
Pasadena, CA, USA, 2008.

[5] P. Doherty, J. Kvarnström, and F. Heintz, “A temporal logic-based
planning and execution monitoring framework for unmanned aircraft
systems,” JAAMAS, vol. 19, no. 3, 2009.

[6] F. Teichteil-Königsbuch, C. Lesire, and G. Infantes, “A generic frame-
work for anytime execution-driven planning in robotics,” in ICRA,
Shanghai, China, 2011.

[7] R. Vidal, O. Shakernia, H. Kim, D. Shim, and S. Sastry, “Probabilis-
tic pursuit-evasion games: Theory, implementation and experimental
evaluation,” Trans. on Robotics and Automation, vol. 18, 2002.

[8] L. Parker, “ALLIANCE: An Architecture for Fault Tolerant Multi-
Robot Cooperation,” Trans. on Robotics and Autom., vol. 14, 1998.

[9] L. Chaimowicz, T. Sugar, V. Kumar, and M. Campos, “An architecture
for tightly coupled multi-robot cooperation,” in ICRA, Seoul, Korea,
2001.

[10] M. Tambe, “Towards flexible teamwork,” JAIR, vol. 7, 1997.
[11] M. Paolucci, O. Shehory, and K. Sycara, “Interleaving planning and

execution in a multiagent team planning environment,” Linköping Elec.
Articles in CIS, vol. 5, no. 18, 2000.

[12] R. Smith, “The Contract Net Protocol: high-level communication and
control in a distributed problem solver,” IEEE Trans. on Computers,
vol. 29, no. 12, 1980.

[13] M. Rooker and A. Birk, “Multi-robot exploration under the constraints
of wireless networking,” Control Eng. Practice, vol. 15, no. 4, 2007.

[14] N. Atay and O. Bayazit, “Emergent task allocation for mobile robots,”
in RSS, Atlanta, GA, USA, 2007.

[15] S. Joyeux, R. Alami, and S. Lacroix, “A plan manager for multi-robot
systems,” in FSRS, Chamonix, France, 2007.

[16] R. Micalizio and P. Torasso, “Supervision and diagnosis of joint
actions in multi-agent plans,” in AAMAS, Estoril, Portugal, 2008.

[17] C. Sotzing, N. Johnson, and D. Lane, “Improving multi-AUV coor-
dination with hierarchical blackboard-based plan representation,” in
PlanSIG, Edinburgh, UK, 2008.

[18] F. Legras and C. Tessier, “LOTTO: group formation by overhearing
in large teams,” in AAMAS, Melbourne, Australia, 2003.

[19] T. Gateau, C. Lesire, and M. Barbier, “Knowledge base for planning,
execution and plan repair,” in ICAPS PlanEx Workshop, Altibaia,
Brasil, 2012.

[20] K. Erol, J. Hendler, and D. Nau, “HTN planning: complexity and
expressivity,” in AAAI, Seattle, WA, USA, 1994.

[21] J. Dix, H. Muñoz-Avila, D. Nau, and L. Zhang, “IMPACTing SHOP:
putting an AI planner into a multi-agent environment,” Annals of
Mathematics and AI, vol. 37, no. 4, 2003.

4795

