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Abstract— We consider full motion state sensing of a rigid
open-chain multi-body linkage assembly using rate gyros and
linear accelerometers. The research is built upon micro-electro-
mechanical systems (MEMS) components for low-cost “strap-
down” implementation. Our emphasis is on direct lag-free joint
angular acceleration sensing, for which a novel multi-MEMS
configuration is motivated by motion control requirements.
By using the multi-MEMS configuration, the bandwidth of
the angular acceleration sensed is mostly proportional to the
physical distances of linear accelerometers. The related joint
position sensing, which is robust against linear and angular
motion, is founded on the complementary and Kalman filtering
principles for exclusive low delay. Experiments on a robotic
vertically mounted three-link planar arm demonstrate the
advantage of our key theoretical finding.

I. INTRODUCTION

The main problem connected with magnetic or optical

rotary encoders, two of the most popular single degree of

freedom (DOF) joint angular sensors, is the limited band-

width of derivatives of angular motion. If differentiated from

the encoder position readings indirectly as usual, a consider-

able density of high-frequency perturbations is superimposed

on the reconstructed angular velocity and, particularly, on

the angular acceleration readings, see e.g. [1]. The required

perturbation attenuation comes at the cost of lag, see e.g. [2],

which impairs the transient response of control strategy. As

a significant advantage over the contact-type joint angular

sensors, the miniaturized micro-electromechanical systems

(MEMS) sensors, such as linear accelerometers, rate gyros,

and magnetometers, may be simply “strapped down” to a

body requiring no contact to a rotation axle. We consider

gyro-aided high-bandwidth joint position sensing endowed

with direct algebraic calculation of the angular acceleration

components. In view of our previous work [3], where simple

indirect rate gyro differentiation was considered, a significant

leap forward is presented.

Since optional sensors, such as magnetometers, are un-

usable in many practical situations [4], there is a pressing

motivation for producing high-bandwidth manipulator mo-

tion state estimates based solely on MEMS rate gyro and

accelerometer readings. Previously, motion sensing based

on MEMS has been under consideration for use in multi-

DOF robots [5], cranes and excavators [6], and biomedical
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setups [7] often founded upon simplified hinge joint mod-

els [8]. To circumvent the difficulties related to the indirect

motion derivatives using contact-type angular sensors, we

consider a minimum MEMS configuration of triaxial linear

accelerometers and rate gyros and a novel multi-MEMS

configuration with added three linear accelerometers for

direct algebraic angular acceleration sensing. Our multi-

MEMS configuration, inspired by [9], is stable, practically

lag-free, and not subject to error accumulation, in spite of

the inherent MEMS scale factor errors in relatively fast

motion. Noteworthy, the bandwidth of our algebraic angular

acceleration sensing depends mostly on the mutual distance

between the linear accelerometers.

This paper is organized as follows. Sect. II provides an

overview of the MEMS models, our geometrical manipulator

model, as well as the MEMS configurations, the theoretical

basis of this work. As a whole, the MEMS motion sensing

is ideally suited for real-time implementation on embedded

hardware platforms, which we demonstrate in Sect. III by a

three-link planar arm rig. Although our MEMS components,

a set of six combined single-axis ±100 deg/s rate gyros and

triaxial linear ±2g accelerometers [10], allow 2-DOF joint

position sensing based on the force of gravity, the planar

vertical case is of theoretical and practical interest. Without

loss of generality the MEMS error propagation is founded

on exactly the same principles in a fully three-dimensional

case. Thus, for analytical simplicity, we will briefly study

a standard algebraic single-axis inclination estimate, which

is listed by many MEMS accelerometer manufacturers, and

refine it by a complementary filter, which represents the

theoretical basis for many gyro-aided feedback designs,

see e.g. [11], [12], [13]. Our experimental comparison is

founded on optimal truncated finite difference calculation of

the motion derivatives, see [14]. Finally, the conclusions are

drawn in Sect. IV.

II. OBSERVATION MODEL AND ESTIMATION

In this section, we provide observation models for strap-

down MEMS accelerometers and rate gyros by studying a

geometrical open-chain kinematics estimation problem. In

consequence, accurate link inclination sensing in accelerative

motion is possible only without notable simplifications or

decoupling of the related kinematic quantities.

A. Geometrical rigid body model

Consider an assembly of two or more rigid links connected

by means of joints. Three-dimensional frames of rectangular

(xyz) axes are attached to the center of each joint and the
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links are directed along their y-axes. Let Ri denote the 3×3
body fixed rotation matrix, det(Ri)=1 and RT

i =R−1

i , re-

lating the ith link frame to the inertial reference frame (XYZ)

as usual. The assembly is illustrated in Fig. 1, where length

of the ith (bar-like) link is denoted by li. The “ground” frame

R0 is fixed to a (stationary) base platform. Subsequently, we

will neglect the Earth’s angular rate (15 deg/h) because of

the low MEMS sensitivity and large noise density.

Fig. 1. Rigid body model. Links are connected by rotary joints.

The angular velocity, as seen by a MEMS component rate

gyro attached to the ith link, i=1, 2, . . . , can be expressed

in the ith joint’s frame by

Ω̃i = (I + Si)Ωi + bi + µ ∈ R
3×1, (1)

where I is the identity matrix, Ωi is the total true rate value,

Si is the scale factor error expressed as a percentage of Ωi,

bi denotes a constant or slowly time-varying gyro bias, and

µ denotes additive measurement noise. Because most triaxial

MEMS rate gyros are assembled as three single-axis gyros,

we may assume low cross-axis coupling factors; i.e., Si is a

diagonal matrix. In view of the rigid body assumption, one

may write

Ωi = ωi +

i−1
∑

m=0

RT
i Rmωm (2)

denoting that the total true rate is the sum of the angular

velocities produced by the ith joint, given by ωi, and each of

the preceding joints expressed in frame i.
The linear accelerations, as seen by a MEMS component

accelerometer attached to the ith link, i= 1, 2, . . . , can be

expressed by

ai = (I + Si)(vi −RT
i g) + ba + µa ∈ R

3×1, (3)

where Si is the scale factor error, g is the gravitational

field g = |g0|e3, |g0| ≈ 9.8 m/s2, ba is a bias term,

and µa denotes additive measurement noise. Because most

triaxial MEMS accelerometers are assembled as three single-

axis accelerometers, we may again assume low cross-axis

coupling factors in Si. If × denotes the cross product, the

instantaneous linear acceleration vi can be given as

vi = αi × di + ωi × (ωi × di) + (4)
i−1
∑

n=0

(

(RT
i Rnαn)× dn +

(RT
i Rnωn)×

(

(RT
i Rnωn)× dn

)

)

,

where αi is the true angular acceleration produced by the

ith joint, the vectorial distance from the ith joint’s rotation

center is

di = [0 pyi pzi ]
T = pi (5)

and for the other rotation centers

dn = RT
i

i−1
∑

m=n

Rm[0 lm 0]T + di (6)

for a low number of coordinate system transforms. The

position (5) is typically known to a high degree of accuracy.

Given that the “ground” frame is stationary, we assume

l0=0, R0= I , and ω0=α0= d0=[0 0 0]T for clarity. We

will also take the Z-axis rotation of Ri for granted, since it

is not observable from the accelerometer readings.

To construct a 2-DOF estimate of the “true” rotation Ri

from the accelerometer readings (3), complete definition of

(4) is required. For a high-bandwidth low-delay estimate,

identification of gyro bias in (1) is also needed. As a step

toward the perfection of both at once, we will apply the

postulated assembly model in a suboptimal manner, since the

signals (1) and (3) may not be modeled as random processes

with fully known spectral characteristics.

B. Minimum and novel multi-MEMS configuration

Consider the problem of quantifying the relative rotational

motion of each joint in the discussed assembly. With MEMS

component accelerometers and rate gyros, none of the motion

states of the ith joint, the position, angular velocity or angular

acceleration, can be measured directly for i=1, 2, . . . in the

general case. Next, we will base the angular velocity and

acceleration computation on simple kinematic principles.

An estimate of the angular velocity of the ith joint, as

sensed by a MEMS component rate gyro attached to the ith

link, i=1, 2, . . . , can be given by applying (2) as

ω̂i = Ω̃i + b̂i −

i−1
∑

m=0

RT
i Rmω̂m (7)

where we have introduced b̂i to cancel the bias in (1). The

differentiation

α̂i = ˆ̇ωi (8)

yields an estimate of the angular acceleration of the ith

joint. Alternatively, if a triaxial plus additional three linear

accelerometers are attached and the all six are organized into

three pairs, we may write a direct estimate of the angular

acceleration of the ith joint as follows:

α̂i =





(az1i − azi − δz
1
)/dy1

i − ω̂y
i ω̂

z
i

−(az2i − azi − δz
2
)/dx2

i + ω̂x
i ω̂

z
i

(ay2

i − ayi − δy
2
)/dx2

i − ω̂x
i ω̂

y
i



 (9)

where, according to (4), we must calculate

δj =

i−1
∑

n=0

(

(

RT
i Rnα̂n

)

× (pji − pi) + (10)

(

RT
i Rnω̂n

)

×
((

RT
i Rnω̂n

)

× (pji − pi)
)

)
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for a configuration of the additional accelerometers posi-

tioned at

p1i = pi +





0
dy1

i

0



 , p2i = pi +





dx2

i

0
0



 (11)

so that dy1

i >0 and dx2

i 6=0. Note that the angular acceleration

components in (9) require prior knowledge of the angular

velocities about the xyz-axes, but only the added three linear

acceleration components co-directional with the y and z axes

of the accelerometer (3) positioned at pi are needed.

The triaxial accelerometer and rate gyro configuration

related to the estimates (7) and (8) is shown in Fig. 2 for

pzi = 0. This set of MEMS components represents a mini-

mum configuration in view of Sect. II-A. Our multi-MEMS

Fig. 2. A minimum configuration of three linear accelerometers attached to
the ith link. Angular velocities about the shown sensitive axes are measured
by a triaxial rate gyro.

configuration related to the estimates (7) and (9) is shown

in Fig. 3. The added single-axis and biaxial accelerometers

eliminate contributions of the gravitational field in (9).

Fig. 3. A configuration of six linear accelerometers and a triaxial rate gyro
attached to the ith link. If compared with Fig. 2, the added accelerometers
with sensitive axes shown are used for direct angular acceleration sensing.

Note that we may write

α̂i = αi + bα + µα (12)

where bα is a low-frequency bias term and µα denotes higher

frequency perturbations cumulated from different sensors.

If we assume a low-noise bias-identified triad of high-

bandwidth rate gyros when computing (9) in circular motion

and omit all the scale factor errors embedded in (12), we

obtain the “true” ith joint angular acceleration by

lim
||p1

i
||,||p2

i
||→∞

α̂i = αi. (13)

The finding is significant as it states that, by using the

latest MEMS components, the perturbation contributions are

mostly proportional to the physical distances of the z-axis

and yz-axial accelerometers at p1i and p2i with respect to the

triaxial accelerometer at pi. The asymptotic limit is thereby

achievable, though the sensing ranges, sensor misalignment,

and linearity affect the direct sensing (9) in practice.

C. Instantaneous acceleration compensation

Next, we will complete the geometrical analysis by show-

ing that 2-DOF inclination sensing is feasible in real-time

for the above MEMS configurations.

By replacing the “true” angular acceleration and angular

velocity in (4) using (7) and either (8) or (9), an algebraic

estimate of the instantaneous linear acceleration v̂i can be

written as

v̂i = vi + bv + µv (14)

where bv is a bias term and µv denotes additive noise that

is cumulated from different sensors, each with its own error

characteristics. For an accelerometer (3) located at pi, the

above yields

ai − v̂i ≈ −RT
i g (15)

for which the required estimates of angular velocity (7)

and acceleration given either by (8) or (9) can be obtained

without complicated transforms as discussed in Sect. II-B.

The result (15) states that, when (14) is computed joint by

joint from the 1st link to the ith, we may construct a 2-DOF

estimate of the “true” rotation Ri from the gravitational field

even when the joints of the assembly are in accelerative mo-

tion. This applies for small angle rotations occurring between

successive real-time updates of the link-wise inclinations. A

high-enough sampling rate is thereby required.

III. EXPERIMENTS

A mechanically simple vertically mounted three-link pla-

nar arm is constructed for motion sensing experiments, since

it behaves like an ideal rigid multi-body assembly. In spite of

the fact that (15) relates directly to the 2-DOF inclination of

a rigid body, we will apply a widely-used 1-DOF algebraic

inclination estimate and refine it by a straightforward gyro-

aided fusion for both theoretical and analytical simplicity.

A. Single axis inclination sensing from gravity vertical

Suppose that the motion of a linkage assembly takes place

in a vertical plane, joints are 1-DOF rotary and have their x-

axes co-directional. Then, in view of link inclination sensing,

an accelerometer’s y-axis output follows the sine function

and its z-axis follows the cosine function

ayi ≈ g0 sin(θi) (16)

azi ≈ g0 cos(θi)

when the accelerometer is stationary. Algebraic inclination

through a 360 deg range relative to gravity vertical can then

be calculated by applying

θ̂i = arctan(ayi , a
z
i ) (17)

where arctan(·) is the four quadrant inverse tangent function.

However, the estimate is valid only for the special case where
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the gravity field alone acts on the accelerometer. To enforce

the relationship (16) in accelerative motion, we calculate

θ̂i = arctan(ayi − v̂yi , a
z
i − v̂zi ), (18)

which is a direct generalization of (17).

For a high-bandwidth inclination estimate, any standalone

integration of angular velocity readings without high-pass

filtering of the gyro bias (1) will be susceptible to drift. Ad-

ditionally, since (3) contains mostly high frequency pertur-

bations, any accelerometer-based inclination estimate should

be low-pass filtered. The following differential equation
[

ˆ̇
θ
ˆ̇
b

]

=

[

0 1
0 0

][

θ̂

b̂

]

+

[

kP

kI

]

(x2−θ̂)+

[

1
0

]

x1 (19)

implements the required complementary low- and high-

pass filters at the same time, where kP is the proportional

gain and kI is the integral gain. Therefore, our discretized

complementary filter can be given by

[

θ̂i(t)

b̂xi (t)

]

=

[

1 Ts

0 1

][

θ̂i(t− 1)

b̂xi (t− 1)

]

+

[

Ts 0.5T 2

s

0 Ts

][

kP

kI

]

(

x2 − θ̂i(t− 1)
)

+

[

Ts

0

]

x1 (20)

where t denotes time, Ts is the sampling time, and b̂xi is the

identified x-axis gyro bias. The first input can be given as

x1 = Ω̃x
i (21)

where x-directional rate of (1) is used, i = 1, 2, . . . . The

second input is

x2 = arctan(ayi − v̂yi , a
z
i − v̂zi ) (22)

as given by (18). Noteworthy, the assumption that the inputs

of (19) are corrupted by stationary white noise produces a

stationary Kalman filter (see e.g. [15]) that is identical in

form to the complementary filter for kI = 0. However, to

identify the gyros’ bias values in real-time, we will choose

kP = 0.2 and kI = 0.02 for the P- and I-type gains. This

means that (20) implements a PI-type complementary filter,

where the motion compensated inclination (18) from the

accelerometer is used only as a long-term reference.

Since the motion permitted by our experimental setup is

planar, the rotation matrices Ri can be efficiently updated

for link-wise motion by writing

Ri ≈ R̂i(θ̂i) =





1 0 0

0 cos(θ̂i) − sin(θ̂i)

0 sin(θ̂i) cos(θ̂i)



 . (23)

The algebraic representation of rotation is useful here since,

though the inclination estimates (17), (18) and (20) are

computed in different ways, any one of them may be written

as

θ̂i = θi + bθ + µθ. (24)

Here bθ contains mostly low-frequency perturbations, such

as accelerometers’ bias values, µθ contains mostly high-

frequency perturbations, such as components’ thermal noise,

and θi is the true position of the ith link.

B. Mechanical three-link planar arm

Our three-link planar arm rig is show in Fig. 4. The

first two joints are actuated with 70 W graphite brush DC-

motors including two dedicated digital EPOS 24/5 motion

controllers. Coupled with planetary gearheads, the motor-

gear assembly produces output torque of about 20 Nm,

transmitted via stiff toothed belts to the first two joints of the

arm. The third joint can be moved freely. Due to mechan-

ical constraints, a SICK DGS66 hollow-shaft encoder [16],

10 000 pulses per revolution, was mounted on the 1st joint

and fixed to the base platform of the arm. Heidenhain ROD

486 encoders [17], 5000 sine waves per revolution, with IVB

102 interpolation units for 100-fold resolution enhancement

were mounted on the 2nd and 3rd joints’ axles. A PowerPC-

based dSpace DS1103 system [18] was used for the motor

control and state estimation at a rate of 500 Hz. A single

motion reconstruction cycle took some 5-6 % of the 0.002 s

sample time. Interface to the rig’s motion controllers and

sensory data was through the CAN-bus operating at 1 Mbit/s.

Fig. 4. Mechanical three-link planar arm comparable to a rigid multi-body
assembly, l1= l2=0.47 m. The combined x-axis rate gyro and triaxial ac-
celerometer MEMS components [10] are located at p1=[0 0.14 0.03]T m,
p1
1
= [0 0.44 0.03]T m, p2 = [0 0.10 0.03]T m, p1

2
= [0 0.45 0.03]T m,

p3 = [0 0.13 0.03]T m, and p1
3
= [0 0.45 0.03]T m. Since the motion

permitted is vertically planar, the accelerometers at points p2
i

in Fig. 3 for
direct angular acceleration sensing can be omitted.
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C. Angular resolutions

Table I provides a comparison of sensor resolutions ac-

cording to the manufacturers’ data sheets, including the

traditional position differentials at 500 Hz. As the DS1103

provides for an additional 4-fold pulse subdivision, the arm’s

position reference from the high-accuracy encoders, which

require mechanical contact to the joint axles, has a final

resolution substantially higher than what is reported in the

prior work cited. The MEMS rate gyros located at p1,

p2, and p3 utilized 1.15 %, 0.70 %, and 0.85 % x-axis

calibration scale factors in (1), respectively. The identified

scale factors represent experimental averages, for which the

rig was used as a rate table for an encoder-differentiated

angular velocity reference. Similarly, calibration look-up

tables were implemented by simple arrays for the MEMS

accelerometers’ runtime bias compensation using a 3 deg

step size with linear interpolation. In other words, the rig

was also used as a turn table to cover the inclination bias that

could not be expressed as a pure rotation; i.e., by determining

the scale factor matrix and the bias values of the model (3).

TABLE I

JOINT SENSOR RESOLUTIONS AT 500 HZ.

Kinematic quantity SCC1300-D02 DGS66 ROD 486

Position (deg) 0.032† 0.009 0.00018

Angular velocity (deg/s) 0.02‡ 4.5 0.09

Angular acceleration (deg/s2) 10 2250 45

† the accelerometer has a resolution of 0.56 mg per least significant bit.
‡ the gyro has a resolution of 0.02 deg/s per least significant bit.

D. Real-time joint position estimation

Under the assumption that the links of the assembly

behave as rigid bodies, estimates of the joint positions can

be given by

φ̂i = θ̂i − θ̂i−1, i = 1, 2, 3 (25)

where the “ground” frame’s rotation around x-axis is simply

included by using the horizontal position as our reference,

i.e. θ̂0=0 deg. Fig. 5 plots the joint position errors for which

the “true” joint positions φi were obtained from the encoders:

∆φi = φi − φ̂i, i = 1, 2, 3. (26)

The large errors of the standard estimate (17) are proportional

to the distance between the used MEMS accelerometers at

p1, p2, and p3 and the motion-generating rotation axles.

The motion compensated generalization (18) is, conversely,

dominated by zero-centered high frequency perturbations.

Thus, the both estimates are clearly useless for any kind

of differentiation of motion derivatives. However, the com-

plementary filtered positions based on (20) remain within

±1 deg errors and are, in principle, only susceptible to

inclination-dependent accelerometer bias values and motion-

dependent scale factor nonlinearities, both of low-frequency

content. The stochasticity of composite input-output non-

linearities, such as the total sensitivity and hysteresis rated

for (1) and (3) by the MEMS manufacturer, plays a role

at high 60-100 deg/s rates. Table II summarizes the results

and, if the configurations in Figs. 2 and 3 are compared

with each other, the added accelerometers for direct angular

acceleration sensing add position nonlinearities marginally.

E. Angular velocity and acceleration estimates

We will next compare the estimates (7), (8) and (9) with

an optimal zero-bias differentiation designed for real-time

control. An optimal estimate of the 1st derivative of joint

position (25) with respect to time t can be given by

ωi(t) ≈

m−1
∑

j=0

A(j)φ̂i(t− jTs)

Ts

(27)

and, similarly, an optimal estimate of the 2nd derivative can

be given as

αi(t)≈
m−1
∑

j=0

B(j)ω̂i(t− jTs)

Ts

≈
m−1
∑

j=0

C(j)φ̂i(t− jTs)

T 2
s

(28)

for which the coefficients A, B and C are found in [14]. The

best performing ones are also given here. Note also that any

low-frequency bias in (9) can be removed without unwanted

delay by the following complementary I-type control design

α̂I
i = α̂i + b̂α,

ˆ̇
bα = kI(ˆ̇ωi − α̂I

i), (29)

since the gyro-based estimate (8) is bias-free but plagued

by high-frequency perturbations due to the differentiation.

Because errors arise with the encoder references at high

sampling rates from noise or quantization effects of deriva-

tives, Tables III and IV present results at standstill. The

complementary filtered high-bandwidth positions based on

(20) were differentiated in the above optimum manner for

a comparison. The reported lags are indicative but, if the

tabulated 1 ms delay of our MEMS electronic’s cycle time

is excluded, the directly sensed MEMS motion derivatives

(7) and (9) are lag-free. If a further reference is made with

the optimum derivatives in Table IV, results of the direct

angular acceleration sensing (9) are clearly the best and in

excellent agreement with the primary theoretical finding (13),

particularly, if recalling the limited dimensions of the rig. For

a visual comparison, a set of three estimates of the arm’s 3rd

joint’s angular acceleration are shown in Fig. 6.

IV. DISCUSSION AND CONCLUSION

The novel multi-MEMS configuration, which is illustrated

in Fig. 3, facilitates direct angular acceleration measurement

by capturing the rig’s full state of motion. Motivated by the

fact that a low-cost angular acceleration sensor with good

resolution at low angular rates is not available at present, it

requires three linear accelerometers with low cross-axis sen-

sitivity more than the minimum general case configuration

shown in Fig. 2. If considering our target application field

of heavy-duty hydraulic manipulators, where the underlying

geometrical rigid multi-body model is most often satisfied,

our primary theoretical finding (13) is broadly applicable and

without any hint of instability.
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Fig. 5. A comparison of the different joint position sensing methods using the high-accuracy encoder benchmarks. Note the scales of the error graphs: the
standard inclination estimate (17) as well as its motion compensated equivalent (18) use the y-axis on the left and the two PI-type complementary filters
(20) use the y-axis on the right. The superscripts ⋆ and ⋆⋆ distinguish between the MEMS configurations illustrated in Fig. 2 and Fig. 3, respectively.
Sensitivity residues of high rates from ±60 to ±100 deg/s reach notable levels as shown in the complementary filtered positions; see also Table II.

TABLE II

SUMMARY OF JOINT POSITION (25) SENSING ERRORS USING ENCODER BENCHMARKS AT 500 HZ SAMPLING RATE.

Eq. (17)⋆ Eq. (18)⋆ Eq. (20)⋆ Eq. (20)⋆⋆

Joint 1 Joint 2 Joint 3 Joint 1 Joint 2 Joint 3 Joint 1 Joint 2 Joint 3 Joint 1 Joint 2 Joint 3

PAE† (deg) 2.89 11.19 21.69 2.00 7.23 10.93 0.29 0.32 0.65 0.29 0.39 0.74

RMSE‡ (deg) 0.49 1.77 3.04 0.46 1.47 1.76 0.06 0.09 0.14 0.06 0.10 0.16
†Peak absolute error, ‡Root mean square error, ⋆Configuration in Fig. 2, ⋆⋆Configuration in Fig. 3

TABLE III

STANDSTILL JOINT ANGULAR VELOCITY ERRORS AT 500 HZ SAMPLING RATE.

Eq. (7) Eqs. (20)⋆⋆ & (25) & (27)

Joint 1 Joint 2 Joint 3 Joint 1 Joint 2 Joint 3

RMSE (deg/s) 0.068 0.081 0.078 0.062 0.072 0.073

Lag (ms) 1 5-6

Optimal finite difference filter (27) coefficients A=[5 3 1 −1 −3 −5]/35.

TABLE IV

STANDSTILL JOINT ANGULAR ACCELERATION ERRORS AT 500 HZ SAMPLING RATE.

Eq. (8) Eqs. (7) & (28) Eqs. (20)⋆⋆ & (25) & (28) Eq. (9)

Joint 1 Joint 2 Joint 3 Joint 1 Joint 2 Joint 3 Joint 1 Joint 2 Joint 3 Joint 1 Joint 2 Joint 3

RMSE (deg/s2) 31.38 35.74 33.50 8.64 10.25 9.86 13.57 15.78 16.05 6.78 8.74 8.38

Lag (ms) 2-3 5-6 5-6 1

Optimal finite difference filter (28) coefficients: B= [5 3 1 −1 −3 −5]/35 and C=[5 −1 −4 −4 −1 5]/28.

1 ms of all the delays is due to our MEMS electronic’s cycle time.

The gyro-aided joint position sensing was discussed as an

easily obtainable high-bandwidth quantity, and just to verify

the full motion state estimation effectiveness of the presented

multi-MEMS configuration over the axle-wise contact-type

angular sensors such as encoders. As detailed in Table II,

achieving the worst-case joint position error less than ±1 deg

in relatively fast motion without the usual delay using solely

MEMS rate gyros and linear accelerometers is a good result

on its own, too. The related PI-type complementary filter

keeps assumptions to a minimum and is completely general

in the sense that any 3-DOF rotation can be represented by

three 1-DOF rotations. To sum up, the typical similarity of a

3-DOF filter architecture (see e.g. [13]) to that of (19) makes

the inclination sensing by (15) widely applicable.

Because of the relatively effortless “strap-down” instal-

lation, immunity against local magnetic disturbances, size

2519



−500

0

500
A

cc
el

er
at

io
n
 (

d
eg

/s
2
)

Joint 3

−500

0

500

A
cc

el
er

at
io

n
 (

d
eg

/s
2
)

0 15 30 45 60 75
−500

0

500

A
cc

el
er

at
io

n
 (

d
eg

/s
2
)

Time(s)

Eq. (8)

Eq. (9)

Double−differentiated encoder

Fig. 6. A plot illustrating the double-differentiated encoder (Table I), indirectly differentiated MEMS rate gyro (8), and MEMS accelerometer-based direct
sensing (9) of angular acceleration. Whereas the encoder benchmark has a low noise density only at a perfect standstill, resolution of the proposed direct
angular acceleration sensing (9) remains fine at low rates throughout the experiment, see also Table IV.

and cost advantage over the contact-type angular sensors, the

geometry-aided MEMS motion sensing is currently experi-

mented on a heavy-duty HIAB 031 manipulator for inverse

kinematics and active damping control. Since the proposed

multi-MEMS mounting is favored by the HIAB 031 manip-

ulator’s large dimensions, the angular acceleration readings

(9) contain some 30–40 % less random variation than that

reported in Table IV or what is correspondinly observable in

Fig. 6. This is a clear advantage from the low-cost motion

control perspective, see [19] for further discussion.

ACKNOWLEDGMENT

The authors are very grateful to researchers Erkki Lehto

and Janne Koivumäki for their superb support with the

MEMS electronics as well as the mechanical rig design.

REFERENCES

[1] S. J. Ovaska and S. Väliviita, “Angular acceleration measurement: A
review,” IEEE Trans. Instrum. Meas., vol. 47, no. 5, pp. 1211–1217,
Oct. 1998.

[2] M. Bertoluzzo, G. S. Buja, and E. Stampacchia, “Performance analysis
of a high-bandwidth torque disturbance compensator,” IEEE/ASME

Trans. Mechatronics, vol. 9, no. 4, pp. 653–660, Dec. 2004.
[3] J. Vihonen, J. Honkakorpi, J. Mattila, and A. Visa, “Geometry-aided

MEMS motion state estimation for multi-body manipulators,” in
IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM),
Wollongong, Australia, July 2013, pp. 341–347.

[4] M. J. Caruso, “Applications of magnetic sensors for low cost compass
systems,” in IEEE Pos. Loc. and Nav. Symp., Aug. 2000, pp. 177–184.

[5] J. Leavitt, A. Sideris, and J. Bobrow, “High bandwidth tilt measure-
ment using low-cost sensors,” IEEE/ASME Trans. Mechatronics, vol.
11, no. 3, pp. 320–327, June 2006.

[6] F. Ghassemi, S. Tafazoli, P.D. Lawrence, and K. Hashtrudi-Zaad,
“Design and calibration of an integration-free accelerometer-based
joint-angle sensor,” IEEE Trans. Instrum. Meas., vol. 57, no. 1, pp.
150 – 159, Jan. 2008.

[7] H. Dejnabadi, B. M. Jolles, and K. Aminian, “A new approach to
accurate measurement of uniaxial joint angles based on a combination
of accelerometers and gyroscopes,” IEEE Trans. Biomed. Eng., vol.
52, no. 8, pp. 1478–1484, Aug. 2005.

[8] P. Cheng and B. Oelmann, “Joint-angle measurement using accelerom-
eters and gyroscopes - a survey,” IEEE Trans. Instrum. Meas., vol.
59, no. 2, pp. 404–414, Feb. 2010.

[9] A. J. Padgaonkar, K. W. Krieger, and A. I. King, “Measurement
of angular acceleration of a rigid body using linear accelerometers,”
Trans. ASME, vol. 42, no. 3, pp. 552–556, Sept. 1975.

[10] Murata Electronics Oy, “SCC1300-D02 combined x-axis gy-
roscope and 3-axis accelerometer with digital SPI interfaces,”
www.muratamems.fi, Aug. 2012.

[11] R. G. Brown and P. Y. C. Hwang, Introduction to random signals and

applied Kalman filtering, Wiley, New York, NY, 1997.
[12] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation

Technology, Institution of Engineering and Technology, 2004.
[13] R. Mahony, T. Hamel, and J-M. Pflimlin, “Nonlinear complementary

filters on the special orthogonal group,” IEEE Trans. Autom. Control,
vol. 53, no. 5, pp. 1203–1218, June 2008.

[14] A. J. L. Harrison and D. P. Stoten, “Generalized finite difference
methods for optimal estimation of derivatives in real-time control
problems,” Proc. Instn. Mech. Engrs., vol. 209, no. 2, pp. 67–78,
May 1995.

[15] W. T. Higgins, “A comparison of complementary and Kalman
filtering,” IEEE Trans. Aerosp. Electron. Syst., vol. 11, no. 3, pp.
321–325, May 1975.

[16] SICK AG, “DGS60, DGS65 and DGS66: Incremental encoders for
rough environmental conditions,” www.mysick.com, Sept. 2006.

[17] Heidenhain, “Rotatory encoders,” www.heidenhain.de, Nov. 2011.
[18] dSpace GmbH, DS1103 PPC Controller Board Features, Mar. 2005,

Release 4.2.
[19] J. Honkakorpi, J. Vihonen, and J. Mattila, “MEMS-based state

feedback control of multi-body hydraulic manipulator,” in IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), Tokyo, Japan,
Nov. 2013, accepted for publication.

2520


