
Real-time Feature-based Video Mosaicing at 500 fps

Ken-ichi Okumura, Sushil Raut, Qingyi Gu, Tadayoshi Aoyama, Takeshi Takaki, and Idaku Ishii

Abstract— We conducted high-frame-rate (HFR) video mo-
saicing for real-time synthesis of a panoramic image by imple-
menting an improved feature-based video mosaicing algorithm
on a field-programmable gate array (FPGA)-based high-speed
vision platform. In the implementation of the mosaicing algo-
rithm, feature point extraction was accelerated by implementing
a parallel processing circuit module for Harris corner detection
in the FPGA on the high-speed vision platform. Feature point
correspondence matching can be executed for hundreds of
selected feature points in the current frame by searching those
in the previous frame in their neighbor ranges, assuming
that frame-to-frame image displacement becomes considerably
smaller in HFR vision. The system we developed can mosaic
512×512 images at 500 fps as a single synthesized image in
real time by stitching the images based on their estimated
frame-to-frame changes in displacement and orientation. The
results of an experiment conducted, in which an outdoor scene
was captured using a hand-held camera-head that was quickly
moved by hand, verify the performance of our system.

I. INTRODUCTION

Video mosaicing is a video processing technique in which

multiple images are merged into a composite image that

covers a larger, more seamless view than the field of view

of the camera. Video mosaicing has been used to generate

panoramic pictures in many applications such as tracking,

surveillance, and augmented reality. Most video mosaicing

methods [1] determine the transform parameters between

images by calculating feature points using feature extractors

such as the KLT tracker [2] and SIFT features [3] to match

feature point correspondences between images. Many real-

time video mosaicing approaches for fast image registration

have been proposed. Kourogi et al. proposed a fast image reg-

istration method that uses pseudo motion vectors estimated

as gradient-based optical flow [4]. Civera et al. developed

a drift-free video mosaicing system that obtains a consistent

image from 320×240 images at 30 fps using an EKF-SLAM

approach when previously viewed scenes are revisited [5].

de Souza et al. performed real-time video mosaicing without

over-deformation of mosaics using a non-rigid deformation

model [6]. Most of these proposals only apply to standard

videos at relatively low frame rates (e.g., NTSC 30 fps).

Further, the camera has to be operated slowly, without any

large displacement between frames, in order to prevent diffi-

culties in matching feature point correspondences. However,

in scenarios involving rapid camera motion, video images

at such low frame rates are insufficient for tracking feature

points in the images. Thus, there is a demand for real-time

K. Okumura, S. Raut, Q. Gu, T. Aoyama, T. Takaki, and I. Ishii. are with
Hiroshima University, Hiroshima 739-8527, Japan (corresponding author (I.
Ishii) Tel: +81-82-424-7692; e-mail: okumura@robotics.hiroshima-u.ac.jp).

high-frame-rate (HFR) video mosaicing at rates of several

hundred frames per second and greater.

Many field-programmable gate array (FPGA)-based HFR

vision systems have been developed for real-time video

processing at hundreds of frames per second and greater

[7]–[9]. Although HFR vision systems can simultaneously

calculate scalar image features, they cannot transfer the entire

image at high speed to a personal computer (PC) owing to the

limitations in the transfer speed of its inner bus. We recently

developed IDP Express [10], an HFR vision platform that

can simultaneously process an HFR video and directly map

it onto memory allocated in a PC. Implementing a real-

time function to extract feature points in images and match

their correspondences between frames on such an FPGA-

based high-speed vision platform would make it possible to

accelerate video mosaicing at a higher frame rate than 30

fps, even when the camera moves quickly.

In this study, we developed a real-time video mosaicing

system that operates 512×512 images at 500 fps. The sys-

tem can simultaneously extract and enable correspondence

between feature points in images for estimation of frame-

to-frame displacement, and stitch the captured images into a

panoramic image to give a seamless wider field of view.

II. ALGORITHM

Most video mosaicing algorithms are realized by executing

the following processes [1]: (1) feature point detection, (2)

feature point matching, (3) transform estimation, and (4)

image composition. In many applications, image composition

at dozens of frames per second is sufficient for the human

eye to monitor a panoramic image. However, feature tracking

at dozens of frames per second is not always accurate when

the camera is moving rapidly, because most feature points

are mistracked when image displacements between frames

become large. In HFR vision, frame-to-frame displacement

in feature points becomes considerably smaller. Narrowing

the search range by assuming HFRs reduces the inaccuracy

and computational load needed to match feature points

between frames even when hundreds of feature points are

observed from a rapidly moving camera, whereas image

composition at an HFR requires a heavy computational load.

We introduce a real-time video mosaicing algorithm that

can resolve this trade-off between tracking accuracy and

computational load in video mosaicing for rapid camera

motion. In our algorithm, steps (1)–(3) are executed at an

HFR on an HFR vision platform, and step (4) is executed

at dozens of frames per second to enable the human eye

to monitor the panoramic image. In this study, we focus on

acceleration of steps (1)–(3) for HFR feature point tracking

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2665

at hundreds of frames per second or more on the basis of

the following concepts:

(a) Feature point detection accelerated by hardware logic

Generally, feature point detection requires pixel-level com-

putation of the order O(N2), where N2 is the image

size. Gradient-based feature point detection is suitable for

acceleration by hardware logic because the local calculation

of brightness gradients can be easily parallelized as pixel-

level computation. In this study, we accelerate gradient-based

feature point detection by implementing its parallel circuit

logic on an FPGA-based HFR vision platform.

(b) Reduction in the number of feature points

Thousands of feature points are not always required for

estimating transform parameters between images in video

mosaicing. The computational load can be reduced by se-

lecting a smaller number of feature points because feature-

level computation of the order O(M2) is generally required

in feature point matching; M is the number of selected

feature points. In this study, the number of feature points used

in feature point matching is reduced by excluding closely

crowded feature points as they often generate corresponding

errors between images in feature point matching.

(c) Narrowed search range by assuming HFR video

Feature point matching still requires heavy computation

of the order O(M2) if it is required that all the feature

points correspond to each other between frames, even when a

reduced number of feature points are used. In an HFR video,

it can be assumed that frame-to-frame image displacement

grows considerably smaller, which allows a smaller search

range to be used for points corresponding to points in the

preceding frame. This narrowed search range reduces the

computational load of feature point matching to correspond-

ing feature points between frames on the order of O(M).

Our algorithm for real-time HFR video mosaicing consists

of the following processes:

(1) Feature point detection

(1-a) Feature extraction

To extract feature points such as upper-left vertexes, we

use the following brightness gradient matrix C(x, t):

C(x, t) =
∑

x∈Na(x)

[

I ′2x (x, t) I ′x(x, t)I
′

y(x, t)
I ′x(x, t)I

′

y(x, t) I ′2y (x, t)

]

, (1)

where Na(x) is the a× a adjacent area of pixel x = (x, y),
and I ′x(x, t) and I ′y(x, t) indicate the following positive

values of Ix(x, t) and Iy(x, t), respectively:

I ′ξ(x, t) =

{

Iξ(x, t) (Iξ(x, t) > 0)
0 (otherwise)

(ξ = x, y), (2)

where Ix(x, t) and Iy(x, t) are x and y differentials of the

input image I(x, t) at pixel x at time t.

λ(x, t) is defined as a feature for feature tracking using

the Harris corner detection [11] as follows:

λ(x, t) = det C(x, t)− κ(Tr C(x, t))2. (3)

Here, κ is a tunable sensitive parameter, and values in the

range 0.04–0.15 have been reported as feasible.

(1-b) Feature point detection

Thresholding is conducted for λ(x, t) with a threshold λT

to obtain a map of feature points, R(x, t), as follows:

R(x, t) =

{

1 (λ(x, t) > λT)
0 (otherwise)

. (4)

The number of feature points when R(x, t) = 1 is counted

in the p× p adjacent area of x as follows:

P (x, t) =
∑

x′∈Np(x)

R(x′, t), (5)

where P (x, t) indicates the density of the feature points.

(1-c) Selection of feature points

To reduce the number of feature points, closely crowded

feature points are excluded by counting the number of feature

points in the neighborhood. The reduced set of feature points

R′(t) is calculated at time t as follows:

R′(t) = {x | P (x, t) ≤ P0} , (6)

where P0 is a threshold used to sparsely select feature points.

We assume that the number of feature points is less than M .

(2) Feature point matching

(2-a) Template matching

To enable correspondence between feature points at the

current time t and those at the previous time tp = t− n∆t,

template matching is conducted for all the selected feature

points in an image. ∆t is the shortest frame interval of a

vision system, and n is an integer. For template matching to

enable the correspondence of the i-th feature point at time tp
belonging to R′(tp), xi(tp) (1 ≤ i ≤ M), to the i′-th feature

point at time t belonging to R′(t), xi′(t) (1 ≤ i′ ≤ M), the

sum of absolute difference (SAD) is calculated as follows:

E(i′, i; t, tp) =
∑

ξ=(ξ,η)∈Wm

|I(xi′(t)+ξ, t)− I(xi(tp)+ξ, tp)|, (7)

where Wm is an m×m window of template matching.

To reduce the number of mismatched points, x̂(xi(tp); t),
which indicates the feature point at time t corresponding to

the i-th feature point xi(tp) at time tp, and x̂(xi′(t); tp),
which indicates the feature point at time tp corresponding

to the i′-th feature point xi′(t) at time t, are bidirectionally

searched by selecting the feature points when E(i′, i; t, tp)
is at a minimum in their adjacent areas as follows:

x̂(xi(tp); t) = xi′(i)(t) = arg min
xi′ (t)∈Nb(xi(tp))

E(i′, i; t, tp), (8)

x̂(xi′(t); tp) = xi(i′)(tp) = arg min
xi(tp)∈Nb(xi′ (t))

E(i′, i; t, tp), (9)

where i′(i) and i(i′) are determined as the index numbers of

the feature point at time t, corresponding to xi(tp), and the

feature point at time tp, corresponding to xi′(t), respectively.

The pair of feature points between time t and tp are selected

when the corresponding feature points are mutually selected

as the same points as follows:

x̃(xi(tp); t) =

{

x̂(xi(tp); t) (i = i(i′(i)))
∅ (otherwise)

, (10)

2666

where ∅ indicates that no feature point at time t corresponds

to the i-th feature point xi(tp) at time tp, and the feature

points at time t that have no corresponding point at time tp,

are adjudged to be newly appearing feature points.

We assume that the image displacement between times t

and tp is small, and the feature point xi(t) at time t can be

matched with a feature point at time tp in the b× b adjacent

area of xi(t). The processes described in Eqs. (8)–(10) are

conducted for all the feature points belonging to R′(tp) and

R′(t), and we can reduce the computational load of feature

point matching in the order of O(M) by setting a narrowed

search range with a small value for b.

(2-b) Frame interval selection

To avoid accumulated registration errors caused by small

frame-to-frame displacements, the frame interval of feature

point matching is adjusted for feature point matching at time

t + ∆t using the following averaged distance among the

corresponding feature points at times t and tp:

d̄(t; tp) =

∑

xi(tp)∈Q(t;tp)

|x̃(xi(tp); t)− xi(tp)|

S(Q(t; tp))
, (11)

where Q(t; tp) is a set of the feature points xi(tp) at time

tp that satisfy x̃(xi(tp); t) 6= ∅ (i = 1, · · · ,M). S(Q(t; tp))
is the number of elements belonging to Q(t; tp).

Depending on whether d̄(t; tp) is larger than d0, n = n(t)
is determined for feature point matching at time t+∆t; the

frame interval of feature point matching is initially set to ∆t.

(2-b-i) d̄(t; tp) ≤ d0,

The image displacement between times t and tp = tp(t) is

too small for feature point matching. To increase the frame-

to-frame displacement at the next time t+∆t, the parameter

n(t+∆t) is incremented by one as follows:

n(t+∆t) = n(t) + 1. (12)

This indicates that the feature points at time t + ∆t are

matched with those at time tp(t+∆t) = t−n(t)∆t. Without

conducting any process in steps (3) and (4) below, return to

step (1) for the next time interval t+∆t.

(2-b-ii) d̄(t; tp) > d0
To reset the frame-to-frame displacement at time t+∆t,

n(t+∆t) is set to one as follows:

n(t+∆t) = 1. (13)

This indicates that the feature points at time t + ∆t are

matched with those at time tp(t+∆t) = t. Thereafter, go to

steps (3) and (4); the selected pairs of feature points, xi(t)
(∈ Q(t; tp)) and x̃(xi(t); tp), are used in steps (3) and (4).

(3) Transform estimation

Using the selected pairs of feature points, affine parameters

between the two images at times t and tp are estimated as

follows:

xT
i (t) =

[

a1 a2
a3 a4

]

x̃T (xi(t); tp) +

[

a5
a6

]

, (14)

= A(t; tp)x̃
T (xi(t); tp) + bT (t; tp), (15)

where aj (j = 1, · · · , 6) are components of the transform

matrix A(t; tp) and translation vector b(t; tp) that express the

affine transform relationship between the two images at times

t and tp. In this study, they are estimated by minimizing the

following Tukey’s biweight evaluation functions, E1 and E2:

El =
∑

xi(tp)∈Q(t;tp)

wli · d
2
li (l = 1, 2). (16)

Deviations d1i and d2i are given as follows:

d1i = |x′′

i − (a1x
′

i + a2y
′

i + a5)|, (17)

d2i = |y′′i − (a3x
′

i + a4y
′

i + a6)|, (18)

where x̃(xi(t); tp) = (x′

i, y
′

i) and x′′

i (t) = (x′′

i , y
′′

i) indicate

the temporally estimated location of the i-th feature point at

time t in Tukey’s biweight method. The following processes

are iteratively executed to reduce estimation errors caused

by distantly mismatched pairs of feature points. Here, the

weights w1i and w2i are set to one and x′′

i (t) set to xi(t)
as their initial values.

(3-a) Affine parameter estimation

On the basis of the least squares method to minimize E1

and E2, affine parameters aj (j = 1, · · · , 6) are estimated by

calculating the weighted product sums of the xy coordinates

of the selected feature points as follows:





a1
a2
a5



=















∑

i

w1ix
′2
i

∑

i

w1ix
′

iy
′

i

∑

i

w1ix
′

i

∑

i

w1ix
′

iy
′

i

∑

i

w1iy
′2
i

∑

i

w1iy
′

i

∑

i

w1ix
′

i

∑

i

w1iy
′

i

∑

i

w1i















−1













∑

i

w1ix
′′

i x
′

i

∑

i

w1ix
′′

i y
′

i

∑

i

w1ix
′′

i















, (19)





a3
a4
a6



=















∑

i

w2ix
′2
i

∑

i

w2ix
′

iy
′

i

∑

i

w2ix
′

i

∑

i

w2ix
′

iy
′

i

∑

i

w2iy
′2
i

∑

i

w2iy
′

i

∑

i

w2ix
′

i

∑

i

w2iy
′

i

∑

i

w2i















−1













∑

i

w2iy
′′

i x
′

i

∑

i

w2iy
′′

i y
′

i

∑

i

w2iy
′′

i















. (20)

Using the affine parameters estimated in Eqs. (19) and

(20), the temporally estimated locations of feature points can

be updated as follows:

x′′T
i (t) =

[

a1 a2
a3 a4

]

x̃T (xi(t); tp) +

[

a5
a6

]

. (21)

(3-b) Updating weights

To reduce the errors caused by distantly mismatched pairs

of feature points, w1i and w2i are updated for the i-th pair

of feature points using the deviations d1i and d2i as follows:

[

w1i

w2i

]

=







































(

1−
d21i
W 2

u

)2

(

1−
d22i
W 2

u

)2









(d1i ≤ Wu, d2i ≤ Wu)

[

0
0

]

(otherwise)

. (22)

Wu is a parameter used to determine the cut point for

evaluation functions at u time iteration. As the number of

2667

iterations u is larger, Wu is set to a smaller value. Increment

u by one and return to step (3-a) during u ≤ U .

After U time iteration, the affine parameters between two

input images at times t and tp are determined, and the

affine transform matrix and vector are obtained. A(t; tp) and

b(t; tp) are accumulated with the affine parameters estimated

at time tp as follows:

A(t) = A(t; tp)A(tp), (23)

bT (t) = A(tp)b
T (t; tp)+bT(tp), (24)

where A(t) and b(t) indicate the affine parameters of the

input image at time t, compared with the input image at

time 0; A(0) and b(0) are initially given as the unit matrix

and zero vector, respectively.

(4) Image composition

To monitor the panoramic image at intervals of ∆t′, the

panoramic image G(x, t) is updated by attaching an affine-

transformed input image at time t to the panoramic image

G(x, t−∆t′) at time t−∆t′ as follows:

G(x, t) =

{

I(x′, t) (if I(x′, t) 6= ∅)
G(x, t−∆t′) (otherwise)

, (25)

where the panoramic image G(x, t) is initially given as an

empty image at time 0; x′ indicates the affine-transformed

coordinate vector at time t as follows:

x′T = A(t)xT +bT(t). (26)

Our video mosaicing algorithm can be efficiently executed

as a multi-rate video processing method. The interval in steps

(1) and (2) can be set to the shortest frame interval ∆t for

accurate feature point tracking in HFR vision, while that in

step (3) depends on the frame-to-frame image displacement;

it is the shortest frame interval when there is significant cam-

era motion, and it becomes larger when the camera motion

becomes smaller. On the other hand, the interval in step (4),

∆t′, can be independently set to dozens of millisecond to

enable the human eye to monitor the panoramic image.

III. SYSTEM IMPLEMENTATION

A. High-speed vision platform: IDP Express

To realize real-time video mosaicing at an HFR, our

video-mosaicing method was implemented on the high-speed

vision platform IDP Express [10]. The implemented system

consisted of a camera head, a dedicated FPGA board (IDP

Express board), and a PC. The camera head was highly

compact and could easily be held by a human hand. Its

dimensions and weight were 23×23×77 mm and 145 g,

respectively. On the camera head, eight-bit RGB images

of 512×512 pixels could be captured at 2000 fps with a

Bayer filter on its CMOS image sensor. The IDP Express

board is designed for high-speed processing and recording

of 512×512 images transferred from the camera head at

2000 fps. On the IDP Express board, hardware logic can be

implemented on a user-specified FPGA (Xilinx XC3S5000-

4FG900) for acceleration of image processing algorithms.

The 512×512 input images, and the processed results on the

th
re

sh
o
ld

in
g

su
b
m

o
d
u
le

gray
image

4 parallel

co
lo

r-to
-g

ra
y

co
n
v
e
rto

r

m
u
ltip

lica
tio

n
&

 su
m

m
a
tio

n

gradient
matrix C

4 parallel 4 parallel

tra
ce

 &
d
e
te

rm
in

a
n
t

∑
2'
x
I

∑
2'
y
I

∑ yx
II ''

4 parallel

20bit
×3×4

feature

m
u
ltip

lica
tio

n
&

 su
b
tra

ctio
n

CTr

Cdet

16 parallel

35bitx4

36bit×4
35bitx4

Harris Corner Detector Submodule

8bitx4

),(tF x

color
input
image

),(tI x
8bitx4

fe
a
tu

re
 p

o
in

t
co

u
n
te

r

4 parallel

),(txλ

feature
point
map

1bitx4

),(tB x),(tP x
8bitx4

number
of

feature
points

8bitx4
),(tF x

color
input
image

Feature Point Extraction Circuit Module

Fig. 1. Schematic data flow of a feature point extraction circuit module.

IDP Express board, can be memory-mapped via 16-lane PCI-

e buses in real time at 2000 fps onto the allocated memories

in the PC, and arbitrary processing for the execution of

software on the PC can be programmed with an ASUSTek

P5E mainboard, Core 2 Quad9300 bulk 2.50 GHz CPU,

4 GB memory, and a Windows XP Professional 32-bit OS.

B. Implemented hardware logic

To accelerate steps (1-a) and (1-b) in our video mosaic-

ing method, we designed a feature point extraction circuit

module in the user-specific FPGA on the IDP Express;

steps (1-a) and (1-b) have a computational complexity of

O(N2). The other processes (steps (1-c), (2), (3), and (4))

were implemented in software on the PC because, with their

computational complexity of O(M), they can be accelerated

by reducing the number of feature points.

Figure 1 is a schematic data flow of the feature point

extraction circuit module implemented in the FPGA on the

IDP Express board. It consists of a color-to-gray converter

submodule, a Harris feature extractor submodule, and a

feature point counter submodule. Raw eight-bit 512×512

input color images with a Bayer filter, F (x, t), are scanned

in units of four pixels from the upper left to the lower

right using X and Y signals at 151.2 MHz. The color-to-

gray converter submodule converts RGB images into eight-

bit gray-level images I(x, t) in parallel with the four pixels

after RGB conversion for input images with a Bayer filter.

In the Harris feature detector submodule, I ′x and I ′y are

calculated using 3×3 Prewitt operators, and
∑

I ′2x ,
∑

I ′xI
′

y ,

and
∑

I ′2y in the adjacent 3×3 pixels (a = 3) are calculated

as 20-bit data using 160 adders and 12 multipliers in parallel

in units of four pixels at 151.2 MHz. The feature λ(x, t) is

calculated as 35-bit data by subtracting det C(x, t) with a

three-bit shift value of (Tr C(x, t))2 in units of four pixels

when κ = 0.0625; 16 multipliers, 24 adders, and four three-

bit shifters are implemented for calculating λ(x, t).
The feature point counter submodule can obtain the posi-

tions of feature points as a 512×512 binary map B(x, t) by

thresholding λ(x, t) with a threshold λT in parallel in units

of four pixels at 151.2 MHz; B(x, t) indicates whether a

feature point is located at pixel x at time t. The number of

feature points in the 5×5 adjacent area (p = 5) is counted

for all the feature points as a 512×512 map P (x, t) using

96 adders in parallel in units of four pixels; P (x, t) is used

for checking closely crowded feature points in step (1-c).

2668

The color input image F (x, t) and the number of feature

points P (x, t) are outputted to FIFO memory for an external

PC with X and Y signals. The delay time in outputting

F (x, t) and P (x, t) using the feature point extraction circuit

module is 45 clocks (1 clock = 13.2 ns) after the raster scan-

ning has been performed, while the delay time in outputting

them to the PC is one frame (0.5 ms).

C. Specification

We implemented steps (1-a) and (1-b) of the above circuit

module in the FPGA (Xilinx XC3S5000-4FGG900) on the

IDP Express board. The resources consumed by the FPGA

are listed in Table I. The extracted feature points can be

outputted to the PC for 512×512 images at 2000 fps.

Steps (1-c), (2), (3), and (4) were implemented in software

on the PC, and the following parameters were used in this

study. The threshold P0 in step (1-c) was determined in

order to reduce the number of feature points (M ≤ 300),

depending on the experimental scene. Step (2-a) executed

5 × 5 (m = 5) template matching with bidirectional search

in the 31 × 31 adjacent area (b = 31). In step (2-b), the

frame interval of feature point matching was determined with

d0 = 7. Step (3) executed Tukey’s biweight method with

L = 10 iteration; the parameters for the biweight evaluation

functions were set at Wl = 11− l (l = 1, · · · , 10).
Table II summarizes the execution time taken for video

mosaicing. The execution times of steps (1-a) and (1-b)

include the image acquisition time for a 512×512 image on

the FPGA board. The total execution time of steps (1), (2),

and (3) is less than ∆t = 2 ms; it was worst when step (3)

was executed at all the frames. The execution time of step

(4) was much larger than that of the other steps. Step (4) was

implemented as a multi-threaded process that was not able

to disturb the real-time processes of the other steps when its

interval was set to ∆t′ = 60 ms for monitoring by the human

eye. We confirmed that video mosaicing can be executed for

512×512 images in real time at 500 fps, including feature

point extraction and tracking for M ≤ 300.

TABLE I

FPGA RESOURCE CONSUMPTION.

Device Type Xilinx XC3S5000

Slice 5,864/33,280 (17%)

Slice Flip Flop 9,015/66,560 (13%)

4 input LUT 6,038/66,560 (9%)

Bounded IOB 195/633 (30%)

Block RAM 15/104 (14%)

MULT18X18s 28/104 (26%)

GCLK 2/8 (25%)

TABLE II

EXECUTION TIMES.

time [ms]

(1-a,1-b) Feature extraction / Thresholding@ 0.86

(1-c) Selection of feature points 0.05

(2-a) Template matching 0.97

(2-b) Frame interval selection 0.01

(3) Affine transform estimation 0.09

(4) Image composition 51.43

Total ((1)–(3)) 1.98

Fig. 2. Experimental scene.

input image

extracted feature points

t = 0.2 s t = 0.4 s t = 0.8 s t = 1.0 st = 0.6 s

Fig. 3. Input images and extracted feature points.

0

300

600

900

1200

0 1 2 3 4 5

[pixel]

y posi!on

0

800

1600

2400

3200
[pixel]

x posi!on

0

20

40

60
[ms]

interval of feature point matching

!me [s]

Fig. 4. Frame interval of feature point matching, and xy coordinates of
translation vector.

IV. EXPERIMENT

In this section, we present the experimental results of real-

time HFR video mosaicing for an outdoor scene captured

using a camera head moved quickly and periodically by a

human hand. Figure 2 shows the experimental outdoor scene.

It was captured from the top of an eight-story building in

Hiroshima University by an operator who manually moved

the hand-held camera head with his hand from left to right

with periodic up-and-down motions approximately five times

per three second, and then decelerated the camera’s motion.

The frame rate and exposure time of the IDP Express system

were set to 500 fps and 0.25 ms, respectively. To select 300

feature points or less from a 512×512 image, the threshold

parameters were set to λT = 5× 107 and P0 = 25.

Figure 3 shows the five-input image sequence and the

extracted feature points, taken at intervals of 0.2 s. The affine

2669

t=0.0s

t=1.0s

t=2.0s

t=3.0s

t=4.0s

t=0.5s

t=1.5s

t=2.5s

t=3.5s

t=4.5s

Fig. 5. Synthesized panoramic images

matrix and translation vector were set as unit matrix and zero

vector, respectively, at t = 0. It can be seen that most of the

feature points in the input images were correctly extracted.

Figure 4 shows the frame interval of feature point matching,

and the x- and y-coordinates for translation vector b(t) for

t = 0.0–5.0 s. Corresponding to the camera’s motion, it can

be seen that a short frame interval was set for the high-speed

scene, and a long frame interval for the low-speed scene.

Figure 5 shows the synthesized panoramic images of

3200×1200 pixels, taken at intervals of 0.5 s. With time,

the panoramic image was extended by accurately stitching

affine transformed input images over the panoramic image

at the previous frame, and large buildings and background

forests on the far side were observed in a single panoramic

image at t = 4.5 s. These figures indicate that our system

can accurately generate a single synthesized image in real

time by stitching 512×512 input images at 500 fps when

the camera head is quickly moved by a human hand.

V. CONCLUSION

We developed a high-speed video mosaicing system that

can stitch 512×512 images at 500 fps to give a single

synthesized panoramic image in real time. On the basis of the

experimental results, we plan to improve our video mosaicing

system for more robust and long-time video mosaicing,

and to extend the application of this system to video-based

SLAM and other surveillance technologies in the real world.

REFERENCES

[1] B. Zitova and J. Flusser, “Image registration methods: A survey,”
Image Vis. Comput., 21, 977–1000, 2003.

[2] J. Shi and C. Tomasi, “Good features to track,” Proc. IEEE Conf.

Comput. Vis. Patt. Recog., 593-600, 1994.
[3] D.G. Lowe, “Distinctive image features from scale-invariant key-

points,” Int. J. Comput. Vis., 60, 91–110, 2004.
[4] M. Kourogi, T. Kurata, J. Hoshino, and Y. Muraoka, “Real-time image

mosaicing from a video sequence,” Proc. Int. Conf. Image Proc., 133–
137, 1999.

[5] J. Civera, A.J. Davison, J.A. Magallon, and J.M.M. Montiel, “Drift-
free real-time sequential mosaicing,” Int. J. Comput. Vis., 81, 128–137,
2009.

[6] R.H.C. de Souza, M. Okutomi, and A. Torii, “Real-time image
mosaicing using non-rigid registration,” Proc. 5th Pacific Rim Conf.

on Advances in Image and Video Technology, 311–322, 2011.
[7] Y. Watanabe, T. Komuro, and M. Ishikawa, “955-fps real-time shape

measurement of a moving/deforming object using high-speed vision
for numerous-point analysis,” Proc. IEEE Int. Conf. Robot. Autom.,
3192–3197, 2007.

[8] S. Hirai, M. Zakoji, A. Masubuchi, and T. Tsuboi, “Realtime FPGA-
based vision system,” J. Robot. Mechat., 17, 401–409, 2005.

[9] I. Ishii, R. Sukenobe, T. Taniguchi, and K. Yamamoto, “Develop-
ment of high-speed and real-time vision platform, H3 Vision,” Proc.

IEEE/RSJ Int. Conf. Intelli. Rob. Sys., 3671–3678, 2009.
[10] I. Ishii, T. Tatebe, Q. Gu, Y. Moriue, T. Takaki, and K. Tajima, “2000

fps real-time vision system with high-frame-rate video recording,”
Proc. IEEE Int. Conf. Robot. Autom., 1536–1541, 2010.

[11] C. Harris and M. Stephens, “A combined corner and edge detector,”
Proc. the 4th Alvey Vis. Conf., 147–151, 1988.

2670

