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Abstract— Autonomous capabilities for manipulating ran-
domly piled objects may enhance current methods of path
planning and open a new field of development for mobile
manipulation and Urban Search And Rescue (USAR) robotics.
This paper introduces the challenge of achieving such manipu-
lation capabilities and as a first step presents three algorithms,
including a proposed novel solution, for the selection of objects
to remove from a pile. The proposed algorithm determines
a removability rank for each object according to the degree
of its encapsulation within other objects. Using the contact
vectors of the examined object, it is possible to obtain the
motions that will not violate the object’s unilateral contact
constraints. The removability rank of the object is proportional
to the union of all such motions. All algorithms were tested in
simulation in full and partial knowledge modes, and evaluated
on a physical robot with a simple manipulator and sensor. This
work contributes: the introduction of an important autonomous
manipulation challenge, the solution of which will be useful in
the field of manipulation in general and USAR in particular;
a specific novel algorithm for the construction of disassembly
plans for piled objects; and an experimental evaluation of three
algorithms targeted at such construction.

I. INTRODUCTION AND MOTIVATION

This paper introduces the first steps toward Autonomous
Disassembling of Randomly Piled Objects with Minimal
Perturbation (ADOM) by robotic assessment and manipu-
lation (see Fig. 1). We chose to focus on the challenge of
applying such a method to the field of Urban Search And
Rescue (USAR) missions following catastrophic events such
as earthquakes. In particular, three scenarios motivated the
creation of this method and its application to USAR: 1) piled
objects may encapsulate a survivor; 2) piled objects may
block a path in a situation where the use of brute force such
as shoveling might endanger the stability of the collapsed
building; and 3) navigation through disordered environments
may inadvertently cause further damage [1] if piled objects
are not considered.

Dangerous environments for human rescuers, large areas,
copious rubble, and human casualties have all pushed USAR
teams to seek new aids, increasing the use of robots for
USAR missions [1]. Such robots are currently controlled via
teleoperation [2] but autonomous capabilities are developed
and encouraged through contests such as RoboCup [3]. The
need for increased autonomy in USAR manipulation tasks
arises from three considerations: 1) poor communications
in USAR environments due to physical interference [4]
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Fig. 1: Goal: a robot clears a path in a USAR mission autonomously or
semi-autonomously.

increase the risk that a robot fail and be abandoned, if
the robot depends on teleoperation and lacks autonomous
capabilities [5]; 2) increased autonomy may improve the
human to robot ratio, reducing the number of operators at
risk [4] and increasing the coverage area; and 3) the manual
control of manipulation can be highly cumbersome, and
autonomous manipulation would allow the operator to focus
on other, possibly more important, tasks.

Given the scenarios considered, it is clear why safety is
the most important objective of an ADOM method.

The current development of USAR robots focuses on
aspects such as locating survivors, giving initial medical
stabilization, extricating trapped survivors and assessing the
structural stability of the work environment. By incorporating
manipulation, the method discussed below can potentially
enhance the scope of structural stability assessment to allow
for its use in the phases of locating and extricating survivors.

The paper presents and discusses the ADOM problem
which requires relaxing two assumptions currently used by
state-of-the-art work: well-structured piles and full knowl-
edge of objects’ properties and poses. To attempt solving
the problem, the method investigated in this paper builds on
related work that is presented in Section II. This work consid-
ers the disassembly of a pile as a series of separate iterations,
each consisting of the selection and removal of a single
object chosen by the algorithms presented in Section III.
Section IV presents and discusses the set-up and results of
simulating these algorithms in a full knowledge scenario and
in a more realistic partial knowledge scenario. Section V
portrays a set of proof-of-concept experiments in which the
algorithms were applied to a set of real rectangular cuboids
using a simple robotic arm and sensor. To conclude, various
improvements and possibilities required and presented by the
proposed algorithm are discussed in Section VI.

II. BACKGROUND AND RELATED WORK

In recent years, there have been attempts to deal with mo-
bile manipulation in urban environments, and some specif-
ically in cluttered environments. However, there have been
no direct attempts to solve the problem of disassembling

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4983



randomly piled objects with minimal perturbation (i.e.,
minimal disturbance of the piled objects’ poses). Here we
present a short review and discussion of current mobile
manipulation, perception and stability assessment approaches
related to this challenge.

A. Mobile Manipulation and Path Planning
Today’s state-of-the-art mobile manipulators deal with

cluttered environments [6] and piled objects [7]. They are,
however, focused on goals that permit pile collapse and
disturbance. This focus renders irrelevant some of the chal-
lenges associated with the disassembling of piles while
maintaining minimal perturbation. Classic path planning
algorithms consider objects blocking a path as immovable,
which causes failure on obstructed paths that a human could
have passed through by clearing objects. Even more sophis-
ticated mobile manipulation methods in the related domains
of rearrangement of movable objects [8] and path planning
among movable obstacles [9] consider path blockages to
consist of single movable pieces only. Piled objects cannot
be handled by such algorithms, which thus may be enhanced
by the method presented here.

B. Perception
Occlusions are known to cause perception problems for

autonomous robots. Currently, such situations may be ad-
dressed by the physical removal of occluders, for example
via operator intervention [10]. In the context of this work,
however, increased autonomy is a declared objective and
occlusions are inherent and cannot be removed. The inherent
nature of the occlusions prevents the use of methods such
as object identification following tabletop segmentation [11].
Other methods such as object classification based on feature
identification [12] are capable of handling some occlusions
but cannot be used in many USAR environments, since
in this context objects are often damaged and dirty (e.g.,
covered with dust). The most recent related development is
the singulation of piled objects by means of manipulation [7]
such as grasp attempts or perturbation pushes. However,
since the pile’s stability itself is in question, manipulating
objects prior to a stability assessment is not desired.

C. Manipulation and Stability Assessment
The closest problem to ADOM currently researched in the

field of robotics is that of Jenga playing robots [13]–[15],
which also need to handle the safe disassembling of multi-
object structures. However, these algorithms for selecting
an object to remove are either random [15] or rely on
highly organized and fully known structures. One of the
algorithms discussed below (Dynamics-Based Algorithm) is
based on the “Removal Feasibility Planner” phase undertaken
by such a Jenga playing robot [13]. However, this algorithm
fails under more realistic, partial-knowledge conditions, as
demonstrated in the following analysis of algorithms. The
work by Katz, et. al., [16], [17], which relates to our current
work, was published following the submission and review of
this paper. Although less attention was given to pile safety,
the work complements our own in many ways.

III. ALGORITHMS

Three novel ADOM object selection algorithms are pre-
sented: Centroid-Height Algorithm (CHA), a simple al-
gorithm for comparison only; Dynamics-Based Algorithm
(DBA), potentially useful but with some inherent short-
comings as shown later; and Kinematics-Based Algorithm
(KBA), a proposed method for ADOM. Each algorithm
considers the disassembly of a pile as an iterative process
of separate manipulation tasks (removals), according to the
general structure for pile interaction algorithms [7]. Before
each removal, the poses, properties and contact normals of
all objects are obtained and used as an input for an object
selection algorithm. Each of the three algorithms serves as
an object selector, analyzing different components of the
given data and returning the object deemed the safest to
remove. Following removal the process repeats itself until
all objects are cleared or, for the last algorithm only, until
no safe removal option is found.

Jenga playing robots handle problems of minimal pertur-
bation in certain environments that entail two major assump-
tions: 1) objects are stacked in a well-structured manner; and
2) full knowledge of the objects is available. Eliminating the
first assumption to extend the minimal perturbation problem
to randomly piled objects, along with relaxing the second
assumption (i.e., providing only partial knowledge of the
objects), are important, necessary, and logical next steps
toward manipulation capabilities that will be applicable to
real cluttered and unstructured environments. To allow a
meaningful investigation of the implications of relaxing these
major assumptions, some other assumptions akin to those of
Jenga robots were kept, such as decomposition of the prob-
lem into perception and manipulation phases, obtainability
of certain data through perception, and graspability of all
objects in a pile.

Specifically, for any object, each of CHA, DBA, and KBA
assumes the obtainability of centroid’s (center of volume)
position; pose and physical properties (e.g., density); and
contact normals, respectively. Any object is also assumed
to be graspable without disturbing other objects. A limit is
imposed to allow only one object to be manipulated at any
given time.

A. Centroid-Height Algorithm (CHA)
A basic intuitive observation might imply that if we need

to disassemble piled objects, we should likely start from the
top. CHA is built around this intuition and simply removes
the object with the highest geometric center. However, the
simplicity of this algorithm comes at a price. It may fail in
common scenarios when the object with the highest geomet-
ric center supports another object with a lower geometric
center, as seen in Fig. 2.

B. Dynamics-Based Algorithm (DBA)
Fig. 3 depicts an overview of DBA (Algorithm 1), which

consists of the following phases: 1) using the poses and
physical properties of the objects given as input, the pile is
simulated in a rigid body dynamics simulator; 2) an object
(the Candidate) is removed from the simulated pile; 3) the
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Fig. 2: Problematic choice of CHA. The geometric center of Object A is
higher than the geometric center of Object B. CHA will select and remove
Object A, causing Object B to fall.
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Fig. 3: An overview of DBA.

new poses of the remaining objects are recorded; 4) the
change of potential energy (∆U) is calculated for each of the
remaining objects and the removability rank of the Candidate
is equal to the maximum individual change of potential
energy; 5) the process is repeated for each piled object, which
is used as the Candidate in its turn; and 6) the Candidate with
the lowest rank is returned as the safest removal option.

Algorithm 1 Dynamics-Based Algorithm (DBA)
Input: Objects’ poses and physical properties
Output: The object predicted to result in the smallest individual ∆U

1: sort objects by increasing DynamicRank(ob jects[i],ob jects)
2: return ob jects[0]

DynamicRank(candidate, ob jects)
1: AddToSimulatedWorld(ob jects)
2: RemoveFromSimulatedWorld(candidate)
3: sort ob jects by decreasing ∆U(ob jects[i])
4: return ∆U(ob jects[0])

DBA alleviates the deficiencies of CHA by considering
not only the state of the Candidate but also the effect of
this Candidate’s removal on other objects. Given proper
input data, DBA will accurately return the safest removal
option. However, DBA requires full knowledge of the pose,
shape, size and other physical properties of every object in
the pile. This data is inherently problematic to obtain for
three dimensional piles, as some objects may be occluded.
Additionally, materials may not be known.
C. Kinematics-Based Algorithm (KBA)

1) Background – In order to find the objects that are least
encapsulated and thus safest to remove: 1) the contact nor-
mals can be viewed as a set of constraining screws; 2) we can
ask if there are any instantaneous rigid motions (twists) that
do not violate the constraints [18]; and 3) the removability
rank of a Candidate can be defined as proportional to the
integral of such motions. Instead of using general screws,
we chose a more restrictive approach that considers infinite
pitch screws, which correlate to translation-only motions.

2) Implementation – As seen in Fig. 4a, KBA (Algo-
rithm 2) receives the contact normals of each Candidate as an

(a) (b) (c) (d) (e)
Fig. 4: KBA process. The contact normals given as an input (a) define planes
(b), whose intersections points are found (c). The intersection points with a
positive projection on any of the contact normals are removed (d), and the
remaining points create a spherical polygon whose surface area (e) is taken
as the object’s rank.
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Fig. 5: Special cases for KBA. In (a) the contact normals of Object A
create a spherical polygon with a non-zero surface area, seen as the lune
with angle θ . In (b) Object B would rotate without the support of Object
A, demonstrating KBA’s disadvantage in lacking consideration of either
rotations, or the effects of a Candidate’s removal on other objects.

input. The contact normals are oriented to point away from
the Candidate’s centroid and are imposed on the point of
origin of a unit sphere. As a result, each contact normal now
defines a plane through the origin of the sphere, as seen in
Fig. 4b. As illustrated in Fig. 4c, we obtain the intersection
points of the great circles, which themselves are created by
intersecting the contact normals’ planes with the unit sphere.

Any movement direction that will violate the contact
normal constraints (i.e., result in pushing against an object
in contact with the Candidate) is a member of at least one
half sphere above the plane defined by one of the contact
normals. The union of a Candidate’s allowed movement
directions can be modeled as a unit sphere minus all such
half spheres. Equivalently, it can be modeled as a spherical
polygon (including a spherical triangle or a lune), whose
vertices are the great circles’ intersection points, excluding
the points that have a positive projection on any of the contact
normals (i.e., that are members of any half sphere defined
by a plane), shown in Fig. 4d.

The removability rank of a Candidate is defined as the
surface area of its spherical polygon, shown in Fig. 4e. The
rank is in the range of [0,2π], where a rank of 0 indicates
an immovable object and a rank of 2π indicates an object
on a plane.

A special consideration must be made for cases where
an object is supported from below by a Candidate whose
spherical polygon’s surface area is non-zero, as seen in
Fig. 5a. To handle this scenario, any Candidate that has a
contact normal with a negative projection on the gravity
vector is declared immovable (rank=0) regardless of its
spherical polygon’s surface area.

KBA only predicts an object’s removability based on its
state. As such, one of its main drawbacks is its lack of
consideration for the removal’s effect on other objects, as
exemplified in Fig. 5b. However, KBA prediction does not
require full knowledge of all piled objects and can thus be
useful for occluded scenes with objects of unknown physical
properties and material compositions.
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Algorithm 2 Kinematics-Based Algorithm (KBA)
Input: Unit vectors of contact normals of each object, pointing outwards.

Duplicates removed.
Output: The least encapsulated object or nothing if no safe option found.

1: sort ob jects by decreasing Kinemati-
cRank(ob jects[i].contactNormals)

2: if ob jects[0].rank > 0 then return ob jects[0]

KinematicRank(contactNormals)
1: for normal1 in set contactNormals do
2: for normal2 in set contactNormals do
3: if ||pro jgravitynormal2||< 0 then return 0
4: else if normal1! = normal2 then
5: put IntersectionPoints(plane1, plane2, unitSphere) in set

interPoints
6: for point in set interPoints do
7: for normal in set contactNormals do
8: if ||pro jnormal point||> 0 then
9: remove point from set interPoints

10: return PolygonSurfaceArea(interPoints)

IV. SIMULATED EXPERIMENTS

A. Set-up
The work in both simulated and physical experiments

(Section V) was done using the Robotic Operating System
(ROS) [19]. The simulation was performed using ROS’s
Gazebo simulator with the underlying Open Dynamics En-
gine (ODE) [20] rigid body dynamics simulator. A list
of 500 piles was randomly generated, keeping the num-
ber of objects per pile (y ∈ [5,25]) uniformly distributed.
The rectangular cuboids varied in dimensions (volume ∈
[0.01,0.09]m3) while their density was kept constant at the
value of concrete (2300 kg

m3 ). The rectangular cuboids were
randomly distributed in a defined space, which increased the
chances of a well-packed pile. To maintain the consistency of
testing conditions we ran the three algorithms on the entire
list of piles, allowing not more than a single removal from
each pile. For each pile, the poses of all rectangular cuboids
were recorded before and after the removal.
B. Knowledge Modes

Robots are required to act in real world environments with
varying levels of obtainable data. Decision making becomes
harder and more interesting as the knowledge of the work
environment is reduced. To provide an in-depth comparison
of the three algorithms, they were simulated in both an
ideal full knowledge scenario and in a more realistic partial
knowledge scenario.

1) Full Knowledge Mode – The three algorithms were
allowed to run with all available data as input. When using
the Gazebo simulator, this means the algorithms had access
to the full physical properties, states and contact normals of
all objects in a given pile.

2) Partial Knowledge Mode –The simulation ran exactly
the same as in the full knowledge mode, but with reduced
input data. A single point of view was selected, imitating
a robot’s sensor, and only data about objects assumed to
be observable by such a set-up were considered. Though
slightly artificial, observability was measured by the number
of observable vertices. Five vertices guarantee knowledge
of three dimensions for a rectangular cuboid, and were

Fig. 6: Mean change of potential energy (∆U) of the three algorithms in full
and partial knowledge modes, plotted against the number of piles tested.

TABLE I: Simulation Comparison of the Three Algorithms.

Algorithm CHA DBA KBA
Knowledge Full Partial Full Partial Full Partial
Mean ∆t(s) 5.5e-5 3.3e-4 9.8e1 3.3e1 2.5e-2 1.6e-2
Std. Dev, 1.4e-4 2.3e-4 1.0e2 1.6e1 1.3e-2 9.4e-3

Mean ∆U(J) 2.7e0 3.6e0 2.5e-1 2.4e0 4.9e-1 5.8e-1
Std. Dev. 19 26 5.5 18 7.3 6.7

% Increase N/A 31.9% N/A 880% N/A 16.6%
Sum ∆U 1.9e4 2.6e4 1.7e3 1.7e4 3.5e3 4.1e3

Mean ∆S(m) 6.5e-3 8.4e-3 7.2e-4 5.8e-3 1.4e-3 1.6e-3
Std. Dev. 3.4e-2 4.5e-2 1.2e-2 3.6e-2 1.6e-2 1.6e-2

% Increase N/A 27.8% N/A 701% N/A 12.0%
Sum ∆S 46 59 5.1 41 9.8 11.0

therefore chosen as the minimum requirement to define an
object as observable. To imitate the impact of a partial
knowledge based decision on the real world, in each instance
the chosen rectangular cuboid was removed from a pile that
was simulated with full knowledge.

C. Results
Fig. 6 demonstrates how the relative performance (i.e.,

how much better one algorithm-mode pair performs com-
pared to another) stabilizes with an increasing number of test
piles, to give the results of all 500 piles (shown in Fig. 7 and
Table I). The histograms in Fig. 7a and Fig. 7b show the mag-
nitude of individual rectangular cuboids’ movements when
applying the algorithms in full and partial knowledge modes
respectively. Table I constitutes a record of the algorithms’
runtimes and two measurements, which compare the states
of objects before and after the chosen Candidate’s removal:
change in potential energy ∆U and change in position ∆S
(Euclidean distance). The table’s “Percent Increase” rows
measure each algorithm’s decrease in performance when
downgraded from full to partial knowledge mode, measured
by the percent increase of the mean ∆U and ∆S respectively.

D. Discussion
First, it should be noted that the relative performance of

the three algorithms across the two modes is consistent when
measured by ∆U and by ∆S, though DBA is solely based on
the first measurement, whereas the two other algorithms do
not take the mass of objects into account at all. Second, it
should be noted that KBA identified a safe removal option
for all piles tested.

As expected, CHA’s performance is the poorest in both
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Fig. 7: Individual potential energy changes (∆U), following the removal of a single rectangular cuboid, in full (a) and partial (b) knowledge modes. The
wider histogram distribution to the right correlates to more individual changes in potential energy with large magnitudes, indicating a weaker performance.

full and partial knowledge modes, due to the limited pile
complexity it is capable of handling. Its performance de-
creases in partial knowledge mode, most likely because the
top object is invisible in some configurations.

The superior performance of DBA in full knowledge mode
is inherent and unmatchable since it has all the data required
to accurately simulate reality with no errors beyond those
of the rigid body dynamics simulator. Notably, with the
transition to partial knowledge mode, the performance of
DBA becomes almost as weak as that of CHA. This is a
consequence of the invisibility of supporting objects in some
piles, as exemplified in Fig. 8a. The initial misrepresentation
of simulated piles is inherent in DBA running on partial
knowledge, and causes the selection process to be nearly
random, with some exceptions exemplified in Fig. 8b.

Though KBA’s performance also decreases with the transi-
tion to partial knowledge mode, it is only a minor reduction.
Its performance is the best of all algorithms in this mode.
The smaller reduction in the performance of KBA compared
to DBA is due to the fact that computation depends on kine-
matics only, independent of dynamics. In other words, since
the visible objects’ initial states are not forced to deviate
from the conditions of reality during the KBA process, the
computation is performed on reduced but true data.

Compared to the two other algorithms, CHA is faster, but
its weak performance prevents its use for any complex piles.
Comparing between DBA and KBA, we have demonstrated
that KBA provides a better combination of lower dependency
on observability and significantly shorter runtime.

V. PHYSICAL DEMONSTRATIONS

A. Experimental Set-up
As seen in Fig. 9, a Kinect depth-camera (Microsoft

Corporation), and a simple Turtlebot-Arm (Willow Garage)

(a)

ViewpointViewpointViewpoint
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Fig. 8: (a) The supporting Object C is invisible, causing the pile to be
misrepresented in simulation and DBA’s result to be random. (b) Though
the pile is misrepresented in simulation, the hierarchy is kept true, allowing
for the proper selection of a removal object by DBA.

manipulator with four degrees of freedom that uses a simple
gripper, were used for the experimental set-up. To ensure a
constant transformation between the sensor and manipulator,
both were affixed to a tabletop. Rectangular cuboids made of
Lego were used as piled objects, as seen in Fig. 10a. Each
rectangular cuboid was kept hollow with external dimensions
of 31.8 mm×88.0 mm×24.1 mm.

B. Perception
Perception complexity was decreased for the physical

experiments by relaxing the constraints associated with ob-
jects in USAR environments being damaged and dirty. A
simplified version of object classification based on feature
identification was implemented in the form of color coding,
and each rectangular cuboid was marked on one of its sides
with a uniquely colored rectangle. Following color filtering,
Singular Value Decomposition [21] was employed on each
colored rectangle to obtain the rectangular cuboid’s pose. The
collected poses, together with hard-coded data of the objects’
dimensions (for all algorithms) and physical properties (for
DBA only), were used as the algorithms’ input. Naturally
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Fig. 9: Manipulator and sensor set-up.

(a) (b) (c)
Fig. 10: Object type (a) and test configurations (b) (c) used in experiments.

occurring perception uncertainties (specifically, inaccuracies
in perceived poses) existed for all algorithms. Artificial
perception uncertainties were further introduced to KBA by
altering objects’ dimensions by a factor greater than 1, thus
increasing chances of objects’ penetration.

C. Proof-of-Concept Experiments
Fig. 11 demonstrates the results of disassembling the pile

configuration seen in Fig. 10b using CHA, DBA, and KBA
respectively. The experiment demonstrates CHA’s failure to
handle piles which are not of the simplest configuration,
as explained in Fig. 2. It also illustrates DBA’s shortfall
in a partial knowledge scenario as explained in Fig. 8a.
Finally, the expected good performance of KBA in a partial
knowledge scenario is demonstrated. Fig. 12 demonstrates
the results of applying KBA to the pile configuration seen
in Fig. 10c which, as described in Fig. 5b, is currently an
unhandled case. The results and therefore conclusions of the
experiments are similar to those of the simulated experiments
described in Section IV.

VI. DISCUSSION

KBA’s current implementation considers translational mo-
tions only. Enhancing its capabilities to consider rotations
will likely provide some interesting results. As explained,
KBA only predicts the removability of an object based on
its state, without considering the removal’s effect on other
objects. Thus, with the exclusion of rotations, a negative re-
sult (i.e., no safe disassembly plan identified) can be trusted,
but a positive result cannot be fully trusted. While including
considerations for rotations may eliminate or reduce this
problem, it is very possible that the algorithm may still
be insufficient as a standalone method and may require a
complementary step to further analyze the removal selection
it provides. Such a step may include dynamic consideration
during the object selection phase (thereby integrating a
variation of DBA) and/or during the physical removal phase

Object Selection Object Removal Post-Removal

Fig. 11: Proof-of-concept demonstrations of the application of the three
algorithms to the pile configuration seen in Fig. 10b. CHA fails by picking
up the blue rectangular cuboid, which supports another rectangular cuboid.
DBA fails by selecting the obstructed yellow rectangular cuboid, resulting in
a grasp failure. KBA, however, correctly chooses the red rectangular cuboid
and therefore maintains the stability of the pile. Note that the pictures are
not taken from viewpoint of the Kinect, which only sees the red, yellow,
and blue rectangular cuboids.

Object Selection Object Removal Post-Removal

Fig. 12: Proof-of-concept demonstrations of the application of KBA to the
pile configuration seen in Fig. 10c. The algorithm picks the best object but
still fails, since the selected object supported another object, a critical factor
that was not foreseen by the algorithm.

with an abort-and-retry approach based on existing methods
(e.g., expected force threshold [14]).

While relaxing Jenga robots’ major assumptions, all algo-
rithms still assume the obtainability of certain data through
perception. As Sections IV and V discuss, however, for
ADOM evaluation it is possible to discount CHA and DBA
based on the inability to handle complex piles and partial
data resulting from occlusions, respectively. Since these in-
abilities are independent of assumptions made regarding the
obtainability of objects’ centroid position, and the physical
properties of objects, the question of whether these data are
truly obtainable in USAR environment becomes irrelevant. In
contrast, KBA assumes the obtainability of contact normals,
which, using Open Dynamics Engine, were indeed suc-
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Fig. 13: By artificially providing a support at the lines of contact normals
B1 and B2, it may be possible to remove Object B without Object A falling.

cessfully obtained for various object interactions, including
cases with some perception uncertainties in the physical
experiments described in Section V. Further investigation
as to the obtainability of contact normals with increased
perception complexity, and implications on KBA’s tolerance
of perception uncertainties and errors, should be performed.

KBA assumed any object to be graspable without disturb-
ing other objects. It can be shown that the less encapsulated
an object is within other objects (i.e., the higher its Kinematic
rank), the more grasping poses and obstacle-free paths to
such poses a manipulator is likely to have. Specific goals for
the use of ADOM might require clearing only a subset of
the piled objects rather than the entire pile (e.g., to make
an opening). Consideration of specific goals and specific
manipulators’ grasping constraints should be incorporated to
any algorithm (being KBA or another) proven to satisfy the
more fundamental requirements of ADOM.

In order for the method to serve as a base for a wide
range of robots, including single handed ones, KBA assumes
a limitation of manipulating at most a single object at a time.
However, as exemplified in Fig. 13, through KBA’s obtained
contact normals it may also be possible to find the support
needed to compensate for the removal of one object currently
supporting another. This may be done either by using the
second hand of a dual-arm robot or by removing object B
while pushing object A into a statically stable pose.

The low accuracy of predicting the effect of manipulating
piled objects given partial knowledge makes it difficult to
plan for more than a single manipulation task. This is a
prime reason for viewing pile disassembling as an iterative
process of separate removals. However, as ADOM algorithms
themselves are designed to make this exact prediction, im-
provement of their accuracy may allow for longer term plans.

Already in its current development KBA obtains all possi-
ble removal directions for a given object. As a side benefit,
the safest direction might be obtainable from these data (e.g.,
as the centroid of the spherical polygon).

VII. CONCLUSIONS AND FUTURE WORK

The challenge of Autonomous Disassembling of Ran-
domly Piled Objects with Minimal Perturbation (ADOM)
was introduced and discussed. Three algorithms for the
selection of objects to remove were presented and compared,
and the proposed novel Kinematics-Based Algorithm (KBA),
which is based on the contact normals between piled objects,
was shown to be superior. As a first step toward ADOM,
KBA presents some challenges and possible side benefits.

The examples investigated thus far have only dealt with
rectangular cuboids due to technical reasons unrelated to the

properties of any of the algorithms themselves. Our current
work focuses on the relaxation of this limitation along with
further investigation of perception requirements, to create
an integrated system which should be applicable to other
primitive or even complex shapes.
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