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Abstract— Achieving coordination between a lower-limb exo-
skeleton and its user is challenging because walking is a
dynamic process that involves multiple, precisely timed muscle
activations. Electromyographical (EMG) feedback, in spite of its
drawbacks, provides an avenue for assistance by enabling users
to reduce the level of muscle activation required for walking.
As an alternative to direct EMG feedback, we present a method
for exoskeleton control based on learning the activation pattern
of specific muscles during cyclic movements. Using the example
of pendular leg motion, the torque profile of one muscle group
(hip flexors) is learned in a two-step process. First, the estimated
torque profile is indexed to the phase of the swing movement
using an adaptive frequency oscillator (AFO). The profile is then
encoded using linear weighted regression. In the algorithm’s
assistive mode, the learned profile is reconstructed by means
of the AFO and without need for additional EMG input. The
reconstructed profile is converted into a torque profile to be
physically delivered by the exoskeleton. We tested our method
on a single-actuator exoskeleton that assists the hip joint during
stationary leg swing. The learning and assistance functions
were built on top of an admittance controller that enhances
the exoskeleton’s mechanical transparency. Initial tests showed
a high level of coordination, i.e. simultaneous positive work,
between the subjects’ hip flexor torque and the exoskeleton’s
assistive torque. This result opens the door for future studies
to test the users’ ability to reduce their muscle activation in
proportion to the assistance delivered by the exoskeleton.

I. INTRODUCTION

Different types of powered exoskeletons and orthoses have

been developed to provide gait training to patients with

locomotor disorders. By exerting controlled forces on the

user’s body, a lower-limb exoskeleton can provide a training

exercise that is both reproducible and quantifiable in its cli-

nical outcomes [22]. Repeatability allows the exoskeleton to

perform a more intensive training regime than is afforded by

conventional manually-assisted training, thereby accelerating

the recovery of neuromuscular function [17].

In order to assist the gait cycle effectively, control of

the walking task must be shared by the patient and the

exoskeleton. Different strategies for shared control have been

tested in recent years, such as timing the exoskeleton’s

response to the phases of the walking cycle [5], [14], leading

the patient towards a clinically correct trajectory via soft

constraints [4] and modifying the dynamic response of the

lower limbs by means of active admittance [1] or generalized

elasticities [21].

Coordination between the exoskeleton and the user is

challenging to achieve because walking involves very precise
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timing of muscle activations [3]. Thus another approach to

exoskeleton control consists of synchronizing the exoskele-

ton’s actions to muscle activation using electromyographical

(EMG) feedback [13], [12]. Although EMG-based estimation

is often complex [10] and has the problems of noise, poor

repeatability and inconvenience to the user, it offers the

advantage of ensuring that the exoskeleton and the muscles

perform simultaneous positive work. Sawicki et al. [20]

have employed this effect on a pneumatically powered ankle

exoskeleton to reduce the metabolic cost of walking.

As an alternative to direct EMG feedback, we present

a control method based on learning the muscle activation

patterns that occur during cyclic lower-limb movements. The

learned patterns are transformed into torque commands for

the exoskeleton with the object of assisting the user. Thus the

exoskeleton’s action is analogous to a supplementary muscle

or group of muscles. A key property of the method is that it

learns the correct timing of the assistive torques by linking

them to the phase of the periodic movement. For systems

displaying cyclic behavior, phase is defined as a variable

that grows continually over time and wraps around after

the system completes one cycle. Phase is typically defined

modulo 2π [6].

The learning and control method presented here is based

on the oscillator-based algorithms for on-line learning of

periodic movements developed in Gams [11] and Petric

[16]. The learning component uses an adaptive frequency

oscillator to extract the phase and fundamental frequency

of the leg movements, followed by weighted regression

learning to encode the desired muscle torque profiles. The

control system is designed such that, during assistance, the

frequency of the exoskeleton torques automatically adapts

to fluctuations in the frequency of the user’s movements.

The use of nonlinear oscillators for lower-limb assistance has

been investigated previously by Ronsse [19], but with a focus

on trajectory tracking instead of torque synchronization.

Our method is robust to fluctuations in EMG activity be-

cause it learns an averaged EMG activation profile over sev-

eral cycles of leg movement, and allows setting the amplitude

of the assistive torque arbitrarily. In this paper we describe

the fundamentals of the method as well as its implementation

on a single-actuator stationary exoskeleton designed to assist

the hip joint. Initial trials confirmed the controller’s ability

to produce synchronization between muscle-generated torque

and the exoskeleton’s assistive torque.
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II. LEARNING BASED ON ADAPTIVE FREQUENCY

OSCILLATORS

Nonlinear oscillators have the capability of synchronizing,

i.e. locking in phase with an external periodic signal. In

many cases this behavior is guaranteed only as long as

the input frequency is sufficiently close to the oscillator’s

intrinsic frequency. An adaptive frequency oscillator (AFO)

overcomes this limitation by including a learning rule that

enables the intrinsic frequency to adapt to the input frequency

over time [18]. Our assistive control algorithm uses a special

form of the AFO to synchronize the exoskeleton’s assistive

torque to cyclic movements of the human limb.

In the example used in this paper, the assisted movement

consists of swinging one leg, fully extended, from a standing

posture. The objectives are to learn the torque profile of the

hip flexor muscle group as a function of the phase of the

leg’s angular trajectory, and to retrieve the learned profile

in real time for the purpose of assistance. Thus the control

algorithm has two modes of operation:

• Learning mode. The user moves while coupled to the

exoskeleton, but the exoskeleton does not assist. The

algorithm learns the average envelope of the muscle’s

EMG output by performing two simultaneous opera-

tions in real time: extracting the phase and fundamental

frequency of the leg’s angle, and encoding the envelope

of the muscle EMG using local weighted regression.

• Assistive mode. The algorithm reproduces the learned

EMG envelope as a function of the phase. This signal,

conditioned and multiplied by an appropriate gain,

constitutes the assistive torque command.

A. Learning mode: phase extraction

The AFO-based dynamical system described in Petric

[16] is employed to extract the phase and frequency of

the leg’s angular movement in real time. A single AFO is

combined with a feedback structure that performs a form

of adaptive, on-line Fourier analysis. The oscillator phase

tracks the phase of the fundamental component of the error

signal e(t) = θm(t)− θrec(t), where θm(t) is the measured

angle of the extended leg (with respect to vertical) and

θrec(t) is the reconstructed angle, given by a finite-term

Fourier decomposition. The dynamical system consists of

the following set of differential equations together with the

Fourier decomposition:

φ̇ = ω − ǫ e(t) sinφ (1)

ω̇ = −ǫ e(t) sinφ (2)

α̇k = η cos(kφ) e(t) (k = 0, . . . , Nf) (3)

β̇k = η sin(kφ) e(t) (4)

θrec =

Nf
∑

k=0

αk cos(kφ) + βk sin(kφ) (5)

where φ is the oscillator phase, ω is the oscillator’s intrinsic

frequency and ǫ is the coupling strength of the AFO. The

Fourier coefficients αk and βk are calculated on-line by

means of the adaptation rules (3) and (4), where η is a

learning constant.

B. Learning mode: learning the muscle torque profile

We treat the envelope of the rectified EMG output, scaled

by an appropriate gain, as an estimate of the joint torque τh
exerted by the muscles. To generate the EMG envelope, the

raw EMG signal from the hip flexors is high-pass filtered

at 30 Hz, full-wave rectified and low-pass filtered at 6 Hz.

The filters employed are fourth-order Butterworth. The EMG

envelope u(φ) is learned by means of locally weighted

regression (see Gams [11]), using a representation based on

Gaussian kernel functions:

u(φ) =

Ng
∑

i=1

wiΨi(φ)

Ng
∑

i=1

Ψi(φ)

(6)

This representation uses a set of Ng periodic Gaussian

functions Ψi(φ) evenly distributed on the interval from 0

to 2π:

Ψi(φ) = exp(h(cos(φ− ci)− 1)) (7)

ci =
2π(i− 1)

Ng

(i = 1, . . . , Ng) (8)

Learning consists of finding, for each function Ψi(φ), the

associated weight wi using recursive least squares with a

forgetting factor λ. Given the system’s state at the j-th time

interval, the weights are updated using

wi(j + 1) = wi(j) + Ψi(φ(j))Pi(j + 1)ei(j) (9)

Pi(j + 1) =
1

λ

(

Pi(j)−
Pi(j)

2

λ
Ψi(φ(j))

+ Pi(j)

)

(10)

ei(j) = u(j)− wi(j) (11)

where Pi is the inverse covariance. For the present study we

chose the following parameter values: ǫ = 20, η = 2, Nf =
20, Ng = 24, h = 2.5Ng and λ = 1 (no forgetting effect).

C. Learning mode: example

Fig. 1 represents the process of learning the torque profile

of the hip flexor muscles during uniform leg swing. In this

example, one adult male subject swung the leg at a uniform

frequency for 20 seconds. The extended leg’s angle θm(t)
was measured using the exoskeleton’s encoder. (Details on

the exoskeleton’s operation are given in Section III.) Both

θm(t) and the EMG from the hip flexors were read at a

sampling rate of 200 Hz. In order to elicit EMG bursts of

sufficient amplitude, and given that EMG amplitude increases

significantly with swing frequency, the subject tracked a ref-

erence frequency of 1.0 Hz, considerably higher the typical

natural frequency value of 0.64 Hz [7]. A computer display

showed the subject a real-time trace of his instantaneous

swing frequency ω(t) along with the reference (Fig. 3(c)).
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Fig. 1. Learning a muscle torque profile with an adaptive frequency oscillator. (a) θm(t) is the angular trajectory of the leg during uniform swing. (b)
On-line Fourier analysis: coefficients αi of the frequency components of θm(t). (c) Instantaneous phase φ(t) and frequency ω(t) of the fundamental
frequency component of θm(t) as the subject attempts to track ωref . (d) The raw hip flexor EMG and EMG envelope u(t) are extracted simultaneously
with θm(t). (e) Learning of weight values wi associated with Gaussian kernel functions Ψi(φ). (Only four of the weights are shown in the graph.) (f)
Reconstructed EMG envelope urec as a function of φ.

The learning procedure can be considered complete when

the weight values wi reach a minimum of stability (Fig.

3(e)). The reconstructed EMG envelope urec(φ) can then

be generated with (6). As suggested by Fig. 3(f), urec(φ)
represents an averaged profile and is therefore free from

the unpredicted fluctuations in amplitude that often occur

in EMG activity.

III. EXOSKELETON PROTOTYPE AND BASELINE MODE

A. Hip exoskeleton prototype: hardware and experimental

station

The assistive control algorithm was tested on a single-

actuator stationary exoskeleton designed to assist the hip

joint while swinging the leg. The prototype was designed

with a view to developing a bilateral exoskeleton capable

of assisting the swing phase of walking, in which muscle

activation occurs mainly in the hip flexors. This exoskeleton

architecture aims to reduce the metabolic cost associated with

high stepping frequencies [15].

The experimental station featuring the 1-DOF exoskeleton

is shown in Fig. 2. The exoskeleton is designed to act

fundamentally as a pendulum that swings on the user’s

sagittal plane. The actuator is a Maxon EC90 electronic-

commutation flat motor (Maxon Motor, Switzerland) with a

nominal power rating of 90 W and a stall torque of 4.53

N-m. The motor drives the exoskeleton’s arm mechanism

through a harmonic drive with a 50:1 reduction ratio. The

angular position of the motor shaft is measured with a 2,000-

count encoder. The torque applied to the arm is measured

by means of a single-axis load cell mounted on a custom-

designed mechanism (Fig. 2(d)).

The exoskeleton’s arm applies force to the user’s thigh on

the sagittal plane by means of a custom-built brace made

of molded plastic. In order to compensate for misalignments

between the exoskeleton and the user’s leg, the arm features

two passive degrees of freedom in addition to the actuated

one (Fig. 2(c)). The exoskeleton arm is mounted on a

hinge in order to accommodate small deviations of the thigh

(abduction and adduction) from the sagittal plane. The brace

is mounted on a sliding joint to accommodate misalignment

between the motor axis and the center of the hip joint.
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(a) (b) (c) (d)

Fig. 2. Design of the stationary 1-DOF exoskeleton. (a) Complete experimental station with 1-DOF exoskeleton in use. (b) The exoskeleton arm is
coupled to the subject’s thigh by means of a sliding molded-plastic brace. (c) Detail of the exoskeleton’s actuator assembly and arm mechanism. In order to
accommodate changes in the alignment of the leg, the exoskeleton arm features two passive DOFs in addition to the active one. (d) Load cell mechanism
for measuring torque. Two plates, connected by a freely sliding pin joint, are also linked together by the load cell. The reaction plate is rigidly coupled to
the actuator shaft; the other plate is coupled to the exoskeleton arm. The net torque acting on the arm can therefore be computed as τp = F · R, where
F is the measured force on the load cell and R is the “lever arm” of the load cell relative to the pin joint.

Fig. 3. Exoskeleton control diagram. (a) Admittance control. The primary input to the virtual admittance model is the interaction torque τp. In the assistive
mode, a computed torque τa is added to the input. The output is the reference state trajectory x

′

ref
(t). This output is run through a lead compensator in

order to prevent any occurrence of limit cycles due to mechanical play in the load cell mechanism. The resulting state trajectory xref (t) is tracked by an
LQ regulator. (b) Learning mode: using the extracted phase φ of the swing movement, the averaged EMG envelope is learned through locally weighted
regression. The learning output is the weights array w. (c) Assistive mode: the learned weights w are employed to reconstruct the averaged EMG envelope,
urec. This envelope is indexed to current phase, with the possible addition of a phase lead ∆φ. The reconstructed envelope is processed (Section IV) in
order to generate a usable assistive torque τa.

B. Baseline mode: admittance control

The exoskeleton has a baseline mode of operation in which

it tracks the movements of the user’s leg without providing

any assistance. This mode employs admittance control to

mask the mechanical impedance of the transmission from

the user, particularly the friction in the harmonic drive. Ad-

mittance control makes the exoskeleton highly backdriveable,

allowing the user to move the leg with relatively low increase

in effort. The exoskeleton drive follows a virtual admittance

model composed of inertia moment Ide , damping coefficient

bde , and stiffness coefficient kde . For the trials presented here

the selected values were Ide = 0.1 kg-m2, bde = 0.05 N-

m/(rad/s) and kde = 0.1 N-m/rad. Chosen kde provides a

moderate bias torque to ensure the exoskeleton arm returns

to vertical when not coupled to the subject’s leg.

Fig. 3 shows a block diagram of the complete exoskeleton

control. The primary input to the admittance control is the

net torque τp acting on the exoskeleton arm, as measured by

the load cell. We refer to this quantity as the “interaction”

torque. The control input is converted to a reference state

trajectory xref (t) = [θref , θ̇ref ,
∫

θref dt]
T to be tracked

by the exoskeleton arm using a linear-quadratic (LQ) reg-

ulator. Thus the control’s capacity to emulate the desired

admittance is directly dependent on the tracking accuracy of

the LQ regulator. The control system was implemented in

Matlab and Simulink (The Mathworks, Natick, MA, USA)

and converted to real-time executable code with a 200 Hz

sampling rate using Matlab’s xPC Target toolbox.
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Fig. 4. Assistive torque generation. (a) u′

rec(φ): reconstructed EMG
envelope with baseline removed; τ ′a(φ): envelope after attenuation of the
lower amplitudes. In the plot shown, the peak values of both signals have
been matched to highlight the attenuation effect. (b) Full assistive torque:
in order to assist backward motion, the torque profile τ ′a(φ) is shifted 180◦

in phase and multiplied by -1. A phase shift ∆φ may be added in order
to compensate the phase lag introduced by the filtering of the EMG signal.
An even larger value of ∆φ can make τa anticipate the muscle torque for
the purposes of improving the assistive effect.

IV. ASSISTIVE MODE: RECONSTRUCTED MUSCLE

TORQUE

In the assistive mode, the learned muscle torque profile

is reconstructed and used to generate an assistive torque τa.

This signal is applied as a feedback input to the admittance

model (Fig. 3). Physical assistance to the user’s limb comes

through the interaction torque τp, specifically by the way

in which τp is shaped by the τa feedback. By acting in

coordination with the user’s muscle activation, τp is expected

to facilitate the user’s movements.

The first step in generating τa is to produce a reconstructed

EMG envelope urec(φ) using (6), where φ as before is the

phase of the leg angle θm extracted on-line. The next step is

to remove the effects of baseline noise in the EMG signal.

Baseline noise causes the EMG envelope to have nonzero

value even during intervals of negligible muscle activity (Fig.

1(d)), which results in the reconstructed envelope similarly

being nonzero at all times (Fig. 1(f)). In order to avoid

applying unnecesary assistance in the absence of muscle

activity, we devised the following filtering scheme:

u′

rec(φ) = urec(φ) − min
φ⊂[0,2π)

urec(φ) (12)

τ ′a(φ) = Kτ [1− exp(−Ko u′

rec(φ))] (13)

Intuitively, (13) removes the effects of EMG noise by

attenuating the lower-amplitude content of u′

rec(φ), while

allowing higher amplitudes to pass nearly unaltered. The gain

Kτ is selected such that the torque profile τ ′a(φ) has the peak

value of our choice.

It must be noted that the torque profile learned from the

hip flexors only acts during the forward phase of the swing

motion. In order to balance the assistive action, it would in

principle be necessary to learn the torque profiles of one

or more antagonists to the hip flexors. However, to keep

the present study as simple as possible, we chose instead

to generate a complementary assistive torque by taking the

0

10

20

30

 

 

0

0.5

1

 

 

0 5 10 15
0

0.01

0.02

t (s)

 

 

 

 

 

 

 

 

θ
peak

 (deg)

 

 

 

 

 

ω/2/π (Hz)

220 225 230 235 240
 

 

 

t (s)

 

 

u(t)

θ

Fig. 5. Tracking a combination of reference swing amplitude (θ =30◦) and
reference swing frequency (1 Hz) while using the exoskeleton in baseline
condition. The bottom graph shows the EMG envelope u(t) of the hip flexor
group. The peaks of the envelope are marked with circles for clarity.

negative of τ ′a(φ) and shifting it 180◦ in phase. Thus the

total assistive torque, τa(φ) (Fig. 4) is given by

τa(φ) = τ ′a(φ +∆φ)− τ ′a(φ+∆φ+ 180◦) (14)

This strategy might be considered suboptimal because the

complementary torque does not coordinate with any specific

muscle. However, as we show in Section V, the exoskeleton

torque generated according to (14) nevertheless produces

the desired coordination with the hip flexors during forward

motion.

V. INITIAL EXPERIMENTAL TRIALS

Our proposed control aims to provide assistive torques

similar in timing and shape to those generated by the

muscles, while avoiding two important drawbacks of direct

EMG feedback: the inconvenience of having to use of EMG

electrodes continually, and having to deal with the fluctu-

ations in EMG amplitude that occur even during uniform

movements. To provide some perspective on the latter, we

present first the result of a simple test.

A male subject swung his leg while coupled to the

exoskeleton in baseline (no assistance) mode. The subject

was shown an image of his leg in motion, in the form a

pendulum-like object on a computer monitor (see Fig. 5,

inset). To make the movement as uniform as possible, a

desired swing amplitude of 30◦ was presented on the same

display. Simultaneously, a reference swing frequency of 1.0

Hz was given in the form of a short sound clip playing

every half cycle. The subject performed the exercise for

a total of 240 s; hip flexor EMG was recorded for the

entire trial. The results are shown in Fig. 5: although the

subject tracked both the amplitude and the frequency quite

well, there was considerable fluctuation in the amplitude of
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Fig. 6. Tracking a reference RMS angular speed Ωref while coupled to the exoskeleton, both in baseline and assistive modes. Plots show the computed
instantaneous RMS speed Ωm(t). In the experiment, a trace of Ωm(t) is shown to the subject on a computer monitor. The trace is similar to the above
plots but with lower time resolution; thus the subject does not see the high-frequency ’ripples’ occurring in these plots. For longer trials the trace scrolls
across the screen.
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Fig. 7. Tracking a reference RMS angular speed while coupled to the exoskeleton in assistive mode. Top row: raw EMG and EMG envelope; fluctuations
in the amplitude of the envelope’s “peaks” are readily apparent. Middle row: assistive torque τa(t) commanded to the exoskeleton actuators, and resulting
interaction torque τp(t) measured on the load cell. Bottom row: envelope u(t) of the hip flexors’ EMG compared to interaction torque τp(t) Phase
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Fig. 8. Tracking a reference RMS angular speed while coupled to the exoskeleton (baseline and assistive modes): instantaneous oscillation frequency
ω(t), as extracted by the AFO. A moderate increase in average frequency is observed in the assistive mode.

the EMG envelope u(t) throughout the exercise. The peak

values of u(t) had a coefficient of variation (std.dev/mean)

of 0.3487; by contrast, the period between peaks had a

coefficient of variation of only 0.1785 (mean 1.009 Hz). This

example illustrates the fact that an assistive control using

direct EMG feedback will yield uneven levels of assistive

torque, which in turn are likely to make adaptation to the

exoskeleton more difficult.

Ferris [9] has demonstrated that by coordinating an exo-

skeleton’s assistive force with the activity of a specific
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muscle, users can learn to reduce the muscle’s activity level

and consequently the metabolic cost of the task. We plan

to test this hypothesis for hip muscle activity during leg

swing, with the key difference that our device is driven by

a learned muscle torque profile as opposed to direct EMG

feedback. As an initial step, we conducted trials to examine

the level of coordination between the hip flexor torque and

the exoskeleton assistive torque, as well as possible effects

on the movement pattern of the leg.

Two male adult participants performed uniform leg swing

movements for 30 seconds, first in the baseline mode and

then in the assistive mode. Prior to the trial, their muscle

torque profile was learned by the exoskeleton control using

the procedure of Section II-C. This and the previous exper-

imental procedure were approved by the Human Research

Ethics Committee of the University of Technology, Sydney.

Subjects were shown a target value of root-mean-square

(RMS) angular speed, Ωref , to be matched by swinging

the leg. Because RMS angular speed can be achieved by

a wide range of combinations of swing frequency and swing

amplitude, the subjects were implicitly given freedom to

use the combination they found most manageable. The leg’s

instantaneous RMS angular speed Ωm(t) was computed

using a moving time window equivalent to twice the current

period of θm(t) and presented to the subject through a

computer graphic interface (Fig. 6).

For a comparable leg swing exercise, Doke [8] measured

peak hip torques of about 15 N-m for a reference swing

frequency of 0.9 Hz. Thus for the assistive mode we chose a

peak assistive torque (τa) of 5.0 N-m, or about about 1/3 the

typical hip muscle torque. For future studies we plan to set

the assistive torque taking into consideration differences in

body mass and height among subjects. To this effect we plan

to use a ground reaction force plate to measure the subject’s

hip torque while the subject swings the leg freely.

We estimated the coordination between the exoskeleton

and the user as phase synchronization between the interaction

torque τp and the hip flexor torque τh(t). Assuming a rigid,

overdamped coupling between the thigh and the brace, we

treated the extended leg and the exoskeleton arm as a single

rigid body subject to both torques. Ideally, these torques

should perform simultaneous positive work; under the single-

body assumption this simply means that both torques should

always be of the same sign.

In the absence of a direct measurement of τh(t), we

treated u(t) as an estimate of τh(t) for the purposes of phase

behavior. Fig. 7 (bottom row) shows plots of the interaction

torque τp(t) and the time-domain EMG envelope u(t) for

each subject. Inspection of the plots suggests that a high

degree of coordination was achieved in the assistive mode

between the muscle torque and the actuator-supplied torque.

By contrast, the torques tended to oppose each other in the

baseline condition. We quantified these effects by defining

the following coordination metric:

Cτ =

∫ tf

to
u(t)τp(t) dt

∫ tf

to
|u(t)τp(t)| dt

(15)

TABLE I

TRACKING A REFERENCE RMS ANGULAR WITH THE EXOSKELETON:

COORDINATION METRIC AND CORRELATION COEFFICIENT

Subject Baseline mode Assistive mode
Cτ ρs (p < 0.01) Cτ ρs (p < 0.01)

Subject 1 -0.70939 -0.064805 0.87029 0.74817

Subject 2 -0.81043 -0.29474 0.87359 0.59146

Clearly, the range of possible values of Cτ is [−1, 1],
with 1 representing “perfect” coordination, i.e. u(t) and

τp(t) being always of the same sign, and -1 representing

the torques always being opposed. To verify the association

between u(t) and τp(t), and given the monotonic relationship

between the two variables, we also obtained the Spearman

correlation coefficient, ρs. The results are presented in Table

I.

The assistive condition yielded a high level of coordination

Cτ between τp(t) and u(t), with significant association

between both variables. This suggests that indexing the

learned muscle torque profile to the phase of the leg angular

position is effective in ensuring coordination between the

exoskeleton’s output torque and the muscle’s activation.

From Fig. 8, subjects showed a moderate increase in swing

frequency during the assistive mode trials. However, their

tracking of the reference RMS speed was not noticeably

different from the baseline case. This effect is worth noting

because the learned torque profile is indexed to the phase of

the movement, and a such it is not a function of any specific

frequency. Thus the question is what induces the change in

swing frequency.

A possible explanation lies in the fact that a dynamical

system in closed-loop configuration with an AFO tends to

oscillate at the system’s natural frequency [6]. Since the

dynamic properties (i.e. admittance) of the exoskeleton are

the same in both the baseline and assisted conditions, the

change in oscillation frequency in assistive mode suggests an

increase in the natural frequency of the user’s leg itself. Such

an increase is possible if subjects increase the stiffness of the

hip joint during the exercise, specifically by co-contracting

an agonist-antagonist pair of muscles. Future experiments

will examine whether co-contraction at the hip joint actually

occurs, and whether it is overcome over the course of longer

trials.

VI. DISCUSSION

We proposed a method for coordination between muscle

activation and exoskeleton-generated assistance during cyclic

limb movements. At its core, the method uses an adaptive

frequency oscillator to learn the torque profile of a specific

muscle and index it to the phase of the cyclic movement. In

the assistive mode, the movement’s phase is used to generate

an assistive torque proportional to the learned muscle torque

profile. Because the timing of muscle activation tends to be

uniform during cyclic movements, the method guarantees a

high level coordination between the assistive torque and the

muscle torque.
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Indexing the assistive torque to the phase has the ad-

vantage of allowing automatic adaptation to fluctuations

in the frequency of the limb’s movements. Unlike other

EMG-based assistive strategies [13], [12], our method does

not require the use of EMG feedback during actual use

of the exoskeleton for assistance, thereby eliminating the

difficulties associated with unexpected fluctuations in EMG

signal levels and eliminating the inconvenience of wearing

EMG electrodes for the user.

Our approach to oscillator-based lower-limb assistance

differs from the method proposed by Ronsse [19] in that our

system learns the muscle torque profiles involved in a cyclic

lower-limb movement instead of the movement trajectory.

This is because our method aims at exploiting the user’s

ability to reduce their muscle activation levels in proportion

to the assistive torque provided by the exoskeleton. This form

of adaptation has been demonstrated before for proportional

EMG feedback by Gordon et al. [12]. We plan to investigate

whether comparable adaptation can be obtained by replacing

EMG feedback with the learned muscle torque profile. By

contrast, assistive methods based on trajectory control pose

the risk of leading to abnormal muscle activation patterns

[23]. Because AFO-based phase extraction can in principle

work with any joint angular trajectory that exhibits a uniform

cyclic behavior, we expect our control method to prove

suitable for assisting actual walking. Future studies will test

our scheme for learning and reconstruction of muscle torques

on a bilateral exoskeleton capable of assisting a user walking

on a treadmill.

Our method also differs from Ronsse’s in that it allows

controlling the exoskeleton’s mechanical transparency in-

dependently from the assistive action. In that method, the

strength of the assistance is controlled by the stiffness of a

virtual spring constraint, which introduces a tradeoff between

assistance and mechanical transparency, on account of the

stiffening of the spring. That effect can be problematic

because reduced transparency tends to offset the reduction

in metabolic cost that could theoretically be expected from

the assistive forces considered in isolation. In terms of

enhancing transparency, we have previously investigated the

use of active virtual admittance [1], [2] as a strategy for

simultaneously counteracting the exoskeleton’s inertia and

damping and assisting the user. Therefore we also plan to

investigate the concurrent use of active admittance control

with the assistive method presented here.
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