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Abstract— Multi-robot manipulation tasks are challenging
for robots to complete in an entirely autonomous way due to
the perceptual and cognitive requirements of grasp planning,
necessitating the development of specialized user interfaces. Yet
even for humans, the task is sufficiently complex that a high
level of performance variability exists between a novice and
an expert’s ability to teleoperate the robots in a sufficiently
tightly coupled fashion to manipulate objects without dropping
them. The ultimate success of the task relies on the skill level of
the human operator to manage and coordinate the robot team.
Although most systems focus their effort on forging a unified
connection between the robots and the operator, less attention
has been spent on the problem of identifying and adapting
to the human operator’s skill level. In this paper, we present
a method for modeling the human operator and adjusting the
autonomy levels of the robots based on the operator’s skill level.
This added functionality serves as a crucial mechanism toward
making human operators of any skill level a vital asset to the
team even when their teleoperation performance is uneven.

I. INTRODUCTION

Multi-robot systems can be very useful both for perform-
ing jobs that are beyond the capability of a single robot and
speeding task completion through parallelization of effort [1].
Yet managing a robot team can be overwhelming for a
single human operator, and improved telepresence is not
necessarily a solution for this problem since the operator
must maintain situational awareness over the whole team,
rather than a single robot. The use of adjustable autonomy
to reduce operator workload has shown promise in many
multi-robot tasks since the operator’s effort and attention is
used sparingly during critical sections of the task [2], [3].

In this paper, we present an adjustable autonomy approach
for the challenging problem of multi-robot manipulation. The
robots execute a lift and delivery task, under the guidance of
a human operator. The teleoperation interface must support
the user who is directing the robot’s navigation, manipulating
objects with an arm and gripper, and coordinating the robots
to jointly deliver objects to the goal. Failure to manage and
coordinate pickups can lead to dropped objects and slow
task completion times. Previous work in this area of multi-
robot user interfaces has focused on improving the operator’s
use of time and effort by detecting neglected robots [4]
and improving coordination through the use of teamwork
proxies [5].

However, one issue is that the same interface may not work
equally well for users with different skill levels; it may not
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be the case that “one size fits all”. A possible approach to
this problem is to allow the users to configure the interface
through the user of programmable macros [6]. Here, we
suggest that these expert-novice differences can be automat-
ically detected after a short period of use and used to guide
command decisions from the adjustable autonomy module.
However, rather than simply mapping user expertise onto a
single axis of competence, we model the user’s expertise on
the separate task components of navigation, manipulation,
and coordination. Based on previous user experiences, we
have observed that many of the operators perform extremely
very well during one section of the task, while doing poorly
on another. Having multiple axes of competence allows us to
model users that fit this profile and increase robot autonomy
to bolster the operator’s weaknesses.

In this paper we describe an adaptive user interface for
adjusting the autonomy of the robots based on the operator’s
skill level on three separate axes of competence. We present
a paradigm for learning a model of the user’s competences
from a short example teleoperation trace. In our multi-robot
manipulation task, the human operator coordinates a team of
two mobile robots to lift objects using an arm and gripper for
transport to the goal location. The household environment
contains a assortment of small and large objects, some of
which can be transported by a single robot and others that
require both robots to lift. Figure 1 shows a picture of the
team of robots cooperatively moving an object that cannot
be carried by a single robot. This cooperative pickup task
is an important component of many potential applications
of multi-robot systems, including cooperative assembly [7],
home service robot teams [8], urban search and rescue [9],
and patient recovery robot teams.

II. RELATED WORK

Four general approaches for improving human-robot in-
teractions are:

1) improving visualization of the environment to reduce
the cognitive load on the human operator [10];

2) building a multi-modal user interface that facilitates the
tasking of robots [11];

3) creating adjustably autonomous robots that can oper-
ate effectively when the operator’s attention is else-
where [12];

4) imbuing the robot with knowledge of human social
conventions [13].

The guiding principle behind the first two approaches is
the reduction of operator effort through good user design.
In particular, 3D user interfaces can provide a more natural
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Fig. 1. Two robots cooperate to lift an object under the direction of the
human operator. In the multi-robot manipulation task, the robots must lift
and deliver a series of objects of different sizes to the goal location.

metaphor for interactions with the physical world. Ricks,
Nielsen, and Goodrich [14] present an ecological interface
paradigm that fuses video, map, and robot pose information
into a 3-D mixed-reality display. Results from their user
studies show that the 3-D interface improves robot control,
robustness in the attendance of delay, awareness of the
camera orientation with respect to the robot, and the ability
to perform search tasks while navigating the robot.

Operator neglect was identified as an important factor by
Crandall et al. [15] who used an analysis of neglect and
interaction time to predict the performance of a team of
robots controlled by a single human. Wang and Lewis [5]
theorize that in multi-robot control problems where tasks and
robots are largely independent the operator sequentially ne-
glects robots until their performance deteriorates sufficiently
to require new operator input. This leads to poor performance
in tasks with higher coordination demands, such as when
the robots have differing sensing capabilities. Introducing a
teamwork proxy [16] that can enable the robots to coordinate
among themselves was shown to successfully increase robot
autonomy and decrease demands on the human operator.
Operator neglect can also be detected using hidden state
estimation techniques [4], [17] and compensated for by the
robots.

Adjustable autonomy, having the robots alter their level
of autonomy in a situationally-dependent manner, has been
used successfully in human-robot teams [18], [19]. In this
paradigm, the robots reason about the tradeoffs between
disturbing the human user vs. the risk of task errors. Here,
rather than focusing on the user’s interruption threshold or
distraction level, autonomy is adjusted based on the user’s
capability to perform different aspects of the task. Our adap-
tive user interface component analyzes human operator’s skill
level based on a short teleoperation segment and modifies the
level of robot autonomy.

Earlier work in this area has studied how an interface
can be adapted to the user’s profiles and preferences. For
example, Kawamura et al. [20] developed an agent-based

architecture for an adaptive human-robot interface, and Ah-
mad et al. [21] have done work on adaptive user interfaces
in educational systems. Adaptive intelligent tutoring systems
modify the performance of the ITS in response to a model of
the learner’s abilities [22]. However unlike adaptive intelli-
gent tutoring systems, our user interface models but does not
attempt to improve the user’s teleoperation skills. We believe
that the problem of attempting to train the users in addition
to compensating for their weaknesses, is an interesting area
for future work.

III. ROBOT PLATFORM

To examine this problem of multi-robot manipulation,
we constructed a pair of inexpensive robots by mounting
a robotic arm and gripper on a mobile wheeled base. The
Home and Urban Intelligent Explorer (HU-IE) system is
designed to be proficient at picking up light objects in a
household environment with either carpets or hard floors.
Having the arms on separate robots makes the pickup task
more challenging but allows the user to parallelize large
sections of the delivery task. Our robot includes the following
components: an iRobot Create, Acer Aspire One netbook,
the NXT 2.0 Robotics kit, a Logitech Communicate STX
webcam, Turtlebot shelves, and Tetrix Robotics parts. The
total cost per robot is around US $1000. Figure 2 shows the
robot architecture.

A. Base

The iRobot Create has a differential drive that allows left
and right wheel speeds to be independently specified and two
bump sensors for detecting physical collisions. In addition
to the internal Create sensors, we added an ultrasonic sensor
mounted on the claw of the robot to determine the distance
between the claw and the pickup object along with an
accelerometer to measure the arm angle. A small webcam
mounted on the robot arm presents a first-person perspective
to the user during teleoperation. An Acer netbook (Intel
Atom 1.6 GHz processor with Windows 7) functions as a
relay forwarding forwarding sensor information from the
Create sensors and webcam to the user interface.

B. Manipulator

The arm on the HU-IE robot was created using the LEGO
NXT Robotic Kit. It is 1.2 feet long and extends 8 inches
in front of the robot. The arm is actuated using three motors
and has an operating range of -45◦ to 90◦ in elevation. At
the end of the arm is a four tong claw with rubber grips
capable of grasping objects sized for a human hand. Textrix
Robotic Metal parts are used to bolt the arm to the iRobot
Create and serve as the rigid structure of the arm. A NXT
intelligent brick, containing a 32-bit ARM7 microprocessor,
is used to control the arm and communicate with all the
sensors and actuators. Commands from the user interface are
sent directly to the arm via Bluetooth, bypassing the Acer
netbook.
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Fig. 2. Connections between the HU-IE robot hardware components.

C. Mapping

The robots’ workspace is monitored using a separately
mounted Microsoft Kinect sensor. The Kinect provides RGB-
D data directly to the user interface which uses it to track and
display the location of the objects in the area. The position of
the robots, based on the internal Create odometry, is marked
on an occupancy grid and verified with the Kinect sensor. A
modified blob detection technique is used to detect the other
objects in the environment.

IV. USER INTERFACE

The user views the environment and interacts with the
robot team through our user interface running on a separate
Dell XPS M1530 laptop computer (Figure 3). In this paper,
we evaluate an adaptive version of the user interface that
learns a model of expert-novice differences for the various
aspects of the teleoperation task vs. a non-adaptive version.
The baseline user interface provides the user with a mirror
mode for simultaneously controlling both the robots in which
the second robot simultaneously executes a modified version
of the commands that the user has issued to the actively
controlled robot. This enables the robots to cooperatively lift
objects and drive in tandem to the delivery location.

The operator controls the robots using an Xbox 360
Gamepad controller as follows. The trigger buttons on the
Xbox 360 controller are used to toggle between the two
robots and to activate the mirror mode in the unmanaged
robot. The A,B,X,Y buttons are used to drive the mobile
base. The right button halts the actively managed robot. The
left and right analog sticks control the elevation and azimuth,
respectively, of the robot arm. The claw grip is controlled by
the D-pad on the Xbox 360 controller.

Fig. 4. Overview of the Adaptive Interface Component.

A. Adaptive Interface Component

Layered on top of the basic user interface is an adaptive
interface component that adjusts the robots’ autonomy based
on a learned model of the user’s teleoperation competence.
An assessment of the user’s teleoperation performance is
performed offline and loaded into the adaptive interface
component (Figure 4). The adaptive section of the user
interface is structured as a multi-agent system containing the
following elements:
Attribute Component: Imports the attribute report gener-

ated offline describing the human operator’s competence
on the three task axes of navigation, manipulation, and
cooperation.

Operator Interface Agent: Adjusts the commands passed
to the robots based on the user model.

HU-IE Interface Agent: Handles interactions with the
robots.

Human Input Component: Handles interactions with the
the human operator.

Status Component: Gathers and updates the status infor-
mation from the robots to be displayed on the user
interface.

All adjustable autonomy decisions occur within the Operator
Interface Agent, which takes the offline attribute report
describing the human operator’s competence on the three
task axes and modifies the teleoperation commands sent to
the robots. In general, the lower the human operator’s skill
level, the more the agent filters the commands that are passed
to the robots.

B. User Modeling

To construct a model of expert-novice differences in tele-
operation performance, we collected example teleoperation
sequences from twelve users and clustered the data using a
semi-supervised version of k-means. The goal of this process
was to learn a model of user competence on the three axes
of navigation, manipulation, and collaboration. We selected
these three axes as being both an accurate representative
of our previous experiences with users and well-suited to
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Fig. 3. The user interface simultaneously provides the operator with an overhead view of the scene through a separately mounted camera (top right), a
depth map of the scene from the Kinect (bottom right), and the webcam perspective from the two robotic arms (left).

inform adjustable autonomy decisions for the multi-robot
manipulation task.

To model navigation proficiency we extracted the follow-
ing features from the raw trace: 1) task completion time;
2) number of seconds the robots spent moving in each
cardinal direction; 3) number of seconds robots were halted;
4) number of times the user reversed driving direction. For
classifying manipulation competence, the features used were:
1) task completion time 2) number of backward and right-
left robot movements 3) number of seconds the arm spent at
high, mid, and low elevations 4) number of claw command
switches. Backward and right-left movements were particu-
larly significant since they were rarely used by expert users
who were able to drive forward and lift the item in one
smooth motion, without reverses and changes of direction.
The features for classifying robot coordination include the
same features used for manipulation plus the percentage of
time the user controlled both robots.

We observed the performance of the users on a simplified
teleoperation task and rated them as being either confident
or not confident on an axis of performance. The results of
k-means clustering with k = 2 and a Euclidean distance
measure proved to be a good fit for our data. The accuracy on
separating the training data set was 100% for the navigation
axis, 91% for the manipulation axis, and 83% for the
coordination axis.

C. Adjustable Autonomy

Based on the learned model of expert-novice differences
on the three axes of teleoperation proficiency, the adaptive

version of the user interfaces selectively modifies the au-
tonomy of the robots. Users who are less confident on the
navigation axis receive more help during sections of the task
that involve driving the robots. Two additional functions are
invoked:
Auto goal return: When a human operator has successfully

picked up an object, based on the ultrasonic sensor
readings and robot arm accelerometer, the Operator
Interface Agent commands the robot to drive the object
to the goal area. The A* algorithm is used to find
the shortest path to the goal, while avoiding obstacles
marked in the occupancy grid.

Nearest object seeking: Once an object is delivered to the
goal, the Operator Interface Agent detects the nearest
object and starts driving the robot in that direction.

Any time that the robot is under autonomous operation, the
human operator can retake control of the HU-IE robot by
canceling the drive command. For novice human operators
only, the system will reactivate the drive command during
robot idle times. If the user is classified as being confident
at navigation, the system does not reactivate the drive com-
mand.

For users that are classified as less confident at the
manipulation sections of the task, the adaptive user interface
autonomously adjusts the arm and the claw to help the user
using the functions:
Auto arm adjustment: The robot arm needs to be at a

certain angle relative to the target object for a successful
grasp and lift. Based on arm accelerometer sensor data
and Kinect object detection, the adaptive user interface
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attempts to calculate the angle required for a successful
pickup and adjusts the arm accordingly when an object
is within a certain radius of the robot. The Operator
Interface Agent observes the incoming commands, adds
the required adjustments to the end of the command
string, and displays it to the user before sending it to
the robot.

Auto claw adjustment: If the ultrasonic sensor indicates
that the grasp will not be successful. the mobile base and
claw are autonomously adjusted to improve the grasp.

Note that even though it is possible to autonomously calcu-
late reasonable base, arm, and claw positions for grasping
objects an expert human user can still outperform fully
autonomous operation. Users who perform poorly on the
coordination axis are experiencing difficulty in maneuvering
the robots together and performing object lifts with both arms
simultaneously. The adaptive user interface attempts to adjust
the arm, claw, and base of both robots when they are within
close proximity of the same pickup object using the auto
arm adjustment and auto claw adjustment functions. This
behavior is also triggered if the arms of both robots are not
positioned evenly. A video of the system can be viewed at:
http://youtu.be/hrFa12C0784.

V. EXPERIMENTAL METHODOLOGY

Our experiments were designed to evaluate the human
operators’ ability to complete a set of indoor multi-robot
manipulation scenarios under both the adaptive and non-
adaptive version of the user interface. 20 users (8 male,
12 female) between the ages of 20 and 35 participated in
the study. Before the user interface evaluation scenarios, all
users were given 10 minutes of practice time and asked to
complete three skill assessment tasks designed to measure
their teleoperation performance on the axes of navigation,
manipulation, and cooperation. Several of the subjects had
prior experience playing Xbox games, but none of them had
previous robotics experience.
Teleoperating Assessment Task 1: Each participant was al-

lotted ten minutes to navigate a single robot through an
obstacle course; the results of this task were used to
classify the user’s navigation skill.

Teleoperating Assessment Task 2: Each participant was al-
lotted ten minutes to lift a single small object; the results
of this task were used to classify the user’s manipulation
skill.

Teleoperating Assessment Task 3: Each participant was al-
lotted ten minutes to lift a large box (shown in Fig-
ure 1)); the results of this task were used to classify the
user’s cooperation skill.

Scenario 1: For the first scenario, the participant had to
use the two robots to search the area and transport
small objects (movable by a single robot) to the goal
basket within 15 minutes. The environment contained
three piles with five round shaped objects (shown in
the left and center panels of Figure 5). The participant
performed this scenario twice in randomized order, once

TABLE I
TIME DIFFERENCES WITH AND WITHOUT THE ADAPTIVE COMPONENT

Scenario Adaptive Non-adaptive Significance
Time ±σ (sec) Time ±σ (sec) (p < 0.01)

1 340.9 ± 86.8 408.0 ± 79.8 yes
2 600.7 ± 117.7 716.4 ± 150.7 yes

TABLE II
# OF DROPPED OBJECTS WITH AND WITHOUT THE ADAPTIVE

COMPONENT

Scenario Adaptive Non-adaptive Significance
Drops ±σ Drops ±σ (p < 0.01)

1 1.10 ± 1.65 3.25 ± 1.74 yes
2 3.85 ± 2.58 7.85 ± 3.15 yes

with the adaptive interface and once with the baseline
version.

Scenario 2: For the second task, the participants had to use
the two HU-IE robots to search the area and transport
awkward objects that required bimanual manipulation
to the goal basket within 15 minutes. There were three
piles with bimanual objects in this scenario (shown in
the right panel of Figure 5). The participant performed
this scenario twice in randomized order, once with the
adaptive interface and once with the baseline version.

VI. RESULTS

In the results, we compare the performance of the adaptive
vs. the non-adaptive version of the user interface. Figure 6
presents a comparison of the times required for each partic-
ipant to complete Scenario 1 (small objects) and Scenario 2
(bimanual manipulation) under both experimental conditions.
Table I summarizes the completion time results. We confirm
that the improvements in completion time is statistically
significant under a paired two-tailed t-test at the p < 0.01
level for both Scenario 1 and 2.

Figure 7 presents a comparison of the object drops by
each participant in Scenario 1 (small objects) and Scenario 2
(bimanual manipulation) under both experimental conditions,
the adaptive and non-adaptive user interface. Table II sum-
marizes the number of dropped objects in each condition. We
confirm that the reductions in dropped objects is statistically
significant under a paired two-tailed t-test at the p < 0.01
level for both Scenario 1 and 2.

The figures show that for all of the participants (other than
subject #10) the adaptive component improves the human op-
erator’s performance measured by both task completion time
and reductions in dropped objects. Our post-questionnaire
indicated that 90% of the users had a strong preference for
adaptive vs. the non-adaptive version of the user interface,
and the remaining 10% expressed no preference between the
two conditions.

Table III shows the results of the user modeling component
of the system. The classifier learned from previous teleop-
eration traces identified half of the users as being expert
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Fig. 5. The two robots operate within a 6.3′×6.4′ household area and move objects from various piles to the goal area. Scenario 1 (left, middle) contains
piles of small objects that can be moved with a single robot, whereas Scenario 2 (right) contains objects that require bimanual manipulation.

Fig. 6. Time to complete Scenario 1 (left) and Scenario 2 (right) in minutes for each subject (x-axis). All of the participants (except subject #10) experience
time improvements with the adaptive version of the user interface.

Fig. 7. Number of objects dropped by each subject (x-axis) in Scenario 1 (left) and Scenario 2 (right). All of the participants (except subject #10)
experience reductions in dropped objects with the adaptive version of the user interface.

Fig. 8. Expert/novice differences in frequency of command utilization for navigation, manipulation, and collaboration. Beginners (blue) utilize the stop
command more frequently than experts (red) both when driving the robot base or moving the arm. They open the claw more frequently than experts who
require fewer attempts to lift objects. In contrast, experts issue the close claw and forward drive commands more frequently than the beginners.
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TABLE III
PERFORMANCE LEVEL ON AXES OF TELEOPERATION ACCORDING TO

BOTH CLASSIFIER AND SELF-REPORT

Axis # Expert # Novice Self-report agreement

navigation 10 10 90%
manipulation 10 10 85%
cooperation 8 12 75%

at navigation and manipulation, and slightly fewer as being
experts at the cooperative sections of the task. Figure 8 shows
the relative distribution of commands issued by experts vs.
novices using the non-adaptive version of the interface.

Several interesting facts emerge: 1) novices more fre-
quently issue stop commands for the robot base, whereas
experts more frequently use forward; 2) novices open the
claw more often than expert users, probably following object
drops; 3) experts more regularly issue the up command to
the robot arm, whereas novices more frequently stop the
arm in its trajectory. The classifier is able to utilize these
differences in command distribution to accurately learn a
model of expert/novice differences along the three teleop-
eration axes. In most cases, the users’ self-reported level of
confidence on each axis agreed with the classifier. However,
we believe that relying strictly on self-reports of expertise in
undesirable, particularly in situations where the users’ have
greater external motivation to claim expertise.

VII. CONCLUSION AND FUTURE WORK

Synchronizing coordination and delegating task assign-
ments across multiple robots can be a difficult task for
even an expert human operator. Multi-robot manipulation
tasks are particularly sensitive to poor coordination since
tight temporal coupling is required to avoid object drops.
Yet capable human operators can easily outperform a fully
autonomous system since they are able to more reliably
solve grasp planning problems from limited sensor data.
Adjustable autonomy paradigms show particular promise in
this domain since they free the operator to focus attention
on critical task segments.

In this paper, we demonstrate the utility of an adaptive
user interface that adjusts the robots’ autonomy based on
expert-novice differences. A user model of teleoperation
competence on three axes of performance (navigation, ma-
nipulation, and coordination) is learned from short example
tasks. The adaptive user interface modifies the robots’ au-
tonomy in a task specific way, based on the operator’s skill
level. In our user study, the proposed user shows statistically
significant improvements in reducing the task completion
times and dropped objects. An interesting avenue for future
work is applying the same user modeling techniques as part
of a teleoperation training system to instruct users in the
principles of robot teleoperation.
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