2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

Using Incomplete Satisfiability Modulo Theories to Determine Robotic
Tasks™

Andreas Witsch, Hendrik Skubch, Stefan Niemczyk, and Kurt Geihs!

Abstract— Many robotic task specifications can be naturally
expressed by boolean combinations of arbitrary constraints.
This allows a separation of problem description and solu-
tion strategy. In this paper, we present a novel approach
to solve non-linear constraint systems based on Satisfiability
Modulo Theories. While most SMT-based techniques emphasize
completeness, we intentionally use an incomplete local search
strategy. Despite this incompleteness, the presented solution is
able to deal with many real world problems like task allocation
or robot positioning. We show that our approach is able to
exploit the logical structure to solve highly complex tasks almost
in real-time.

I. INTRODUCTION

One of the main problems tied to the employment of
Multi-Robot Systems (MRS) is the task allocation prob-
lem [1], which an adaptive and extensible MRS has to
solve on-the-fly. While a solution to the task allocation
problem determines which robot takes on which task of a
given problem, actually completing an individual task often
requires solving sub-problems, such as calculating a position
or a trajectory. We refer to these sub-problems as task
determination problems. In complex scenarios, the individual
sub-problems are no longer independent: They reference
each other. For example, when multiple robots lift an object,
each individual robot’s position depends on the others. We
therefore consider a unified approach, in which the task
allocation problem is solved with respect to all numerical
sub-problems involved. The result constitutes not only a
solution to the task allocation problem, but also to the sub-
problems. In other words, it contains an answer substitution
for all involved variables. In many cases these constraint
satisfaction problems (CSP) have multiple solutions. Thus, a
cost- or utility function can be incorporated to evaluate dif-
ferent solutions against each other in order to find an optimal
variable assignment. The resulting constraint optimization
problem (COP) describes the agents’ goal and therefore
separates the algorithm to reach it. Such a separation can
simplify the software complexity in various robotic scenarios
but requires a general solver capable of dealing with non-
linear expressions. These are usually caused by the spatial
nature of many robot task descriptions.

The problem class we consider here incorporates tran-
scendental functions, e.g., trigonometric and exponential

*The project IMPERA is funded by the German Space Agency (DLR,
Grant number: SORA1112) with federal funds of the Federal Ministry of
Economics and Technology (BMWi) in accordance with the parliamentary
resolution of the German Parliament.

1Faculty of Electrical Engineering and  Computer  Sci-

functions, rendering the resulting problems undecidable in
general [2]. However, these kinds of functions occur in many
robotic scenarios involving, for instance, inverse kinematics
or sensor models based on Gaussian probability distributions.

As major contribution of this paper we investigated a new,
incomplete approach geared towards efficiency. Thereby we
are exploiting the given logical problem structure by state
of the art methods borrowed from the Boolean satisfiabil-
ity (SAT) community. Furthermore, we will show that despite
the incomplete nature of our algorithm, it is able to solve
a wide variety of complex problems. Thus, our approach is
applicable in highly dynamic domains such as robotic soccer.
As evaluated later, complete state of the art approaches can
either not deal with the required problem class or are not
able to keep the runtime constraints.

This paper is structured as follows. After stating a formal
definition of the targeted problem class in Section II, related
approaches are discussed in Section III. In Section IV, we
describe our approach based on local search. Afterwards,
we evaluate its performance in six different problem formu-
lations in Section V. Finally in Section VI, we conclude and
sketch future research topics.

II. PROBLEM DEFINITION

The problems we tackle are continuous non-linear con-
straint satisfaction problems (CNLCSP) [3]. These have the
following components:

¢ A set of n real-valued variables X,

o A propositional formula ¢ with the variables P, where
each p; € P identifies a constraint ¢; = f;(Z) o; ¢; (),
where o; € {<,>,<,>,=#}L T =21,...,%m, ¥ =
Yi,---, Y, all zj,y; € X, and all f and g are arbitrary
functions R¥ — R.

An interpretation of a CNLCSP is a valuation function
v: X — R, which is extended to P +— {T, L} by

v(pi) = {I fthO;(x))(g(y))

The interpretation v is a solution for formula ¢ iff ¢/,
constructed by replacing all variables p; in ¢ with their inter-
pretation v(p;), evaluates to T under classical propositional
interpretation.

As this problem class is in general undecidable [2], solvers
either do not terminate or stop after a given termination
criteria. The underlying Boolean SAT problem is already NP-
complete [4]. However, recent research within the Satisfia-
bility Modulo Theory (SMT) community allowed DPLL(T)

ence, University of Kassel, 34121 Kassel, Germany
{awi, hsk, sni, kge}@vs.uni-kassel.de algorithms [5] to tackle this problem class.
978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4784



III. RELATED WORK

In [3], we presented a possible solution to CNLCSPs
based on local search. Although this approach is incomplete,
its high sampling rate allows us to solve a wide variety
of common practical problems. This paper focuses on an
extension of local searches by satisfiability modulo theories.
While the SMT solver ABSolver by Bauer et al. [6] also
employs incomplete local searches for solving non-linear
continuous problems, it is not specifically designed to deal
with undecideable problem classes. In contrast, incomplete-
ness is considered explicitly in our solver.

Recent solvers are able to solve various non-linear prob-
lems based on Grobner basis like z3 [7] from Microsoft
Research. However, Grobner basis systems only allow us
to decide polynomial arithmetic, which render them unable
to deal with more general geometric problems which can
involve transcendental functions. In contrast to our approach,
z3 has different built-in theory solvers that allow to deal with
linear, Boolean, or integer problems efficiently.

A different approach to solving non-linear problems is
based on interval propagation. These approaches compute
a floating-point box, which contains possible solutions to
the problem. ISat [8] is a prominent SMT solver based on
this technique. The focus of iSat is to solve problems with
a complex logical structure and is thus far not capable of
processing rationals or arbitrary powers. Our approach makes
use of interval propagation to shrink the search space to an
upper bound, thus decreasing the impact of the incomplete
nature of the used local search technique.

Many SMT solvers rely on on the DPLL algorithm [9]
to solve the underlying propositional SAT problem. Based
on this method and efficient clause learning heuristics, the
minisat solver [10] achieved high success at various SAT
competitions. Due to its effectiveness and its clear imple-
mentation, it served as a basis for our implementation.

The specification logic TAL (temporal action logic) [11],
[12] follows ideas and motivations of using constraints in
complex task allocation problems similar to ours. However,
TAL focuses on the temporal aspects of the problem, whereas
we emphasize spatial constraints and quick, yet incomplete,
solving strategies.

IV. APPROACH

In this section we present the Carpe Noctem Satisfiability
Modulo Theory (CNSMT) solver. The major contribution is
the incorporation of a local search based theory solver with
an efficient SAT solver, which allows to solve highly non-
linear problems as found in robotic domains.

A. SAT Solver

In order to apply a DPLL algorithm, the first step is a
transformation of the propositional formula into conjunctive
normal form. Afterwards, a slightly modified DPLL scheme
as shown in Algorithm 1 is applied.

In the first step of the main loop, the current propositional
assignment is checked for conflicts (Line 2). The propagation
method is based on the optimized Boolean constrained

1 while true do

2 while propagate() do

3 if Decisionlevel = 0 or !resolveConflict() then

4 deleteUnsafeConclusions()

5 end

6 end

7 if /IntervalPropagate(decisions) or
!LocalSearch(decisions, intervals, lastSolution) then
8 | Continue

9 end

10 if satisfied(decisions) then
1 | return true

12 end

13 next := Decide()

14 ReduceClauseDB()

15 end

Algorithm 1: CNSMT Main-Loop

propagation proposed by [13]. Therefore, two literals of each
clause are observed. If one of these literals becomes false,
the observed literal is changed to a new unobserved literal.
If the clause does not have unobserved literals, the second
literal is assigned a value of true. This procedure assigns
all implications of new variable assignments. Due to these
implications, clauses might become unsatisfiable under the
given assignment. We call these clauses conflict clauses.

Detected conflict clauses are resolved by a backtracking
search within the resolveConflict operation. Thereby, new
clauses are learned as proposed by the GRASP-scheme [14].
The basic idea is to add a new clause containing all decisions
since the last unique implication point of the current conflict.
Afterwards, all literals with reasons that are already included
in the new clause are removed to simplify the clause,
see [10]. The learned clauses speed up the search process
as they help to avoid similar conflicts for future decisions.

If the CNLCSP is unsatisfiable due to its propositional
structure, a learned clause will lead to a conflict at the top
decision level. This is the case if a learned unit clause con-
flicts with another and renders conflict resolution impossible.
As the theory solver is incomplete, unsatisfiability can only
be proven in case of unit propagation based on interval
propagation. Thus, we delete all learned clauses that result
from the theory solver or resolved conflicts (see Line 4)
instead of inferring unsatisfiability. In order to avoid infinite
solution search in practice, the main loop should be canceled
after a termination criteria is met, e.g., a given timeout or
number of evaluations.

In contrast to standard SAT problems, assignments might
not only conflict at propositional level, but also in the non-
linear theory. We combine two theory solvers to enhance the
solution detection, as shown in Line 7. In case of a conflict,
the inverted current assignment is added as a new clause and
the outer loop is restarted to resolve the resulting conflict.
Interval propagation is a complete approach. The learned
conflict clauses are stored separately because there is no need
to delete them at any time. The second theory is a local

4785



search technique which is initialized by the last successful
solution respectivly by the computed solution interval (see
Section IV-C).

The next step in Line 10 checks whether the current
partial assignment is already a solution for the propositional
problem. This is the case iff all problem clauses have at least
one literal which can be evaluated to true given the current
propositional assignment. Consequently, the last computed
assignment of X solves the CNLCSP.

The final two steps are assignment decision and clause
database reduction. As a decision heuristic we count the
number of clauses satisfied by a given variable. This strategy
leaves potential for improvement, as the evaluation is com-
putationally expensive. However, in empirical experiments it
performed better than other strategies like a Variable State
Independent Decaying Sum (VSIDS) decisions heuristic [13].
The learned clause database increases the computation time
needed to detect conflicts; therefore, we count the activity
of learned clauses and eliminate rarely used clauses similar
to [10].

B. Interval-Propagation

Interval propagation manages an interval for each real-
valued term occurring in the problem. Using downward and
upward refinement operators, these intervals are contracted
until either no further refinement steps are possible or until
an interval collapses, in which case the corresponding sub-
problem has no solution.

As opposed to solvers such as iSAT [8], which completely
rely on interval propagation (IP) in order to solve sub-
problems in theory level, IP only augments our solution
scheme. Instead of splitting intervals repeatedly, IP only
provides initial intervals for the local search and rules out
solution candidates which can be proven to be infeasible.
Thus, TP is used in two steps of the solver. First, during
the initialisation phase, IP is done for each distinct literal
occurring in the problem. This step can discover some unit
clauses early and provide pre-propagated intervals for the
search phase. Second, whenever a conjunctive sub-problem
is identified by the SAT solver on the path to a solution, IP
is performed in order to either provide boundaries for the
local search or reject the conjunction in case of infeasibility.

For the purpose of this paper, we employ a simple IP
algorithm working on a tree-shaped representation of the
input problems. More sophisticated techniques (c.f. [8], [15])
can potentially lead to a better overall performance.

C. Local Search

In [3], we presented a solver for the considered problem
class based on local search. We could show that it outper-
formed state-of-the-art solvers in a wide variety of problems
relevant to robotic domains. The solver simply transforms the
CNLCSP into an error function and performs gradient ascent
on the resulting function. Since the SAT solver queries only
for solution of conjunctive problems, this transformation can
be simplified. Each constraint is transformed by the following
rules:

Definition 4.1: Formula transformation

T(a < b) =< (a,b)
T(a>b) =< (b,a)
T(~(a < b)) =< (b,a)
T(~(a > b)) = <" (a,b)
T(—(a < b)) = <"(b,a)
T(~(a > b)) = <"(a,b)

Definition 4.2: Atomic Constraint Function

<*( b) 1 ifa<bd
a’ = .
b—a otherwise

0« 0 ifa<bd
< (a, b) = 5 .
0x; 52-(b—a) otherwise

Due to the deflation of the problem to a pure conjunctive
problem, we need only a transfer function for the and-
operator. For local searches, the min-operator known from
the Godel T-Norm in Fuzzy Logic is an appropriate choice.
However, as shown in [3], a sum-based approach outperforms
the T-Norm operator:

1 ifa=1Ab=1
Z/\(Cl, b) = . . .
min(0,a) + min(0,b) otherwise
0 1
E =
2 nfah) = (b

T(pAq)=3A(T(p),T(q))

As a local search method, we used gradient ascent enhanced
by the resilient backpropagation algorithm (Rprop) [16]. The
function evaluation and gradient direction is computed by an
extended version of Alex Shtof’s auto differentiation library
for the .NET framework [17]. Note that the pure conjunctive
form can potentially reduce many non-convex problems to
convex ones, which benefits local search techniques. In order
to reduce the impact of the starting point, we restart after 60
Rprop steps at a randomly sampled point within the current
interval area.

D. Constraint Optimization

In many robotic examples, we are not only interested in
a valid solution for the CNLCSP, but the best solution with
respect to a given utility function. For example, in a task
allocation problem, we might be interested in the assignment
with the least power requirement.

For the optimization case we exploit the fact that the
transformation rules of Definition 4.2 lead to a function with
an upper bound of 1. Thus, we can apply the gradient ascent
for an arbitrary utility function if its value is greater than 1
and the CNLCSP is satisfied.

In order to find the global optimum, all propositional so-
lutions have to be analyzed. This can simply be achieved by
adding a new clause for each analyzed solution, containing
the negated current assignment of P until no new solution
can be found. Consequently, the optimization algorithm

4786



terminates when the SAT-solver determines the problem to
be unsatisfiable due to the additional clauses.

V. EVALUATION

To show the performance of the presented solution we
evaluate different problem classes with the following solvers:

o iSat — recent developer version of iSat [8],

e 23 — Microsoft’s z3 solver [7],

o GSolver — our Rprop(X A, max) solver presented in [3],

which is a stand alone version of the descriped T-solver,

e CNSMT - the approach presented in this paper,

e CNSMT-nolIP — the presented approach without interval

propagation.

First, we present the 3-SAT sine problem, which is
the target problem class of our approach as it combines
propositional structure with highly non-linear arithmetic.
Afterwards, we show a multi-agent task determination and
allocation problem, which is less artificial and complex with
respect to the required theories. Next, we use the problem of
building ad-hoc communication chains to a given target using
mobile robots. Such a problem might occur in search and
rescue domains. Finally, we will combine this problem with
a utility function to demonstrate the optimization case for
multiple solutions. All experiments were performed single
threaded on an Intel i7 930 CPU (2.8 GHz) using Linux
3.2.0-35 with Mono 2.10.8.1 and are averaged over 1000
trials. Note that the time measurement of iSat only has a
precision of 10 ms.

A. 3-SAT Sine Problem

In a first experiment, we show the efficiency of our
approach for solving highly non-linear problems given a
complex underlying boolean structure. This benchmark was
originally introduced in [18], based on [19]. Thus, we assume
25 variables ranging over the reals and [ = 50
inequalities p € P of the form:

n =

k) I_ a5 sin(2maj + bj) < 6 (1)

with k = 72?=1H1§=1%.
dom values in [—1, 1], all bi; uniformly distributed random
values in [—2m, 27, and all z;; randomly chosen variables
in X. The value of # is a threshold such that the feasible
region of the constraint is approximately half the size of
the whole domain measured by random sampling. This
resembles the ratio by which the solution space in pure SAT
problems is divided by a single propositional variable. The
3-SAT formula ¢, consisting of m clauses, is constructed by
randomly drawing from P.

Satisfiability of the CSP is guaranteed in the following
way: Let 5 be a random point in R, acting as valuation
function v. Let P’ be the set of propositional variables
evaluated to T by the extension of v. Then, for every clause
in ¢, pick a random literal and set its sign to positive
(negative) if its propositional variable is in P’ (is not in P’).

As shown in Figure 1, our approach outperforms GSolver
and iSat for a constraint ratio (m/n) over 2. These results

All a;; are uniformly distributed ran-

T T 3
GSolver -=%-- A

CNSMT -no IP ---©-- |
CNSMT

108 ¢

Average time (ms)

Constraint ratio

Fig. 1. 3-SAT Sine Test

follow the presumption we stated in [18]. Furthermore, we
can also observe a phase transition at a constraint ratio of
roughly 7.8, similar to the phase transition of SAT solvers
for random 3-SAT problems [20]. Note that z3 cannot deal
with trigonometric functions and is therefore excluded from
this experiment. Even though this case is artificial it shows
the performance given a beneficial logical structure, as the
runtime stays constant for a constraint ratio of about 2.

B. Task-Determination and -Allocation

In order to present a more practical problem, we evaluated
our approach for a task determination and allocation problem
for a team of robots. The goal is to determine n positions p;
and assign them to n robot target positions ¢;. Expressed as:

n
\/t—pk

where each position is a two dimensional point randomly
distributed in a 10 x 10m area. Equality constraints are
expressed as: (t;, — pj,)? + (ti, — p;,)* < 0.05%

Increasing the difficulty of the problem, we required
an exclusive position for each robot. We achieved mutual
exclusion by three different formulations, resulting in three
semantically equivalent problems:

\|>:

<

1 n

(tk = pi) 2
1=1k=1
n n i—1
AN NG # vVt #py) 3)
i=1j=1k=1
n i—1
A (1t # tr) 4)

N
Il
-
=~
||

Constraint 2 requires each position to be assigned to a robot.
Since the number of robots and positions are equal, the
only valid assignment must be an exclusive position for each
robot. Furthermore, the number of clauses is n with n — 1
disjunctions each and has the least memory requirement.
Figure 2 shows that the CNSMT solver performs poorly
compared to other solutions. This results from the fact that
the formulation does not allow to draw multiple conclusions

4787



10000 |-
1000
E
- 100
£
E
&
10
1
Number of Agents
Fig. 2. Required Runtime to Solve Constraint 2
L
Q
£
E
=
-

Number of Agents

Fig. 3. Required Runtime to Solve Constraint 3

on the propositional level. Instead, multiple T-solver queries
are required until a single propositional conflict can be
discovered. In contrast, GSolver directly solves the complete
expression, which results in the best overall performance.
In contrast to Constraint 2, Constraint 3 requires for each
target position and each pair of robots that one of them is
not assigned to that position. This yields »°/2 clauses with
only two literals, a structure very suitable for SAT solving,
but with high memory requirements.Therefore, the SAT-
based solvers outperform the GSolver, as shown in Figure 3.
Furthermore, this experiment shows the small overhead of
CNSMT compared to z3 or iSat, which is manifested by
the small runtime for n < 9. On the other hand, z3 and
iSAT scale better than CNSMT and start to outperform it
at 8 and 11 agents, respectively. However, we deem a good
performance for small problems to be essential in order to
enable reactive behavior of the multi-robot system.
Constraint 4 requires all target positions to be mutually
different. In contrast to Constraint 3, this requires only
n?/3 clauses. Figure 4 shows how CNSMT outperforms
all other solutions. The fast responses of the T-solver and
the high number of theory queries allow to reject conflict-
ing assignments and learn expressive clauses quickly. Even
though iSat and z3 use a similar technique, their non-linear
arithmetics solvers perform considerably worse. Note that
GSolver, CNSMT, and CNSMT-noIP solved all presented

10000 |-
1000
E
- 100
£
E
=
&,
| 1 1 GSolver --x-- A
! ! ! CNSMT - no IP ---O-- |
| I I C —
R e e e e 73 —
ii L
6 8 10 12 14 16 18 20
Number of Agents
Fig. 4. Required Runtime to Solve Constraint 4
10000 F-————-J-______ | I D | R
[ | | l | 3 /f'*
I I I
, | | N
| | | AN |
1000 f----o-deeooooo RS SR S S /7
_ i : : 8 / ]
) r | | [P | | b
B | o3 | i
Q 5 I 4 I
=] - | A L \T 7777777
g 2 ‘ 5
=} | ]
~ |
GSolver --x-- |
TT"CNSMT -no IP ---G--
CNSM”g —_—
Z.
| iSat‘ — -
10 12 14
Number of Agents
Fig. 5. Required Runtime to Compute Communication Chains

problem instances. That shows the robustness of the stated
approaches despite their incompleteness.

C. Communication Chains

In order to show the power of interval propagation, we
utilize an experiment with increased dependency between
the agents. Here, the goal of the n involved agents, each
equipped with wireless communication modules and routing
capabilities, is to extend the communication range of a
stationary base station at a position b to a target position
g. The CSP describes n 2-dimensional points P, with
|pi — pit1]l2< 100m Vi < n. The last agent is placed
at the target position p, = g. To keep contact with the
base station one robot has to stay in communication range
Vi |pi — bl2 < 100 m. Base station and target position are
separated by two impassable chains of mountains represented
by rectangular obstacles. The valley in between has a length
of 120m to force a robot placement in this area. Valley
position and relative angle between b and g are chosen
randomly for each trial and the distance is set to 90 - nm.

As shown in Figure 5 CNSMT again outperforms all other
approaches as it scales best with the number of agents. In
particular, interval propagation increases the performance for
more than 3 agents. Both complete solver z3 and iSat are
not able to solve the problem for more than 3 and 4 agents
respectively within the given time constraints.

4788



2000 T T
GSolver --x--
1800 ~CNSMT -no IP ---O--
CNSMT
1600
1400
1200
1000
800
600
400 SN -
200 See —

Average Utility

Number of Agents

Fig. 6.
Problem 5

Average Utility Value when Solving Constraint Optimization

D. Constraint Optimization

Section V-B shows another typical problem in multi-
agent scenarios: In each situation, multiple possible solutions
exist. In most cases we want to distinguish between these
using a utility or cost function and expressing an expected
performance measure for the corresponding assignment. We
formalized a constrained optimization problem by incor-
porating the following utility into the test case given by
Constraint 3:

U(t,T) = nemaxpisc — dist(Z, 7), (5)

where & represents the current physical positions of the n
agents and cpaxpise the maximum possible distance in the
target area to force a lower bound greater 0. Maximizing this
function leads to an assignment, which minimizes the agents’
travel distances and therefore the total energy costs, assuming
homogeneous robots and terrain. Figure 6 shows the average
utility with respect to the number of agents when assuming
30ms available computation time. The elimination of ana-
lyzed propositional solutions allows a more systematic local
search and therefore leads to a broader exploration. Note
that the optimization process of each solution aborts after a
single exploration. Thus, optimization problems with more
complex solution spaces might decrease the performance or
require a sophisticated heuristic for a lower bound.

VI. CONCLUSIONS

In this paper, we presented an incomplete solver for
non-linear continuous constraint satisfaction problems. We
evaluated this technique and similar state-of-the-art solvers
on problems originating in multi-robot system domains. We
showed that highly complex CNLCSPs can be solved in
an efficient manner by using an incomplete T-solver. This
property makes our approach a practical tool for separating
the problem description and solution strategy when designing
and implementing robotic systems.

In future research additional heuristics will be investigated.
As indicated in Section V-B the runtime can be decreased for
some problems because there is no need to call the T-solver
for each variable assignment. Furthermore, we used a very

simple variable assignment strategy which might lead to long
backtracking paths. Additional new heuristics are needed to
decide when to delete a learned clause. The incompleteness
of the T-solver plays an important role in this decision.

Finally, the task allocation experiment showed the im-
portance of the problem formulation with respect to the
solver. Analyzing this dependency could be very beneficial
for future strategies that reformulate a given problem based
on the available solver or choose a solver based on the
formulation.

Further research can tackle distributed constraint solving
along the lines of [21] and [18]. This could lead to a valuable
runtime improvement for multi-agent scenarios.

[1]

[2]
[3]

[4]
[5]

[6]

[7]
[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

4789

REFERENCES

B. P. Gerkey, “A formal analysis and taxonomy of task allocation
in multi-robot systems,” International Journal of Robotics Research,
2004.

D. Richardson, “Some Unsolvable Problems Involving Elementary
Functions of a Real Variable,” Journal of Symbolic Logic, 1968.

H. Skubch, “Solving non-linear arithmetic constraints in soft realtime
environments,” in 27th Symposium On Applied Computing. ACM,
2012.

S. A. Cook, “The complexity of theorem-proving procedures,” ser.
STOC ’71. ACM, 1971.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and
SAT Modulo Theories: From an abstract Davis—Putnam-Logemann—
Loveland procedure to DPLL(T),” 2006.

A. Bauer, M. Pister, and M. Tautschnig, “Tool-support for the analysis
of hybrid systems and models,” in Design, Automation and Test in
Europe (DATE), 2007.

L. de Moura and N. Bjgrner, “Z3: An efficient SMT solver.” Springer,
2008.

M. Frinzle, C. Herde, et al., “Efficient solving of large non-linear
arithmetic constraint systems with complex boolean structure,” Journal
on Satisfiability, Boolean Modeling and Computation, 2007.

M. Davis and H. Putnam, “A computing procedure for quantification
theory,” 1960.

N. Een and N. Sorensson, “MiniSat v1.13 - A SAT Solver with
Conflict-Clause Minimization, System description for the SAT com-
petition,” 2005.

P. Doherty, J. Kvarnstrom, and A. Szalas, “Temporal composite actions
with constraints,” in Proceedings of the 13th International Conference
on Principles of Knowledge Representation and Reasoning (KR), 2012.
P. Doherty and J. Kvarnstrom, “Temporal Action Logics,” in Handbook
of Knowledge Representation. Elsevier, 2009.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in ANNUAL ACM IEEE
DESIGN AUTOMATION CONFERENCE. ACM, 2001.

J. a. P. M. Silva and K. A. Sakallah, “Grasp — a new search algorithm
for satisfiability,” ser. ICCAD ’96. IEEE Computer Society.

M. Frinzle and C. Herde, “Hysat: An efficient proof engine for
bounded model checking of hybrid systems.” Formal Methods in
System Design, 2007.

M. Riedmiller and H. Braun, “Rprop - a fast adaptive learning
algorithm,” International Symposium on Computer and Information
Sciences - ISCIS, 1992.

A. Shtof, A. Agathos, Y. Gingold, A. Shamir, and D. Cohen-
Or, “Geosemantic Snapping for Sketch-Based Modeling,” Computer
Graphics Forum, vol. 32, no. 2, pp. 245-253, 2013.

H. Skubch, “Modelling and Controlling of Behaviour for Autonomous
Mobile Robots,” Ph.D. dissertation, University of Kassel, 2012.

Y. Shang, M. P. Fromherz, and L. Crawford, “A new constraint test-
case generator and the importance of hybrid optimizers,” European
Journal of Operational Research, 2006.

J. M. Crawford and L. D. Auton, “Experimental results on the
crossover point in random 3-sat,” Artificial Intelligence, 1996.

A. Petcu, “A Class of Algorithms for Distributed Constraint Opti-
mization,” Ph.D. dissertation, Swiss Federal Institute of Technology
(EPFL), 2007.



