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Experience Mixed the Modified Artificial Potential Field Method
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Abstract—How to find a safe and collision-free path in
unstructured environments is always an important issue in
mobile robotics. This paper proposed a new path planning
method that exploited past experience for obstacle avoidance
with a modified artificial potential field, which could help the
robot avoid collisions with obstacles effectively and find the
optimal path from the start to the goal. This algorithm uses
case-based reasoning to obtain the available prior information
of the current environment. By retrieving the past cases and

adapting to the changes of the environment to solve the problem.

The experiments show that this method greatly improves the
performance of the robot in terms of time and distance of the
path taken from the start to the target.

1. INTRODUCTION

Path planning is always an important issue in mobile
robotics, which is to find an optimal collision-free path from a
starting point to a target in an uncertain environment [1].

In order to realize the navigation of an autonomous robot
independently, many researchers have proposed different path
planning algorithms. Those algorithms can be divided into
three categories: traditional methods, intelligent methods and
other methods. Traditional methods include visibility graph
method, A* search algorithm, artificial potential field method
and so on. Visibility graph method [2] can guarantee to find a
shortest path, but it has more complicated search process and
lower search efficiency, while the environment changes, the
model has to be reconstructed; A* search algorithm [3] is a
heuristic search algorithm widely used for static problem to
search the shortest path quickly, but the global information of
the environment was required to be known in advance;
Artificial Potential Fields (APF) method [4] is the most
common method in dynamic environments, however, its
inherent defects are obvious, including considerable problems
in local minima and oscillations in a narrow channel. Based on
the traditional methods, some researchers presented their
improved methods. In 2004, a fast dynamic visibility graph
(DVG) [5] was proposed for constructing a reduced roadmap
among convex polygonal obstacles. It decreases the
computing time and is more adaptive for dealing with
multi-target path planning. In 2010, Cheng Piying proposed a
novel and improved path planning algorithm called “D++”
[6][7], which combines Dijkstra’s algorithm with the idea of a
senor-based method. The detective range reduces the size of
the searching space of Dijkstra’s algorithm. However, the
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limitation of IR sensor will have a considerable effect on the
results of the algorithm for a real robot system. Based on APF
method, Charifa.S [8] presented an adaptive boundary
following algorithm to avoid the local minima, while the
calculation is complex. When the size of obstacles is large, it
needs to spend a lot of computing time.

Except for the traditional methods described above, there
are many artificial intelligence algorithms existing for path
planning, such as neural networks [9]-[11], fuzzy logic [12]
and genetic algorithm [13][14]. Those algorithms can achieve
avoiding obstacles autonomously and result in optimal global
path planning, but they are relatively complex and
time-consuming. Sometimes they are not very useful for real
time applications.

In fact, one of the main issues for mobile robot to navigate
in unknown environments is the lack of a priori information
about them. If the environmental information could be
acquired before path-planning, it would contribute to guiding
the robot from the start to the goal. Case-based reasoning
(CBR) is such a technique that can reuse previous experience
to obtain the suitable information to solve the current problem.
Actually, CBR has been used in robotics to perform different
tasks for some years. In 2003, Maarja Kruusma [15] presented
a global navigation strategy, learning and adaptation by means
of CBR permit the robot to choose routes that are less risky to
follow and lead faster to the goal based on previous experience.
It can improve the performance of the robot in a difficult
uncertain environment, while is not efficient in simple
dynamic environments. Raquel and Ramon [16] in 2004
integrated a CBR agent into an existing multi-agent navigation
system which can prevent the robot from getting blocked in
certain situations in real time, however, the path is not optimal.
Jaroslav [17] described a path planning method based on CBR
and combined with graph algorithms in the environment
represented by a rectangular grid. It is applicable to the
large-scale environments, saving computing time and
traveling distance, nevertheless, the process is too complex to
reduce the efficiency of the algorithm.

In conclusion, CBR technique can improve the
performance of path planning for mobile robots in
complicated environments, while sometimes in simple cases,
the effect is not well. In this paper, we proposed a novel path
planning method for mobile robots. We called it "EMMAPF".
Case-based reasoning is utilized as a basic method to store
previous experience which is used to obtain an effective
solution to solve the current problem, in addition, a modified
artificial potential field (MAPF) is combined as a real-time
obstacle avoidance method. No matter in simple or
complicated environments, this method always guides the
robot with an optimal path. This paper is organized as follows:
In Section II, a detail description of “EMMAPF” method is
represented, including the modified artificial potential field
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method and CBR technique. In Section III, the experiments
and analysis results are reported in simulation. Finally, we
summary some conclusions and plan the work to do in the
future.

II. “EMMAPF” METHOD

Our path planning method mixes past experience with the
modified artificial potential field method, not only can help the
robot to avoid the obstacles autonomously, but also can save
the computing time and traveling distance to obtain an optimal
path.

The whole procedure of “EMMAPF” method is shown as
follows.

When the robot encounters the obstacle
{ Retrieve the similar case from the casebase by using nearest neighbor
method.
If there is a similar case/are similar cases in the casebase
{ Return the number Num of the similar case/cases. If Num is greater
than one. Find the most similar case Cp by computing the distance
D(R,G) between the robot and the reset Goal.
Accept the solution Sp of Cp
{ Reset the transferring direction and two turning goals, modify the
turning goals if necessary. }
Calculate the cost r(Pp). It stands for the speed of the robot using CBR
to avoid the obstacle.
}
Else
{ Invoke the “MAPF” method to solve the current problem. Find the
solution Sm to avoid the obstacle.
Calculate the cost r(Pp). It stands for the speed of the robot using
“MAPF” method to avoid the obstacle.
}
Case learning
{ If there is no similar case in the case base.

{ Store the new case, its solution, and r(Pp) }

Else
{ If no modify the transferring goals
If r(Pp) < r(Pp°%)
{ Update r(Pp) }
Else
{ Store a new case, its solution, and r(Pp) }
}
}

}

This pseudo codes describe the process of “EMMAPF”
method, when the robot encounters the obstacles during
driving, CBR will retrieve the most similar cases from the case
base. If the returned solutions are more than one, select the
closest case, and then reset the transferring direction. Else if no
retrieving case returns, the system will invoke the “MAPF”
method. Finally, evaluate the proposed solution by the cost
r(Pp), and update the system by learning from the case base.
Thus in CBR, learning and adaptation are through
accumulation of cases.

A. “MAPF” method

The traditional artificial potential field method is
commonly used in real-time obstacle avoidance and smooth
path for mobile robots. It’s particularly attractive because of
its elegant mathematical analysis and simplicity. However,
this method exists the local minima problem, and no
optimization process is involved. Liu [18] has proposed a
concept of virtual obstacle to solve this problem. The virtual
obstacle is located around local minimums to repel the mobile
robot. We make some improvements based on this approach,
modify the potential field force function, and set the virtual
obstacle according to the shapes of obstacles detected by the
sensor. The steps are shown as follows.

o Attractive force function
F,(X)=-grad[U, (X)) =k(X - X,.) M
Where, k is the attractive factor, (x - X ) represents the
distance between the robot and the goal.

e Repulsive force function
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Where, p is the shortest distance between the position of
the robot and one obstacle, p, is the radius of obstacle sphere
of influence. 77 represents the repulsive factor. n is a real

number greater than zero. Contrast with the original potential
field function, it introduces the relative distance between the
target and the robot (x — X o) > ensuring the whole potential

field minimum only in the target X goal

e Resultant force

+YF, ©)

m is the number of the obstacles. When the robot enters
into the local minimum area, the shape of the obstacle will be
detected by the sensor, according to the situation the virtual
obstacle is set in one side of the dead area, thus generating the
additional repulsion f to compel the robot to escape from

the trap. r,, is defined the same as .

e Total force
Foar = Fu + o ™
The total force will help the robot to escape from the local

minima. While the robot breaks away from the sphere of
obstacle’s influence, that is, two grids around the obstacles,
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the virtual obstacle will be canceled, the robot then moves in
the resultant direction.

B. CBR technique

Case-based reasoning (CBR) is a self-learning method
which helps to solve the current problems by re-using past
cases and experiences to adapt to the changes in the
environment. This method is based on the concept that similar
problems have similar solutions. Three steps can represent a
simplified description of our CBR technique: retrieving the
most similar case or cases, revising the proposed solution,
learning and retaining the new case for future problem solving.
Figure 1 is the flow diagram of CBR technique.

[ — Search for cases the same

Casebase ~ V| category as the current one

v
[ Calculate the similarity by |

a ~ 2)2
‘ ‘ Distance (¢, CFi) = [2 W, * D(e,CFi) ]

v
‘ Rank the cases by
‘ similarity

‘ v

| Y

Update the solution Num of minimum » Case revise
and cost cases>1

A

N

v
Reset the transferring
direction and goals

v
Calculate the cost
r(Pp) = Speed (Ts,Tg)

v

HPp) <r(Pp™)

Figure 1. Flow diagram of CBR technique

(a) Case Representation

When exploiting CBR technique to plan path for mobile
robots, the first fundamental decision to make is how to
establish a case base. Cases can be stored in many different
representational  formats [19], such as framework
representation, object-oriented representation and predicate
representation. Because of its features of applicability,
summarizing and reasoning, we choose framework as the
representational format. A classical case base usually includes
characteristic of the problem and the relevant solution that was
used on an earlier occasion when a similar situation was
encountered. A case can be described as follows:

CaseBase =< C1,C2,C3,...,Ci > ®)
C=<F,S > 9
Where, F represents the features of the obstacle; S
represents the relevant solution.
F =< caselD ,obstacleCategory, (10)
leftDistan ce,rightDista nce,angle >
Where:
(1) case ID: identifier of the obstacle.

(2) obstacleCategory: the category of the obstacle’s front
side where the sensor could scan, such as line, triangle.

(3) leftDistance/rightDistance: the length of the obstacle.

(4) angle: the global angle of the obstacle/the intersection
angle for the obstacle.

an

(5) resetDirection: the transferring direction for the robot.

S =< resetDirec tion, resetGoal ,nResetGoal >

(6) resetGoal: the first turning point for the obstacle.

(7) nResetGoal: while the robot arrives at the resetGoal,
change the direction to the nResetGoal to escape the
influential area.

(b) Cost Function

In order to measure the cost of problem solving, all the
cases are characterized by a cost function to calculate the robot
consumption in obstacle avoidance. It depends on the mean
traveling speed of the robot from encountering the obstacles
Ts to escaping from the influence of the obstacles Tg. The
faster the robot can avoid the obstacles, the better the solution
is.

r(Pp) = Speed (T, Tg) = D(Is, Tg) /(Tg — T5) (12)

When the robot encounters an obstacle, r(Pp) will be
generated to accumulate the distance and time of each step
until the robot gets rid of the influence of the obstacle. A
solution is selected with a lower cost.

(c) Case Retrieval

Case retrieval is always the key part in CBR technology
and directly impacts on the overall performance of the
algorithm. The most commonly investigated retrieval methods
by far, are the k-nearest neighbors [20], artificial neural
networks [21], knowledge-guided approaches and inductive
index approaches [22].

Because of the number of cases to be searched in this case
base is small, we choose k-nearest neighbors as our retrieval
method, by computing the distance between the current case
and each case in the case base ,the closest one will be found as
the best solution.

In many situations, different features have different levels

of importance and contribution to the success of a case, so a

reasonable weight needs to be set to reduce the searching

space for the case retriever. Here, we assign the weightings

according to the relative importance of functions.
For a given case,

F =< caselD, obstacleCategory, 13)

leftDistan ce, rightDistance, angle >
The retrieval process carries through the following steps:

Stepl. Search the cases which have the same category
with the present one in the case base, ¢ < cr -

Step2. Calculate the degree of similarity between the
present case ¢ with each case in ¢F . A similarity formula
can be defined as

1
A A 2\2
Distance(C, CFi) = [z W, * D(C, CEJ j (14)
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D(é, CF[) = abs(C— CFi)

15)

Where, (14) is the most common type of distance measure
called Euclidean distance.

Step3. Rank the cases by similarity measure calculated in
Step?2.

Step4. Choose the most similar case.

Distance = min(Distance(é, CFi),i € (1, size(CF))) (16)

(d) Case Adaptation

When the case retrieval finished, we need to adapt the
solution to fulfill the needs of the current case. If the returned
similar cases are more than one, compute the length according
to the positions of the robot and the first reset goal to obtain the
closest one. If necessary, modify the solution. The following
pseudo code of case adaptation is shown as follows:

num=number(retrieved case/cases);
count =1;
If (num>1) Then
For i=1 to num
Dist(i)=sqrt((Robot.x-resetGoal(i).x)"2+
(Robot.y-resetGoal(i).y)"2);
If Dist(i)<Dist(count)
count=i;
i=itl1;
End
End
Return case(i);
Else
Return case(1);
End
If Dist(count)>10
Modify the two turning goals according to the current case.
End
Update r(Pp).

(e) Case Learning and Case Retaining

Case learning takes an important part in CBR system, it
involves the policies and techniques of adding, deleting and
updating cases in a CBR system in order to guarantee its
ongoing effectiveness and performance. Here, case learning is
measured by the cost introduced in II-B-(b), cases with a lower
cost can play a positive role in the decision making.

If there is no similar case in the case base during case
retrieval, the system will invoke the “MAPF” method to solve
the current problem. The new case, its relevant solution, and
r(Pp) will be retained into the case base. It not only increases
the coverage of the case base, but also reduces the distance
between an input vector and the closest stored vector.

In addition, after case adaptation, the solution may be
modified in order to adapt to the current environment.

If r(Pp) < r(Pp°!Y), update the cost to have a better learning
process. What’s more, if the size of the case base is greater
than 30, some useless cases will be rejected to keep the
efficiency of the system.

III. EXPERIMENT

This section is designed to compare the performance of the
robot with “MAPF” method and “EMMAPF” method. We
have demonstrated some simulations to verify the efficiency
and accuracy of our method. In order to facilitate our actual
test, the robot is depicted as a hexagon in the simulation. First
of all, the kinematical structure of the robot is described in the
following subsection.

A. Kinematical Model

The experiments are implemented by using the three
omni-wheel robot. It has a 32-bit ARM Cortex-M3
microprocessor. The omni-wheel robot is shown as Figure 2.

Figure 2. Omni-wheel robot

Kinematical equation can be obtained from its kinematical
diagram described in Figure 3.

vy

V3

Figure 3. kinematical diagram

Where, [ X, Y, 7 is the world coordinates, [ X 7Y, 1T

represents a moving frame with respect to the center of the
robot, 0 is the rotation angle which is positive in the
counterclockwise direction. L is the distance between the
robot and the center of each wheel. [1,,7,,7,]" stands for the

translational velocity of each wheel.

After reasoning, Vi of each wheel can be obtained and
described in the vector-matrix form as follows.

V1 X,

a7
V2|=P@)e| y,
V3 9
Where
—sin(@+30°) cos(@+30°) L (18)
P(0)=| —sin(30°—6) —cos(30°-6) L
cosd siné L
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In fact, the velocity of each wheel has been given in
advance; we can obtain the orientation and speed of the robot
through another equation transformed by (14).

X, V1 (19)
y. |= PO V2
P V3
Where
2. N 2. o 2
—55111(6’4—30 ) 55111(«9—30 ) gcose (20)

PO = % cos(0+30°) — % cos(6-30°) %sin [
1 1 1

3L 3L 3L

B. Simulation

Based on kinematical equation described above,
experiments are designed to verify the performance of
“EMMAPF” method. In simulations, four different scenarios
have been designed to run the experiments, including one
linear obstacle, one triangle obstacle, simple multi-obstacles
and complex multi-obstacles.

To model the partially known environment, a grid-based
map is used. The area of each small grid is 1cm*1cm, while
the whole grid space is 50cm*50cm, start point (5, 5), and
target point (40, 40). The velocity of the robot is a unit grid per
second. The distance and time below respectively represent
the path length and time consumption from the start point to
the target point.

(1) one linear obstacle

(a) (®)
Figure 4. Path with “MAPF” method and “EMMAPF” method in Scenariol.

TABLEI. AVERAGE TIME AND DISTANCE OF THE PATH IN SCENARIO 1.

Scenario 1 time distance
MAPF 46.703s 62.49cm
EMMAPF 44.578s 59.178cm

As we can see in scenariol, “EMMAPF” method reduces
the average time by almost 4.3%, and the distance from the
start to the target is reduced by almost 5.3%.

(2) one triangle obstacle

. e

%
. /»\1:- »\// I /“*\\‘A/"-

HiE

EE T T I o s w5 n B @ s

(b)
Figure 5. Path with “MAPF” method and “EMMAPF” method in Scenario2.

TABLE II. AVERAGE TIME AND DISTANCE OF THE PATH IN SCENARIO 2.

Scenario 2 time distance
MAPF 53.578s 64.42cm
EMMAPF 51.546s 61.006cm

As it can be seen from TABLE I, the average traveling time
of “EMMAPF” method reduces almost by 3.8%, it also
minimized the distance 5.3% with respect to “MAPF” method.

(3) simple multi-obstacles
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Figure 6. Path with “MAPF” method and “EMMAPF” method in Scenario3.

TABLE III. AVERAGE TIME AND DISTANCE OF THE PATH IN SCENARIO 3.

Scenario 3 time distance
MAPF 65.423s 77.872cm
EMMAPF 57.078s 69.974cm

Scenario 3 is a little complicated than the former
scenarios, using “EMMAPF” method is more effective in the
performance of time and distance. The data in TABLE III show
that using this method minimized the traveling time 12.8%
approximately, and minimized the distance about 10.1%.

(4) complex multi-obstacles

(2 (b)
Figure 7. Path with “MAPF” method and “EMMAPF” method in Scenario4.
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TABLE IV. AVERAGE TIME AND DISTANCE OF THE PATH IN SCENARIO 4.

Scenario 4 time distance
MAPF 73.415s 86.458cm
EMMAPF 63.757s 74.312cm

Table IV and Figure 7 show how much the performance of
the path planning system depends on the properties of the
environment, it is obvious to see the degree of optimization in
Scenario 4 is better than that in Scenario 1, 2 and 3.

C. Result analysis

Based on the experimental results, we can conclude that
the path of “EMMAPF” method is more optimal than
“MAPF” method. The path generated through “MAPF”
method is safe but long, and passes through many unnecessary
places. Using “EMMAPF” method to obtain the available
prior experience can help the robot to make the best decisions
when it encounters the obstacles. The experiments
demonstrated that “EMMAPF” method can reduce the
collision risk, traversal time and distance obviously.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed “EMMAPF” method to
solve the path planning of mobile robot. This method mainly
combines past experience with the modified potential field
method. By acquiring the environmental information every
time before path planning, robot can deal with unknown and
dynamic environment in real-time. Therefore, “EMMAPF”
method is not only suitable for simple situations, but also
complex environments. Compared with the above algorithms
introduced in Section I, “EMMAPF” method improves the
performance of the robot in terms of time and distance of the
path. The resulting path is optimal and computing process is
simple and fast.

In future, we need to pay more attention to analysis the
performance of CBR in real-time, some improvements also
need be taken to shorten the time in searching and matching,
otherwise time delay in CBR mechanism would lead to the
failure of the obstacle avoidance. With the development of
“EMMAPF” method, our system will become a real-time
system to deal with path planning for mobile robot in the
future.
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