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Abstract— In this paper we describe an approach for hu-
manoid robot balance recovery that combines a novel attitude
control algorithm adding compliance to the robot’s behavior
and increasing the smoothness of its motion, and an omnidi-
rectional stepping strategy that can trigger one or two steps
based on a measured disturbance vector. The proposed method
is validated through experiments with the inherently compliant
humanoid COMAN.

I. INTRODUCTION AND RELATED WORK

Since avoiding to fall is almost always the task of highest
priority for humanoid robots, their balancing is a vital and
fundamental control problem. Humanoid robots have two
legs, a high center of mass, and small feet, three properties
that make them unstable when standing, and very sensitive to
external perturbations such as pushes. Humans are assumed
to use three main strategies to perform balance control and
push recovery while standing or walking ([14], [40], [7]).
Two of them are the so-called ankle and hip strategies. In the
ankle strategy, only the ankle joints are used to control the
robot like an inverted pendulum. The hip strategy consists
of a bending at the hips and has two main components
that can be used to control balance: the upper-body angular
momentum and the horizontal shift of the center of mass. The
third strategy is the stepping strategy, and it occurs when
using only the two first ones would fail. Early theoretical
studies considered the problem of stability of simple planar
bipeds ([39], [5], [6]), and there has been a lot of research
on trying to use similar or slightly more complex models
to recreate efficient ankle and hip strategies on humanoid
robots. In [32] for example, hip and ankle strategies are used
on a planar double inverted pendulum model (a bit similar
to Acrobot [31]) with a regulator based on the tracking of
the center of pressure (CoP), i.e. a particular point calculated
from the integral of the pressure distribution under the feet.
Many approaches, including ours, use the tracking of the CoP
in order to estimate whether balancing actions are required.

[9] superposes a static and a dynamic balancer on a com-
pliant human-sized robot. [15] and [16] achieve rotational
stability by focusing on regulating the centroidal angular mo-
mentum. Several approaches have focused on controlling and
distributing properly contact forces so as to obtain compliant,
balanced behaviors ([33], [29], [8], [22], [19], [18]). For
strong pushes, stepping is unavoidable, and deciding when
and where to step remains a scientific challenge, although
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interesting results have already been demonstrated. In the
1980s, Marc Raibert [27] showed that for running or jumping
robots, robust behaviors could be obtained with a few simple
and decoupled control laws. Surprisingly, good stepping
strategies seem more difficult to realize with walking robots,
particularly in non-steady state conditions. An important
principle that has been formalized and studied is the capture
point and capture region ([25], [26], [17]), the latter one
being the region on the ground where a humanoid robot
can step in order to come to a complete stop. Although it
is complicated to compute it with a detailed and faithful
model of the robot, it becomes easier with simple models of
walking such as the linear inverted pendulum model (LIPM)
which is very common in the field of walking trajectory
generation [11]. In [25], the LIPM is extended by adding
a flywheel body that enables the humanoid to control its
centroidal angular momentum, and the capture region is
computed. In [23] the LIPM is again used to decide steps
that perform balance control, but with a better handling of the
double support stance phase. The inverted pendulum model
has also been extended to a spring loaded model (SLIP)
([4], [28]). This model demonstrates open-loop stability, and
walking controllers have been designed to reproduce its limit
cycles, while also adding control actions to increase the
robustness of the walking and its ability to reject external
disturbances [3]. Studies of the capture point dynamics have
also lead to walking stabilizers [2]. Other approaches for
walking stabilization include quick modifications of the CoP
reference based on perceived disturbances [21], or posture
and force control to simplify the robot walking dynamics
[12]. [34] and [1] express stepping strategies within a model
predictive control scheme. In [38], a modified version of
preview control based on the LIPM is used as a unified way
to realize walking pattern generation and stepping for push
recovery. In [20], reactive stepping is considered as a mean
to suppress part of an external disturbance that a feedback
controller tries to cancel out.

In the present paper, we focus on the stepping strategy and
practically address the problem of considering the stepping
limitations of the robot when deciding to perform one step
or more. Additionally, we use the stabilization control law of
[19] and add atop of it a novel attitude control scheme that
slows down the dynamics of the robot, leading to smoother
trajectories even in the presence of perturbations.

Feedback from Inertia Measurment Units (IMUs) has been
used extensively as a mean to control the balance of hu-
manoid robots. In [10], Jenkins et al. introduce a method for
inertial motion control inspired by how inverted pendulums
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Fig. 1. The global architecture of our control scheme. Reference trajectories are sent as triples of homogeneous matrices representing the rigid body
motion of the waist, right and left foot in the world frame. Both controllers (the compliant attitude controller and the stabilizer) use feedback from the
robot to update the values of these homogeneous matrices. They are then transformed into joint values through inverse kinematics, and a decentralized
PID controller (one PID per joint) regulates the motor inputs.

such as Segway PTs or Golem Krang [35] dynamically
balance. They generalize this notion to humanoids, mim-
icking the action of a standard proportional-derivative (PD)
motion controller that computes motor torques about each
degree of freedom of an inverted pendulum, based on the
differences between measured and desired angles and angular
velocities. In [13], IMUs are used to measure the angular
velocity of the robot, which makes it possible to control the
dynamic balance of the humanoid robot with direct angular
momentum feedback, following an idea introduced in [30].
In [36] a similar approach is used to improve the transient
response of the trunk attitude in a control algorithm for
gravity compensation on humanoid robot.

In our approach, we use the IMU feedback to give a
more compliant behavior to the robot, which already has
an intrinsic compliance due to its series elastic actuators
[37], and some additional active compliance due to the
stabilizer [19]. Our compliant attitude control algorithm uses
as feedback only the measured attitude, not the angular
velocities. It relies on one parameter (µ) that can be tuned to
achieve a wide range of levels of compliance. Experiments on
the lower body of the humanoid robot COMAN validated the
combination of this compliant attitude control scheme with
the stabilization control law of [19] and our stepping strategy.
In the experimental results obtained, COMAN demonstrated
a very robust behavior, making appropriate sequences of
steps to keep its balance after strong pushes in any direction.

II. GLOBAL ARCHITECTURE OF THE CONTROL
SCHEME

The robot used in this work is COMAN without its upper
body, and we assume it is standing on a flat horizontal floor.

The global architecture of our control scheme is described
on Fig. 1. It is based on a simple finite state machine
that switches between two states. In the first state, S1, the
robot tries to keep the current standing configuration, while
possibly undergoing external perturbations. Based on the
feedback from the force/torque sensors in its feet, the robot
estimates how the CoP deviates from its desired reference

location. The magnitude and speed of this deviation are
used by the algorithm A1 to compute a “disturbance vector”
(dx, dy). If the norm of this vector exceeds a threshold dmax,
a stepping action is required, and (dx, dy) and the current
foot placements are sent as inputs to the algorithm A2 which
decides whether to make one or two steps, and computes
the corresponding trajectory. At this point, the finite state
machine switches to state S2 for a duration decided in
advance. The moment when the finite state machine will
switch back to state S1 is tend+twait, tend being the moment
when the trajectory of one or two steps ends, and twait a
small additional delay (150ms in our case). Basically, the
reason why twait is added is because, although we have a
compliant attitude controller and a stabilizer that make the
robot motion smooth, there are still self-induced disturbances
that occur just after the end of steps, mostly due to the
impact of the swing foot when it lands. Without twait, just
after switching back to S1 the disturbance vector might have
a norm exceeding dmax, leading to an immediate switch
back to S2 and to new steps being performed, even without
any external disturbance. Therefore, a properly tuned twait

helps avoiding unnecessary infinite sequences of steps. In
this work, twait was experimentally tuned to compromise
between stepping sensitivity and self-induced stepping. The
smoother the robot motion is, the smaller twait can be
chosen. We achieve smoothness thanks to two independant
controllers. The first one implements an original compliant
attitude control algorithm (A3) which takes as input the
attitude estimation given by the IMU attached to the waist
of the robot, and the second one is the stabilizer described in
[19], which uses feedback from the force/torque sensors of
the robot feet to perform an emulation of admittance control.

In the next three sections we describe and evaluate the
algorithms A1, A2 and A3, respectively. In section VI, we
present our experimental results and discuss future work.

III. DISTURBANCE ESTIMATION
The purpose of this section is to define the “disturbance

vector” based upon which we decide to trigger steps.
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Fig. 2. On the left: the stepping capabilities of the robot. The filled area
represents the locations where the center of the swing foot can be put after
a right step. The stepping capabilites are symmetric. We have β = 42◦,
lmin = 0.14m, and lmax = 0.245m. On the right: a lateral push to the
left obliges the robot to perform a step. In this particular situation, since
it cannot move its left foot further on the left, it instead performs a quick
sequence of two steps, starting with a right step.

The force/torque sensors of the robot feet provide an
estimation of the position of the CoP. When the robot is
not performing a step, we want the CoP to have the same
horizontal position as the center of mass (right between
the foot centers). Therefore, we can easily compute the
CoP deviation. In the stabilizer, this deviation is converted
into a desired horizontal modification of the center of mass
(CoM) reference: (∆xcom,∆ycom) (cf. [19]). This horizontal
modification regulates the perceived cartesian compliance at
the waist, and it can be used to estimate the direction of the
CoM motion during an imminent fall, if it were to happen.
We base our decisions for triggering steps on the evolution
of the vector (∆xcom,∆ycom). Basically, we want to stay
in a situation where the CoM reference is not significantly
modified by the stabilizer. Thus, our goal is for the norm of
(∆xcom,∆ycom) to remain lower than a certain value ∆max.
We could simply use (∆xcom,∆ycom) as our disturbance
vector, but if we also observe its rate of change, we can
predict in advance its future values, and thus guess if the
vector will soon either leave or return to the disk of radius
∆max. We therefore express our disturbance vector with the
following heuristic:(

dx(t)
dy(t)

)
=

(
∆xcom(t)
∆ycom(t)

)
+K

d

dt

(
∆xcom(t)
∆ycom(t)

)
,

with K tuned manually during experiments where the robot
undergoes perturbations. The chosen value was K = 0.13s.
Similarly, dmax (the disturbance vector norm threshold) was
tuned experimentally, and its chosen value was 0.01m.

IV. STEPPING STRATEGY

During a step, the position and orientation of the next
footprint is limited to a region that depends on intrinsic
physical constraints of the robot, and on limitations of the
algorithm that generates the walking motion. It is convenient
to define a subset of this region with simple geometry so as to
always have a simple set of next possible steps. To generate

stepping motions, we use the algorithm introduced in [24].
After a series of tests where we tried various sequences
of steps on the robot, we defined the stepping region as
shown on Fig. 2 (on the left). This region is such that during
double support phases the distance between the feet is always
between lmin (= 0.14m) and lmax (= 0.245m). Let us
now consider the situation described on the right of Fig. 2:
the robot is in a standing configuration with distance lmax

between its feet, and it is being pushed lateraly to the left.
After such a push, the normal reflex is usually to step with
the left foot and move it a bit further away from the right
one. But if the feet are already far apart, as in the situation
described on Fig. 2, it is impossible. In that case, a human
would quickly put his right foot next to the left one and then
perform a lateral step with the left foot, as shown on Fig. 2.
It is for this reason that our algorithm A2 can decide between
making one or two steps.

We use the same duration for all the single steps, but
when a sequence of two steps is decided, we make the
individual steps faster so as to reduce the difference between
the duration of a sequence of two steps (1.0s) and that of a
single step (0.7s). We add the following restrictions on the
steps:
• after a single step, the distance between the foot centers

must be lmax;
• during a sequence of two steps, after the first step the

distance between the foot centers must be lmin, and
after the second one the distance must be lmax.

Such restrictions are not compulsory, but they give uniform
characteristics to the steps performed: the single steps always
go from a stance with foot centers at distance lmax to another
stance with foot centers at distance lmax, and thus are rather
“large” steps, while the steps during a sequence of two steps
are always between a stance with foot centers at distance
lmin and a stance with foot centers at distance lmax, and
thus are smaller steps, which makes it reasonable to perform
them faster.

Let us now explain precisely how we choose between one
or two steps.

We assume that there is a point P on the floor above which
the robot can aim at positioning its CoM so as to absorb
and suppress the effect of the current external perturbation.
Although inspired from the concept of capture point [17],
P is not defined as such. We leave theoretical justifications
for its existence and position as future work, and give a
simple heuristic for the position of P : if (x0, y0) is the
initially desired horizontal position of the CoM (before the
push), i.e. the center of the support polygon, and (dx, dy) the
disturbance vector, then we define P as (x0+λdx, y0+λdy),
λ > 0 being an arbitrary value that can be experimentally
tuned. If the stepping strategy is well adjusted, very large
values of λ will always lead to a decent behavior. In our
case, we set λ = 300.

Once a stepping action is triggered, our goal is to find steps
that minimize the final horizontal distance between the CoM
and P (i.e. the distance between the “CoM target” and P ).
We add a penalty δ > 0 to favour single steps: we perform
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two steps if and only if the “improvement” (compared with
a single step) is at least δ.

Let us consider again the example on the right of Fig. 2.
(0, 0) is the position of the left foot center. The lateral push
causes the point P to be somewhere on the y-axis, at a
position that can be written (0,− lmax

2 +λd). If we choose to
perform only one step, then, assuming that λd ≥ lmax

2 , the
best choice is to step in place (we recall that after a single
step the distance between the foot centers must be lmax),
which corresponds to the CoM target (0,− lmax

2 ).
If on the other hand we decide to perform two steps,

the first step would move the right foot lateraly and put it
at distance lmin from the left one (step 1 on Fig. 2), and
assuming also λd ≥ lmax − lmin, the second step would
be the step 2 of Fig. 2, and it would lead to the following
new position of the center of the support polygon, i.e. to the
following CoM target: (0, lmax

2 − lmin).
We can compute the distances between P and the CoM

target in both cases:
• with one step: λd;
• with two steps: λd− (lmax − lmin)

Considering the penalty δ, the algorithm A2 would decide to
perform two steps if and only if δ+λd−(lmax−lmin) < λd,
that is: δ < lmax−lmin. This particular property can be seen
on the left column of three maps on Fig. 3: the map at the
bottom is the only one for which δ ≥ lmax − lmin, and the
only one where sequences of two steps are never chosen in
response to purely lateral perturbations (i.e. along the y-axis).

In total, there are 4 distinct stepping actions that can be
chosen: one left step (c1), one right step (c2), two steps with
first a left step (c3), and two steps with first a right step (c4).
For each of these actions, we try to find a step or sequence
of two steps that brings the CoM target as close to P as
possible. For one step, an analytical solution is easy to find,
but it becomes a bit more complicated with two steps. Several
optimization methods are possible, depending on how we
parametrize the steps. In our implementation, we use polar
coordinates and perform gradient descents just as if we were
computing the motion of a manipulator arm using directions
obtained from the pseudo-inverse of the Jacobian matrix. The
advantage of this approach is that we could easily extend
it and use state-of-the-art inverse kinematics algorithms to
obtain solutions with sequences of 3 or more steps.

For a given stance of the robot (i.e. its relative foot
placements) and a given value of δ, the choice between c1,
c2, c3 and c4 according to the position of P divides the
plane in 4 regions. Fig. 3 shows such divisions of the plane
with the stepping capabilities of COMAN (cf. Fig. 2) for
different values of δ and different stances. We can see a
sudden “topological” change when δ becomes larger than
lmax−lmin, i.e. 0.105m in our case. For our experiments, we
set δ = 0.10m, a value just slighty smaller than lmax− lmin.

V. COMPLIANT ATTITUDE CONTROL
As explained in the caption of Fig. 1, desired configura-

tions are sent to the robot through triples of homogeneous
matrices: Mw for the waist, Mr for the right foot, and Ml

Fig. 3. Maps of stepping strategies chosen according to the position of
P , for various values of δ and various stances. The first row at the top
corresponds to δ = 0.05m, the second one to δ = 0.10m, and the last one
at the bottom to δ = 0.108m.

for the left foot. Each of these homogeneous matrices defines
the position and orientation of the corresponding body in
a fixed reference frame. Since each leg of the robot has 6
joints, these matrices entirely define the robot configuration.
This configuration being relative, and not absolute, we could
always choose Mw = I4,4, which is the convention we use
in the triples initially sent to the robot. However it is more
convenient to allow the control algorithms to modify Mw.

Both our control algorithm A3 and the stabilizer [19] mod-
ify the triple {Mw,Mr,Ml} based on some feedback. For the
stabilizer, this feedback comes from the force/torque sensors
of the feet. For the compliant attitude control algorithm A3,
this feedback is the attitude angles that are sent by the IMU
located in the robot waist. These angles are an estimation of
the orientation of the robot waist in the space, i.e. the actual
value of the rotational part of Mw.

In this work, we only take into consideration the pitch
(αpitch) and roll (αroll) angles, not the yaw. These angles can
be represented by the homogeneous matrix Mrot = Mpitch ·
Mroll. If the reference sent to the robot is {I4,4,Mr,Ml},
then based on the estimated pitch and roll angles, we can
assume that the real configuration in the space (without
considering the yaw or the actual position of the waist) is
{Mrot,Mrot ·Mr,Mrot ·Ml}.

If we correct the reference in order to keep the orientation
of the feet as initially desired, we obtain the following triple:{

Mrot,

[
Rr R · pr

0 1

]
,

[
Rl R · pl

0 1

]}
with

Mrot =

[
R 0
0 1

]
, Mr =

[
Rr pr

0 1

]
, Ml =

[
Rl pl

0 1

]
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Fig. 4. The steps of the computation of the compliant attitude control algorithm to modify the triple {Mw,Mr,Ml}, when a roll is measured by the
IMU attached at the robot waist.

Our goal is to “accept” the disturbance on the waist
orientation, but without moving the feet, and without moving
the waist downward. To keep the waist and feet at the same

height, we simply define R2,3 =

[
1 0 0
0 1 0

]
· R, and

R̃ =

[
R2,3

0 0 1

]
. The following triple leads to both

feet being at the same height as in the initial reference triple:{
Mrot,

[
Rr R̃ · pr

0 1

]
,

[
Rl R̃ · pl

0 1

]}
The last problem is that we want the relative position of the
feet to remain unchanged, in order to avoid potential slipping
motions during double support phases. However, with the
previous triple, we usually have:

R̃ · pl − R̃ · pr 6= pl − pr

So, we pose v = 1
2 (I3,3 − R̃)(pr − pl), and finally obtain

the following triple:

{M ′′w,M ′′r ,M ′′l } ={
Mrot,

[
Rr R̃ · pr + v
0 1

]
,

[
Rl R̃ · pl − v
0 1

]}
Fig. 4 illustrates the whole computation when only a roll

is measured.
With this control algorithm, any perturbation on the waist

pitch or roll would result in a new reference where the de-
sired pitch and roll correspond exactly to the one measured.
This control would definitely diverge. However, it is possible
to “follow” only part of the measured pitch and roll by doing
the same computations, but with the matrices Mpitch and
Mroll corresponding respectively to the angles µαpitch and
µαroll, with µ ∈ [0, 1). The IMU uses a Kalman filter before
sending angular values, but we also add an averaging filter.
After tuning this filter, we verified experimentally that it was
possible to obtain a stable control with values of µ ranging
from 0 to about 0.7. With µ = 0, the control algorithm does
nothing. But with µ > 0, it adds compliance to the robot
behavior, and for adequate values it tends to increase the
stability and the smoothness of its motion.

This effect has been experimentally validated with the
following “fixed frequency swaying waist experiment”: while

the robot stands with both feet on the ground and its foot
centers at distance lmax from each other, we send three
cycles of a reference trajectory that consists in a lateral
sinusoidal motion of the waist along the y-axis (without
moving the feet). The frequency of this trajectory is slightly
above 1Hz, and we try to perform it with various amplitudes
and various values of µ.

We did experiments with the following values of µ:
0.00 (the feedback control is only done by the stabilizer),
0.15, 0.30, 0.45 and 0.60. For each of these values, we
progressively increased the amplitude until it lead to a motion
making the robot fall. Table I shows the results.

TABLE I
FIXED FREQUENCY SWAYING WAIST EXPERIMENT

Value of µ Max. withstandable amplitude

0.00 0.062m
0.15 0.070m
0.30 0.085m
0.45 0.099m
0.60 0.120m

With µ = 0.60, the maximum withstandable amplitude is
almost twice as large as the maximum withstandable ampli-
tude obtained with µ = 0, which clearly shows an increased
robustness brought by our attitude control algorithm.

Fig. 5 and 6 show experimental results for an amplitude of
0.062m. Fig. 5 shows that increasing µ leads to a significant
reduction of the vertical component of the reaction forces
measured by the force/torque sensors in the robot feet, which
indicates that the motion becomes much smoother. What’s
more, on Fig. 6, we can see that the measured variations
of the waist roll tend to have a smaller amplitude when µ
increases. Thus, increasing µ improves the tracking of the
horizontal attitude.

VI. EXPERIMENTAL RESULTS AND FUTURE
WORK

Combining our compliant attitude control algorithm, the
stabilizer [19] and our stepping strategy according to the
organization described on Fig. 1, we obtained a robust
behavior of balance recovery with the humanoid robot CO-
MAN. When pushed in any direction, the robot measures
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Fig. 7. On the left: after a lateral push, the robot performs a sequence of two steps. On the right: after a frontal push, the robot decides to perform a
single step backwards. However, just after this step the balance is not fully recovered, and the robot measures a disturbance indicating that it might be
about to fall. As a result, it decides to perform a step backwards one more time, at the end of which the balance is fully recovered.

Fig. 5. The reference trajectory yref (t) is sent to the control algo-
rithm. For different values of µ, we record the vertical component of the
reaction forces measured by the force/torque sensors in the robot feet.
Denoting by fright(t) and fleft(t) these forces, we define Fzmax (t) =
max(fright(t), fleft(t)). Large values of µ lead to a smoother motion
with smaller reaction forces.

a disturbance and triggers appropriate steps. It can decide
to perform two quick steps when one step only would not
help much. Since the robot has just been pushed, it doesn’t
necessarily track well the trajectory it tries to perform, but the
compliance added by our attitude control algorithm ensures
the smoothness of the motion (we use µ = 0.25 in standard
experiments). At the end of a step or sequence of two steps,
the robot might still be unbalanced, for example if the initial
push was strong. In that case, the robot can quickly decide
to perform a new step or sequence of two steps (cf. Fig. 7).

One very interesting property is that we can easily in-
troduce artificial disturbances and use our balance recovery
scheme as a robust gait generator. More precisely, an artificial
disturbance (d̂x, d̂y) of norm slightly larger than dmax can
be added to the measured disturbance (dx, dy), and it would
result in the robot walking in the direction of the vector
(d̂x, d̂y), but with the ability to withstand external perturba-
tions and perform steps in any direction if needed. Besides,
if a human operator wants to stop the walking motion of
the robot, it is very easy to do so by pulling or pushing the
robot in the direction opposite to its motion, with the real
disturbance in this case naturally compensating the artificial
one.

Fig. 6. In the same experiment as in Fig. 5 (the “fixed frequency swaying
waist experiment”), we record the roll angle measured by the IMU attached
to the waist of the robot. The amplitude of its variations decreases when µ
increases, showing that a large value of µ results in a better tracking of the
horizontal attitude.

In terms of future work, our first goal is to apply our
algorithm to COMAN with its upper body, which will allow
us to add a hip strategy. Then, we have identified three main
axes of research that should help us to further improve the
experimental results:

• Torque control: implementing torque control in the robot
legs will allow us to use a more expressive sensory feed-
back in order to make appropriate stepping decisions,
and to further increase the smoothness of the motion.

• Online modification of the trajectories: although plan-
ning initial trajectories for the steps seems reasonable, it
would be very beneficial if the steps could be modified
in real-time, based on the disturbances that are measured
during the single support phases. Basically, the planning
should be merged into the control.

• Machine learning: using lifelong machine learning
should enable a continuous improvement of the per-
formance and an automatic tuning of the different
parameters of our algorithms.
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