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Abstract— In grasping, shape adaptation between hand and
object has a major influence on grasp success. In this paper,
we present an approach to grasping unknown objects that
explicitly considers the effect of shape adaptability to simplify
perception. Shape adaptation also occurs between the hand and
the environment, for example, when fingers slide across the
surface of the table to pick up a small object. Our approach
to grasping also considers environmental shape adaptability to
select grasps with high probability of success. We validate the
proposed shape-adaptability-aware grasping approach in 880
real-world grasping trials with 30 objects. Our experiments
show that the explicit consideration of shape adaptability of
the hand leads to robust grasping of unknown objects. Simple
perception suffices to achieve this robust grasping behavior.

I. INTRODUCTION

In robots as well as in humans, grasp success is greatly
affected by the ability of the hand to adapt to the shape
of the object and the environment in response to contact
forces. This adaptation increases the contact area and thereby
the robustness of the grasp. Adaptation to the environment
can either facilitate the attainment of robust grasp contacts
through force interactions (e.g. sliding across the surface of
a table to pick up a small object) or by avoiding premature
contact that could prevent the attainment of robust grasp
contacts.

The positive effect of shape adaptation on grasp success
motivates the design of compliant, under-actuated gripper
devices: The tendon-driven SDM hand [1] mechanically bal-
ances contact forces among its four flexible fingers. A gripper
based on the jamming of granular material [2] can conform
to a wide variety of object shapes. Deimel and Brock [3]
developed a soft pneumatic hand that adapts to the object’s
shape through inflation. All of these examples show robust
grasp performance through shape adaptation implemented
in hardware, without explicit control or planning. In this
paper, we exploit shape adaptation to simplify perception
for grasping of unknown objects.

In human grasping, preshaping of the hand before contact
occurs in a low-dimensional subspace of all possible hand
configurations [4]. This provides further motivation for our
grasping approach. It implies that large variability in grasp
posture can be obtained from simple actuation. Indeed, this
concept has also been implemented in robotic hands [5].
Our grasp approach uses simple controllers to generate finger
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motion and “lets the fingers fall where they may” [6] (shape
adaptation) to achieve robust grasping.

Deliberate shape match between the hand and the environ-
ment can also increase grasp success. Humans, particularly
when grasping small objects from flat surfaces, place their
fingertips not directly on the object but slide them along the
surrounding surface towards it. This observation motivates
compliant, multi-stage control schemes to re-create this be-
havior [7].

Finally, shape match between object and environment can
further improve grasp success. It occurs, for example, when
objects adjust their position relative to the hand during
grasping. In the context of bin-picking, simple grippers
can take advantage of this kind of object compliance to
achieve robust grasping [6]. The push-grasping approach
also relies on such interactions between hand, object, and
environment to improve grasping in the presence of sensing
uncertainty and clutter [8]. Other approaches introduce pre-
grasp manipulation actions to change the configuration of an
object so as to facilitate grasping [9].

In this paper, we present shape-adaptation-aware grasp-
ing strategies for unknown objects. These strategies exploit
hand/object and hand/environment shape adaptation in two
ways. First, hand/object shape adaptation allows us to sim-
plify perception. The shape adaptability of the hand adjusts
to variations in object shape. Consequently, perception only
needs to determine object shape to the level of detail not
compensated by shape adaptation. The loss in geometric
accuracy of the acquired object model is compensated by
the shape adaptability of the hand. Second, hand/environment
shape adaptation further increases grasp success. Instead of
viewing the environment as an obstacle with which contact is
to be avoided, our approach optimizes the grasping strategy
based on the constraints induced by the environment.

We present experimental evidence in support of the pro-
posed shape-adaptation-aware grasp approach. We validate
the suitability of our perceptual primitives to exploit shape
adaptability in 420 real-world grasping trials with 21 objects.
We further demonstrate the beneficial effect of considering
hand/environment shape match in 460 real-world grasping
trials with 23 objects. Our results show that the consideration
of shape adaptability in grasping leads to robust, effective,
and simple grasping strategies in the absence of a priori
object models.

II. RELATED WORK

We examine the use of hand-object and hand-environment
shape adaptation in the grasping literature, emphasizing
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methods that do not require a priori object knowledge.
By far the most common use of hand-object shape adap-

tation is the approximation of object models by a limited set
of primitives. Each primitive is associated with a grasping
action. Huebner and Kragic [10] use boxes to approximate
shapes, Przybylski et al. [11] propose inscribing balls, and
[12] decompose shapes into superquadrics. All of these
approaches require complete object models. The problem of
perception, which is the focus of this paper, is ignored.

Another group of methods uses the same approach to
shape adaptation but partially addresses the perception prob-
lem. Papazov et al. [13] recognizes known objects in a scene
based on sensor data and uses the associated exact model to
plan grasps. In a similar fashion, [14] recognizes objects in
the scene based on a decomposition of given CAD models.
The perception of these methods still requires complete a
priori object models.

The next category of related approaches exploits as-
pects of shape adaptability between hand and object and
also addresses the perception problem. However, each of
these methods has limitations overcome by our approach.
In our discussion, we do not consider collision avoid-
ance during grasping as an appropriate consideration of
hand/environment shape adaptation.

In one of the earliest approaches that exploit shape match-
ing, the authors map bounding ellipses extracted from an
image to three different hand preshapes of two-fingered
hand [15]. This method is restricted to “grasping from
the top” and does not consider environmental constraints.
Kootstra et al. [16] extract contour and surface features
from visual input. The features are mapped to grasping
actions: enveloping grasps for surfaces and pinch grasps for
contours. This method does not consider interactions with
the environment. A method proposed by Klingbeil et al.
[17] searches for protrusions in range scans as candidate
locations for grasping with a parallel-yaw gripper, but not
with multi-fingered hands. Herzog et al. [18] learns graspable
3-D features in the environment from human demonstration.
They side-step the perception problem with human input.
[19] propose an approach that learns hand-object shape
matches: two classifiers are trained to select promising grasps
based on 2-D image features and 3-D volumetric features.
They do not consider interactions with the environment.
Maldonado et al. [20] assume that all objects are placed on
top of a table. Each point cluster above the table surface
is interpreted as an object. The pre-grasp pose is optimized
to bring the center of the palm as close to the object while
maximizing the distance between object and fingers.

III. REPRESENTING SHAPE ADAPTABILITY IN GRASPING

We consider the problem of power grasping with multi-
fingered hands in the absence of a priori object models. We
focus on aspects of object capture and grasp stability under
variations of object shape for a given robotic hand. We show
that shape-adaptation-aware grasping leads to robust grasping
performance and significantly reduces the requirements on
perception.

Fig. 1: The motion of two different preshapes of the Barrett
Hand. To find suitable grasps we search for structure that is shaped
complementarily.

The general underlying idea of our method is to charac-
terize the match between the shape of an arbitrary unknown
object and the complimentary shape of a known hand that it
traverses during a grasping motion. We observed in grasping
experiments that the final success is significantly influenced
by the match of the hand with the environment. Later, we
will therefore also introduce a simple model that predicts
and exploits this effect.

A. Shape match between hand and object

Our method uses the popular Barrett Hand as an example
for a multi-fingered hand. We abstract the hand geometry into
a set of preshapes – configurations that define the internal
degrees of freedom of the hand. This is a common concept,
e.g. see [21]. In the case of the Barrett Hand we identify two
preshapes: a spherical and cylindrical (see Fig. 1). The idea
is that the closing motion of these preshapes match a large
variety of possibly occurring object shapes.

We introduce four different shape descriptors: a spherical,
cylindrical, box, and disk one. Each one is supposed to
recognize a different subset of all possible object shapes.
They exploit the shape adaptability of the hand: Starting from
a preshape a closing motion is executed which only stops at
motor stall. The Barrett Hand also possesses a break-away
mechanism: Each finger is actuated by a single motor which
distributes its torque to two finger joints. Once the proximal
link’s motion is inhibited by an external contact force, the
motor torque is solely applied to the distal link. This mechan-
ical mechanism adds shape adaptability, thus demanding less
restrictive shape descriptors. We now explain how the four
descriptors work, based on depth image measurements taken
by any time-of-flight, stereo or structured-light sensor.

We avoid the highly non-convex parameter space that
occurs when fitting geometric models to raw sensor data by
first segmenting it. As there is no single-best segmentation
for the different shapes we are looking for we apply multiple
ones. A flood fill algorithm similar to [22] segments the
depth image into coherent regions. This segmentation groups
neighboring points o and p according to a boolean predicate,
which we define as follows:

|odepth− pdepth|< tdepth ∧
〈 ~onormal , ~pnormal〉< tangle ∧

ocurvature < tcurvature,
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Fig. 2: To improve clarity the depth values are plotted on top of the camera image, although our method only uses range data. The center
image shows the result of one flood fill segmentation that separates the geometry at depth discontinuities and sharp edges. The segments
are then described by different shape descriptors to match the hand geometry. The right image depicts the cylindrical shape descriptor
ranging from red (very cylindrical) to blue (hardly cylindrical).

where odepth is the depth of point o, ~onormal its surface normal,
ocurvature its mean curvature, and (tdepth, tangle, tcurvature) a set
of thresholds. Small-sized segments are filtered out. We use
segmentations with low tcurvature and tangle which favor edge
boundaries and high values of tdepth that result in larger
regions even in the presence of noise. The resulting segment
soup builds the basis for our different shape descriptors. They
all fit geometric models to the segments using the method of
Random Sample Consensus (RANSAC). A large threshold
in the inlier criterion allows for considerable shape variation
which we assume can be compensated by the hand’s closing
motion. The goodness of fit is described differently for each
geometry:

Spherical Shape Descriptor: A sphere is fit with a
radius bounded to the range graspable by the Barrett Hand’s
spherical preshape. The goodness of fit is based on the ratio
of inliers and segment size in combination with the visibility
of the hypothesized sphere. The visibility criterion is the
ratio of the segment size and the expected size of the sphere
backprojected into the sensor frame.

Cylindrical Shape Descriptor: An infinitely tall cylin-
der is fitted which is bounded by the extreme inliers along the
cylinder’s axis. The height and radius are again constrained
by the hand geometry. A goodness of fit value is given by
the ratio of inliers and segment size in combination with the
expected visibility analog to the spherical shape descriptor.

Box Shape Descriptor: A plane fit is bounded by pro-
jecting its inliers orthogonal onto the plane and calculating
the 2D minimum enclosing rectangle. If the rectangle size
exceeds the graspable volume of the cylindrical preshape it is
discarded. The goodness of fit is a combination of the inlier
ratio and the rectangularity of the contour of the projected
points. This rectangularity is defined as the ratio of the area
of the convex hull and the fitted rectangle.

Disk Shape Descriptor: The disk descriptor works
similar to the box descriptor with the exception that it uses
the minimum enclosing circle of the projected points to
define the goodness of fit instead of a rectangle.

Fig. 2 shows an example application of the cylindrical
shape descriptor.

B. From single pre-grasps to pre-grasp regions

The previously defined shape descriptors not only imply a
preshape and closing motion of the hand but also its pose in
3d space. This is straightforward given the geometric models:
The cylinder gives rise to two pre-grasps, both parallel to the
cylinder’s axis with the thumb pointing left or right. The box
descriptors results in four possible poses, two along each pair
of parallel edges. Disk and spherical descriptors create pre-
grasps whose approach vector points towards their centers.

Instead of single poses we define whole regions by
exploiting the symmetry of the shape descriptors. A pre-
grasp region is defined by a curvilinear coordinate system
depending on the grasp’s preshape. In the cylindrical case the
pre-grasp region is given by cylindrical coordinates with a
fixed radius. The analogs for all other strategies are depicted
in Fig. 3. Going from single pre-grasp poses to whole regions
allows us to satisfy environmental constraints as we will
show next.

(a) Spherical (b) Cylindrical (c) Box (d) Disk

Fig. 3: The four different preshapes and their associated curvilin-
ear coordinates (red arrows) that make up the pre-grasp regions.
Cylindrical and spherical regions are represented by cylindrical
and spherical coordinates; the box region exhibits one translational
degree of freedom while the disk region is defined about one axis
of rotation. These regions are used to further refine the pose of a
pre-grasp.

C. Shape match between hand and environment

Think about a bottle laying flat on a table. Even if you
see it from the front, your palm will most likely approach
it from above parallel to the table surface, with the fingers
touching the table while the fingers bend around the object.
Instead of avoiding the table it is exploited. A controller that
imitates this behavior successfully was shown in [7].

We anticipate this shape match between the hand’s closing
motion and its immediate environment by refining the pre-
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esurface

gapproach

gposition

(a) (b)

Fig. 4: In (a) a 2d explanation of the environmental adaptation scheme is shown. Assume we have given range sensor readings (bold
dots), a segmentation (dot’s colors), a pre-grasp (grey two-fingered hand model with approach vector gapproach and position gposition) and
its associated 1d region (red half circle). The mean surface normal esurface of the environment is the average over all measured surface
normals that fall within the expected closing region (purple rectangle) and are not part of the segment to be grasped. We choose the
pre-grasp from the region that minimizes a cost which includes the difference between −gapproach and esurface and the distance of gposition
to the region’s origin. See text for details. (b): Upper row: Shape match with the environment is ignored. The cylinder is always grasped
from the front. Lower row: The closer the cylinder is to the table surface the more the pre-grasp pose tries to match with it.

grasp pose within its respective pre-grasp region. The en-
vironmental constraints are extracted by analyzing the depth
measurements that fall within the closing volume of the hand:
The number of points intersecting this volume gpoints, the
maximum possible number gmaxpoints, and their mean surface
normal esurface are computed. We refine the pre-grasp pose by
casting it as an bounded optimization problem. The objective
function is given as the weighted sum of the orientation
error (between grasp approach and surface normal) and the
distance to the origin of the pre-grasp region:

argmin
(gposition,gapproach)

(
w

gpoints

gmaxpoints
〈−gapproach,esurface〉

+ d(gposition,0)
)
,

where d(·, ·) is a distance measure depending on the curvi-
linear coordinates used, and w is a weight which balances
the amount of shape match with the environment versus pre-
ferring known zones inside the pre-grasp region. A graphical
explanation is depicted in Fig. 4 along with an example
for a cylindrical pre-grasp optimization on real sensor data.
We have implemented and applied this optimization for the
cylindrical and spherical pre-grasp strategy.

To model the accessibility of a pre-grasp pose we add
an additional term which depends on the free space along
the approach vector. Therefore we sweep the hand volume
through the depth image and count the colliding points. Apart
from penalizing hard to reach grasps, it also rejects false
positives due to concave shapes.

Finally, we track grasp hypotheses over time by associat-
ing the most similar ones in successive time steps. Similarity
is based on pre-grasp configuration and pose. During tracking
we filter out hypothesis that do not appear with a frequency
of at least ∼ 3 Hz. This eliminates unstable hypotheses
caused by sensor noise.

All pre-grasp descriptors run in parallel and do not in-
fluence each other. Because we are not interested in subtle
geometric features we can rely on a rather coarse depth
image resolution of 320 × 240. This additionally speeds
up our processing pipeline, resulting in ∼ 5.3 Hz on a
standard desktop computer at 2.2GHz using a single-threaded
implementation. Roughly 70% of the load are produced by
fitting the primitives and normal estimation.

IV. EXPERIMENTAL EVALUATION

The goal of our experiments is to examine how well
our perceptual grasping strategies can predict their success:
First based on the match between object and hand, then
including a simple environmental constraint in form of a
table surface, and finally in an exemplary cluttered scene,
where environmental constrains are more complex due to
multiple objects.

V. EXPERIMENTAL SETUP

A Unimation PUMA 560 with 6-DoF was equipped with a
Barrett Hand BH8-262 and an Asus Xtion Live depth sensor
based on structured light. The sensor was mounted on the
wrist as can be seen in Fig. 1. During each grasping trial the
robot was observing an object for 3 seconds from a single
view point. During that time it chose the most promising
pre-grasp strategy. If no pre-grasp confidence exceeded a pre-
defined threshold, no grasp was executed and the next view
point was considered. Otherwise, a force-based operational
space control law was executed to approach the planned pre-
grasp pose from an intermediate pose located 10 cm in the
negative direction of the approach vector. During the final
stage of the motion the operational space gains were lowered
in all dimensions to make the arm more compliant. After
reaching the pre-grasp pose, the hand was preshaped and a
closing motion executed. We counted a grasp to be successful
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Fig. 5: The test objects used throughout the experiments.

if it could lift the object 30 cm and pertained to the hand for
10 seconds.

A. Shape Match between Hand and Object

To measure the predictability of hand/object match of our
pre-grasp strategies, we conducted a simplified experiment
that excluded any environmental constraints. 21 objects 5
were placed onto a sticky tripod. This resembled a quasi-
static scenario free of any effects induced by interactions
between hand and environment. Each object was placed
5 times in different orientations in front of the robot. For
each strategy we measured the rate of pre-grasp detection
and grasp success as defined above. The results shown in
Fig. 6 largely confirm our intuition: Whenever a promising
grasp was predicted by one of the descriptors, the likelihood
that the corresponding grasp also succeeded was high. Note,
that although there are partial overlaps between strategies no
strategy is dominated by another one and thereby obsolete.
Finally, all of the analyzed objects were grasped by at least
one of the strategies, showing that together they cover a
significant amount of possible occuring object shapes.
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Fig. 6: Grasping performance in the no-environmental-constraint
condition for each of the four pre-grasp strategies and a strategy
which approached the objects towards the perceived centroid from
the current view point with a spherical preshaped hand. The light-
colored bar indicates a predicted grasp by the algorithm. The dark-
colored one is the resulting grasp success.

Fig. 7: The experimental setup for the simple environmental
contraints: The sensor observes the object from the five different
perspectives shown.

Additionally, we executed a comparative strategy that
approached the object’s centroid along the ray originating
from the camera’s view point. The results shown in the
first row of Fig. 6 indicate that this simple strategy already
exploits enough information to grasp successfully.

B. Shape Match under simple environmental constraints

Apart from the hand/object match we continued analyzing
the impact of environmental constraints by placing objects
onto a table. 23 different objects were observed from five
different viewpoints as shown in Fig. 7. For each object the
four strategies were again evaluated independently, resulting
in a total of 460 trials. The resulting detection and success
rates are depicted in 8. The overall grasping performance
decreases with respect to the prior condition as could be
expected due to the more realistic setting. Still, success can
be predicted most of the time reliably with a few exceptions:
The globe and wizard are close to prototypical spheres, but
they exhibit low frictional surfaces which in combination
with the aluminum cover of the Barrett Hand require very
high contact forces to be grasped successfully. Another
problem – especially with the spherical preshapes – was a
pre-mature activation of the breakaway mechanism. Fingers
stopped even when not in contact with object. Note though,
that again only few objects cannot be detected by any of
the proposed strategies: One such case is the flat laying tape
which exhibits a disk-shaped top face which was not detected
because of the low resolution of the sensor and the minimum
distance it needs to maintain during sensing.

Some example grasps can be seen in Fig. 9. They show
that the proposed strategies can successfully exploit shape
match with the environment.

C. Shape Match under complex environmental constraints

In a final experiment, we wanted to test how well our
methods scales with more complex scenes, in which multiple
objects can also constrain each other. The promising result of
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Fig. 9: Some exemplary grasps from the experiments with environmentally constrained objects: The first row shows the fitted geometric
models (from left to right: two cylinders, disk, sphere, box) within the pointcloud perceived by the robot. The second and third row show
the resulting pre-grasps and final grasps executed by the robot.
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Fig. 8: Grasping performance in the environmental-constraint
condition for each of the four pre-grasp strategies. The light-colored
bar indicates a predicted grasp by the algorithm. The dark-colored
one is the resulting grasp success.

an example with five objects is shown in Fig. 11. The robot
observed the scene five times from the same view point,
each time selecting the most promising grasp. Note, that
our method has no notion of gravity or whether two grasps
belong to the same object. Still, the accessibility criterion
implicitly favors most of the time shape matches that are on
top of each other. In this qualitative experiment the robot only
failed grasping the last object, a bottle which was located
close to the edge of the table. Overall the results for the
cluttered scene are pointing in a promising direction.

Fig. 10: A small cluttered scene used in the last experiment.

VI. CONCLUSION

We presented a shape-adaptation-aware approach to grasp-
ing of unknown objects. There is much evidence in the
human and robot grasping literature that shape adaptation
significantly increases grasping success. We therefore ex-
plicitly account for the effects of shape adaptation in the
design of grasping algorithms. The proposed method con-
siders shape adaptation between the hand and the grasped
object to simplify perception. Rather than attempting to
perceive the exact shape of the object to perform grasp
planning, we assume that the shape must only be known
to the level of detail necessary to decide which pre-grasp
is most appropriate. The pre-grasp then invokes a particular
mode of shape adaptation of the hand by closing the fingers,
compensating for any infidelities in the perceived object
model. Further, the proposed method accounts for shape
matching between the hand and the environment by selecting
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Fig. 11: The five different decisions to empty the table are shown from left to right. The upper row shows the view of the sensor with the
possible pre-grasp poses (green = box, blue = sphere, red = cylinder). Each time the robot chose the most promising pre-grasp (displayed
in golden color) based on shape match with the object and environment. The lower row shows the grasps executed by the robot. All
except the last were successful.

a grasp from the set of all grasp postures that maximizes
expected grasp success based on environmental constraints.
Our experiments demonstrate that the explicit consideration
of shape adaptability reduces the perceptual requirements
of grasping and enables robust grasp performance without
explicit planning of contact points.
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