
Sustainable Robot Foraging: adaptive fine-grained multi-robot task

allocation for Maximum Sustainable Yield of biological resources

Zhao Song and Richard T. Vaughan*

Abstract— We introduce the concept of Maximum Sus-
tainable Yield (MSY) to the context of autonomous robot
foraging. MSY is an optimal approach to the problem of
maximizing sustainable foraging where the resources harvested
are replenished by logistic growth, e.g. living things. Over-
harvesting reduces both the instantaneous resource availability
and growth rate, and above some threshold will permanently
deplete resources. Under-harvesting is sustainable, but fails to
maximally exploit the resources. We describe a system model
and use it to determine the optimal allocation of robot work to
resource-producing ‘patches’. We give a practical illustration
of a troublesome feature of MSY: it is too sensitive for a
fixed allocation to be sustainable in practice. We show how to
centrally allocate a number of robots to each patch, and then
locally adapt the work rate of each robot to achieve sustainable
and near-optimal foraging. This is the first study of robot
foraging where the robots’ activity modifies the productivity
and sustainability of the environment.

I. INTRODUCTION: SURF

We introduce the Sustainable Robot Foraging (SuRF)

problem, in which one or more robots must maximize the

long-term profit obtained by harvesting self-reproducing re-

sources from the environment. For foraging to be indefinitely

sustainable the resource-generating population must never be

destroyed by over-harvesting, while under-harvesting fails to

maximally exploit resources. This is a fundamental problem

for living or artificial systems that aim to exploit biomass

resources for long periods.

Population growth over time is modeled using the classical

logistic function proposed by Verhulst [1] to model animal

populations, and since applied to the growth of tumors and

many other natural systems. The logistic model improved

on the earlier exponential growth model of Malthus [2] by

recognizing that populations generally can not grow un-

bounded, with growth limited as resources consumed by the

existing population become scarce. A formula for obtaining

the optimal harvest rate in systems with logistic growth

was first obtained in an effort to maximize fish catches [3],

and became well known in this context as the Maximum

Sustainable Yield.

To apply these insights to the robotics context, we inves-

tigate the classical foraging problem in which autonomous

mobile robots must collect pucks; generic atomic objects

of value to the robots’ owner. Pucks are not distributed at

random in the environment, but exist in areas of locally high

density called patches per the behavioural ecology literature

[4]. The number of pucks in a patch (the patch size) changes

*School of Computing Science, Simon Fraser University, British
Columbia, Canada. {zhaos,vaughan}@sfu.ca

Fig. 1: Robots forage for resources that demonstrate logistic

population growth. To obtain maximum sustainable profit,

the robots must harvest resources at the rate that maximizes

the rate of regrowth. This is the Maximum Sustainable Yield.

[Artwork c© Christine Larson]

over time according to the logistic function, simulating a

naturally regrowing resource that is harvestable in discrete

units, such as mushrooms, acorns, fruits, animals and fish.

Once collected, pucks must be delivered to a central

collecting point, at which time the robot system is credited

with one unit of reward. Our goal is to maximize the total

reward obtained by the system. If the reward per unit of

resource is constant or discounted only slightly over time,

then the optimal policy is to permanently sustain foraging

while maximizing the instantaneous reward rate [5], [6]. To

achieve this, robots must harvest resources from each patch at

the rate that provides the fastest resource growth rate at that

patch. This implies that the patch will remain at some ideal

population size. Collect pucks too slowly and the patch is

sustainable but less than optimally productive. Collect pucks

too quickly and the patch population inevitably dwindles.

Once below a critical population size (e.g. two mammals) a

patch can not self-generate and is permanently unproductive.

The paper proceeds as follows. First we describe the

Maximum Sustainable Yield formulation and use to find

the optimal robot work allocations for our robot foraging

problem. Realizing the model in a numerical simulation,

we observe a well-known problem with MSY: the system

is dynamically sensitive to small perturbations, so that the

fixed allocation can not provide good sustainable foraging

in practice. To cope with this we describe and demonstrate

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3309

a simple feedback controller that locally modulates the

foraging rate at each patch to achieve sustainability and

close to optimal performance. We demonstrate the controller

achieving sustainable and near-optimal foraging in a simple

robot simulator.

The main contributions of this paper are (i) the introduc-

tion of robot foraging where the robots’ activity modifies

the future productivity and of the environment; (ii) intro-

ducing the MSY concept into a robot setting to define the

SuRF problem; (iii) a multi-resolution task allocation method

whereby an integer number of robots is over-allocated to a

task and each robot adaptively reduces its individual work

rate to achieve an effective work allocation with sub-robot

resolution.

II. RELATED WORK

An excellent but dated overview of collective robotics

is given by [7]. Lerman et al [8] describe a mathematical

model of the dynamics of collective behaviors in foraging

system and applied it to study adaptive task allocation in

mobile robots. Puck foraging has become a canonical task

in multi-robot systems; for example [9] examines the energy

consumption of multiple foraging robots when pucks are

dynamically generated at random.

The relation between population growth rate and popula-

tion density has been discussed since the nineteenth century.

Alternative mathematical models have been proposed, e.g.

[10], [11], and sigmoidal growth curves have been shown

to better match some observations of bacterial growth [12].

Despite these challenges, the logistic model is still widely

used in population studies.

The logistic model has been utilized in multi-robot sys-

tems, for example applied to the optimization of communi-

cation [13]. Perhaps the most similar previous work is by

Tereshko et al, who considered a bee colony as dynami-

cal system gathering information from an environment and

adjusting its behavior in accordance to it [14]. They also

used the logistic model to analyse the population of foragers.

They did not consider the sustainability of foraging; the

foragers chose the most productive patch without attempting

to maintain its productivity, in contrast to our paper.

III. LOGISTIC POPULATION GROWTH

Biological populations tend to grow exponentially when

not constrained by resource availability, but growth rates

decrease as resources become scarce, until some maximum

population size is reached. Verhulst originally proposed the

differential equation

dP

dt
= rP (1−

P

K
) (1)

to model a system with self-limiting growth, where K is

the maximum supported population: the “carrying capacity”

of the environment, and r is the unconstrained population

growth rate [1]. It follows that the population at time t

can be found when r, K and the minimum population

���������	
������

�

�

��

��

��

��

���

���

�

��

��

��

��

���

���

���
� �� ��� ��� ��� ��� ���

� �� ��� ��� ��� ��� ���

	

��������������

������������

����

�����

Fig. 2: Evolution of the logistic function, Eq. 1. Showing

population size P over time without harvesting, starting

with P0 = 1 until carrying capacity K is approached at

around t = 300. The point of steepest gradient is indicated

“best”. At this population size, the population increases at

the fastest rate. The Maximum Sustainable Yield is achieved

by harvesting such that the population remains at this ideal

size over time, here indicated by the “ideal” line P = 50.

bound P0 are known1. Unless the population is reduced by

some external event, the population eventually grows to the

carrying capacity.

P (t) =
K

1 + K−P0

P0

e−rt
(2)

lim
t→∞

P (t) = K (3)

An example evolution of the system from P0 = 1 with

K = 100, r = 0.04 is shown in Figure 2. Note that the

population size increases to asymptotically approach K, but

that the growth rate changes constantly, with a peak at around

t = 100 at a population P = 50. Harvesting such that the

population is maintained at 50 will maximize the sustainable

yield.

A. Patch destruction

If a population size becomes smaller than P0 e.g. due

to harvesting, the population can never increase and will

decline to zero. This is a serious practical problem, since

if we are to guarantee to avoid this with a fixed work rate

we need to know all the logistic model parameters with

perfect accuracy. In practice, we can supply robots with

a conservative minimum population threshold below which

they will not collect a puck. If the threshold is too high

we may under-harvest, but sustainably. If it is too low we

inevitably destroy the patch in finite time.

1
P0 is conventionally written P (0): we rename it here avoid confusion

with the population size P (t) at time t = 0, since in our experiments
populations need not be initialised to P0.

3310

�

�
�

�

�

�

�

�

��

��

�

�

�

�

�

��

��

�
� �� �� �� �� ���

� �� �� �� �� ���

��

	�
��

(a) Continuous harvesting

�

�
�

�

�

�

�

�

��

��

�

�

�

�

�

��

��

�
� �� �� �� �� ���

� �� �� �� �� ���

��

	�
��

���

(b) Discrete harvesting

Fig. 3: A plot of the population growth rate against popu-

lation size. (dp = ∆p(t)). In the continuous version (left)

there is a unique population size that maximizes the growth

rate, where the slope of the curve is zero. In the discrete

version (right), there is a range of populations that produce

the optimal growth rate.

B. Discretization

For simplicity of implementation we use the discrete-time

version of Equation 1:

P (t+ 1) = P (t) + rP (t)−
r

K
P 2(t) (4)

C. Calculating the Maximum Growth Rate

The growth rate of a patch can be found directly.

∆P (t) = rP (t)−
r

K
P 2(t) (5)

To obtain integer population changes for our atomic puck

setting, we round ∆P (t) to the nearest integer.

To find the maximum growth rate in unit time we use the

derivative of ∆P (t).

∆P (t)′ = r − 2
r

K
P (t) (6)

and solve for ∆P (t)′ = 0, obtaining P (t) = K
2

and thus

max∆P (t) = rK
4

. An appealing feature of the Verhulst

model is that the maximum population growth rate is simply
rK
4

during the period s, or rK
4s

per unit time, and the most

productive population size is half the carrying capacity.

An example plot of ∆P (t) against P (t) with the same

parameters as before is shown in Figure 3 illustrating that the

best growth is obtained when P (t) = K
2

and ∆P (t) = 0 in

the continuous case (left). In the discrete version there exists

a range of populations that produce the optimal growth rate.

With this knowledge we can design a robot control strategy

to sustainably forage such populations.

IV. MULTI-ROBOT FORAGING SYSTEM

We consider a multi-robot foraging system containing a

single home location and several distinct spatially-separated

patches containing abstract atomic units of resource called

“pucks”. Robots receive a fixed reward for delivering a puck

to the home location. There are N robots and M patches.

Each patch is a square area and its pucks are initially

distributed uniformly at random. The task of each robot is to

individually drive to a patch, find and collect a single puck

� �

�����

��������

	
������������ �������������

�����

����

����
����

Fig. 4: Idealized model (left), where pucks appear at a single

point, giving a constant travel time τ between home and

patch. In the more realistic model (right) in which pucks

are distributed around the patch, the travel time τ+− e varies

slightly each due to the slightly different locations of puck

collection and delivery. We assume that handling times hp

and hd are constant in both models.

and transport it to home. The patch puck population grows

according to the logistic model, so that an integer number of

pucks is created every period of s seconds. New pucks are

placed at random in the square patch. A robot works for hp

seconds of “handling time” to pick up a puck in the patch

and works hd seconds to drop a puck at the home. After

dropping a puck at home, a robot may be inactive or “sleep”

for some time before returning to collect another puck. The

sleep time enables the fine control of robot work time in a

patch.

Robots move at a constant speed when driving between a

patch and home, so each patch has an associated travel time

τ that characterizes its distance from the home location.

For simplicity we assume there is no spatial interference

between the robots, but we recognize this is an important

problem for real robot systems and save this for future work.

Although here each robot can carry only a single puck, the

method is trivially extended to arbitrary carrying capacities.

For any patch, we define the Round Trip Time d:

d = τ + hp + τ + hd + tsleep (7)

which is the time required to complete a whole work cycle

of driving from home to patch, collecting a puck, returning

home, dropping the puck and (possibly zero) sleeping.

A. Foraging system model

We consider two models of the foraging system: an ideal-

ized model where all parameters including d are constant,

and an arguably more realistic model where d can vary

slightly with each work cycle. The idealized model is shown

in Figure 4 (left). We ignore the distribution of pucks in the

patch, and assume all pucks are found at the mean puck

3311

location - the center of the patch. Similarly, we assume

pucks are dropped exactly at the home point. This gives

us a constant drive time τ between puck collection and

delivery. In the more realistic model of Figure 4 (right) pucks

are collected and delivered at random locations around the

patch and home centers. In the idealized model the drive

time τ between collection and delivery is constant, while it

varies slightly in the more realistic model, approaching τ on

average over multiple work cycles.

B. The problem

The problem is to allocate an amount of robot work

time to a patch such that the Maximum Sustainable Yield

is achieved. This results in the maximum sustainable rate

of pucks delivered to home. We assume that an unlimited

number of robots are available. The general strategy is to

allocate robot time to a patch by calculating the ideal,

possibly non-integer, number of robots required, rounding up

to the nearest larger integer number of robots, then adjusting

the allocated robots’ sleep time to achieve exactly the desired

work rate (the same effect could be achieved by varying the

robots’ drive speed).

V. STATIC OPTIMAL WORK ALLOCATION TO A PATCH

As a first approach, we can calculate an exact optimal

robot work allocation to a patch assuming a constant τ .

Combining the logistic model with the robot foraging model

we obtain the maximum sustainable yield when the equality

holds

rK

4
s−1 =

Nj

hp + 2τj + hd

(8)

where the left hand side is the maximum increase in patch

population size per unit time, and right hand side is the

number of pucks harvested from patch j in unit time by Nj

robots. Rearranging, we obtain the the optimal (continuous

valued) number of robots by

Nj = (hp + 2τj + hd)
rK

4
s−1 (9)

Since we must allocate whole numbers of robots to

patches, we choose the next larger integer number of robots

⌈Nj⌉ and have each robot refrain from working for a short

time each cycle to achieve effectively the exact optimal

allocation Nj . The optimal duration of this non-working

period - the “sleep time” - is:

tsleep = ⌈Nj⌉s
4

rK
− hp − 2τj − hd (10)

A. Results in the two models

The performance of the fixed “optimal” work allocation

on the fixed and variable foraging models model is shown in

Figure 5, for carrying capacity K = 100 and characteristic

growth rate r = 0.4. A single patch exists, with an optimal

allocation Nj = 1.5 robots. Results are shown for each of

N = 1, 1.5, 2 robots. Consider first the idealized model:

Figure 5 (a) shows the patch population size over time, while

(b) shows the rate of puck delivery to home, for each value

of N . When N = 1 the population climbs to reach around

80 pucks and the puck delivery rate starts at 10 and falls

to 6 or 7 pucks per unit time. The patch is being under-

harvested. For N = 2 the population and puck delivery rates

both quickly fall to zero: the patch has been over-harvested

and is permanently destroyed. As expected, when N = 1.5,

the patch size is maintained at K
2

= 50, giving a constant

production (and thus delivery) rate of 10 pucks per unit time.

Now consider the variable model, where τ is only approx-

imately constant. The results in Figure 5 (c) and (d) show

that the behaviour for N = 1 is similar, and when N = 2
the patch is also quickly destroyed. Importantly, we see that

a fixed allocation of N = 1.5, i.e. two robots, each sleeping

for 25% of their time, also destroys the patch in finite time:

the strategy does not produce sustainable harvesting in the

presence of even a small variation in model parameters. This

is due to a positive feedback effect: if the assumed value of τ

is slightly different to the the actual experienced value for a

single cycle, then the robot sleeps for too short or long a time

and the patch is slightly over- or under-exploited locally. This

reduces the productivity of the population, driving it away

from the optimal. Since this occurs whether the error in τ

is positive or negative, the random variations do not cancel

out and the system is driven either to under-exploitation or

patch destruction.

The sensitivity of the MSY approach is well known,

and is a problem when parameters are actually variable,

when measurements of them have some error, and when

some foragers “cheat” by taking more than their allocation.

This is a source of criticism of the method being used

historically to “optimize” catch quotas in real-world fisheries,

with subsequent collapses of fish populations. Small errors in

parameter estimates and variations in the harvested amounts

can quickly lead to destruction of the population. It may

be too risky to manage critical natural resources using this

method alone [15], [16].

In the remainder of the paper, we extend the basic model

to (i) handle multiple patches; and (ii) dynamically adapt

the individual robot work rate at run time to prevent the

runaway feedback effect from occuring and maintain the

foraged population at the optimal level.

B. Allocating robots to patches

In the general case we have multiple patches to forage

with our pool of robots, so we need to allocate robots to

patches. There are two possible cases to consider; one in

which the number of robots is less than or equal to the

minimum required optimally forage all patches, and another

when there are more than enough robots to do the work so

we can over-allocate (the redundancy providing robustness to

robot failures). Excess work capacity is absorbed by “sleep

time” in which the robot stops working for a short period.

Equivalently the robot could work continuously but at a

slower rate.

3312

��������	
������

�
�
�
�
�
��

�
�

�

��

��

��

��

���

���

�

��

��

��

��

���

���

�
�
� �� �� �� �� ���

� �� �� �� �� ���

���	
	�

����	
	��

���	
	��

(a) Patch population

��������	
������

�
�
�
�
�
�
�

�
�
��
�
��
��
��
�
�
��
�
�

��
�
�
�
�
��

�
�

�

�

��

��

��

�

�

��

��

��

�
�
� �� �� �� �� ���

� �� �� �� �� ���

��	
�
�

���	
�
��

��	
�
��

(b) Production Rate

��������	
�����

�
�

�
�
��
	�
�

�

��

��

��

��

���

���

�

��

��

��

��

���

���

�	��
� �� �� �� �� ���

� �� �� �� �� ���

���	
	�

����	
	��

���	
	��

(c) Patch population

��������	
�����

�

�
�
�
�
	
�
�
��
�
�
��
��
�
�
�
�
�

��
�
�
�
�
�
	�

�
�

�

�

��

��

��

�

�

��

��

��

�	��
� �� �� �� �� ���

� �� �� �� �� ���

��	
�
�

���	
�
��

��	
�
��

(d) Production Rate

Fig. 5: The results of fixed-allocation foraging in fixed (a,b) and variable (c,d) scenarios. The optimal robot allocation is

Nj = 1.5 robots. Results for N = 1, 1.5, 2 are shown.

a) Case 1: No redundant robots: When N ≤
M
∑

j=1

⌈Nj⌉

we allocate robots to patches in order of increasing round-

trip time dj in order to maximize the overall puck delivery

rate. Let the ordered list L = {N1, N2, . . . , NM} contain the

optimal static robot allocations for all M patches, calculated

using Equation 9. The list is sorted by increasing patch round

trip time dj i.e. di 6 dj for any i < j. N̂j = ⌈Nj⌉ robots

are allocated to the jth patch in this list in order, until the

pool of robots is used up.

b) Case 2: Redundant robots: If there are more than

enough robots to forage all patches optimally, i.e. N >
M
∑

j=1

⌈Nj⌉, then we over-allocate by distributing all N robots

proportional to the needs of each patch, allocating integer

N̂j robots to patch Pj thus:

N̂j =

round(N ·
⌈Nj⌉

M∑

j=1

⌈Nj⌉

) if j = 1, 2, . . . ,M − 1

N −
M−1
∑

j=1

N̂j if j = M

(11)

C. Initializing Sleep Time

The sleep time for a robot foraging patch Pj is chosen to

absorb the excess work capacity of the allocation of robots

N̂j (if any) to closely approximate the optimal allocation Nj .

This is the same value for every robot on the patch:

tsleep =

{

0 if N̂j 6 Nj

N̂j · s ·
4

rK
− hp − 2τj − hd if N̂j > Nj

(12)

D. Adaptive Sleep time

As discussed above, a fixed work allocation will inevitably

drive the patch population away from the optimal in the

presence of variation or measurement errors. To address this

issue, we propose a simple method of adapting overall work

rate by having each robot locally modify its sleep time

in response to its own recently-sensed estimate of patch

population pobs(t). On each work cycle, the robot adjusts

its sleep time as follows, sleeping longer if the population is

Fig. 6: Screenshot from the Antix simulator. 80 robots (small

circles) adaptively forage pucks (dark dots) from 3 patches

(squares) and deliver them to the home (large circle).

observed to be too small, or shorter if the population is too

large:

perror(t) =
K

2
− pobs(t) (13)

∆tsleep(t) =

kincr.perror(t) perror > 0
kdecr.perror(t) perror < 0
0 perror = 0

(14)

where kincr and kdecr are gain parameters which control

the frequency response of this proportional controller.

This algorithm is extremely simple, but solves the problem

effectively as shown below.

E. Adaptive Multi-Patch Foraging Demonstration

We demonstrate the adaptive controller in the freely-

available sensor-based robot simulator Antix2. Pucks are

placed at random in the patches, the robot drives between

home and goal using a simple kinematic controller, and

detects pucks using an on-board sensor with limited range.

Thus the simulation approximates the foraging model with

variable τ . We use a simple robot simulator rather than the

2http://github.com/rtv/Antix

3313

�

�
�
��
�
��
�
�
	

�
��
�
�

�

��

��

��

��

���

�

��

��

��

��

���

���
� �� ��� ��� ���

� �� ��� ��� ���

�	
���

�	
���

�	
���

(a) Patch population

�

�
�
��
�
��
�	

��
��
�
��

�
�
�
�
�
��
��

�
�

�

�

��

��

��

�

�

��

��

��

����
� �� ��� ��� ���

� �� ��� ��� ���

����	
�

����	
�

����	
�

(b) Patch growth rate

�

�
�
�
�
��
�
�	

�
��
��

��

��
�
�
�
�
��
	�

�
�

�

�

��

��

��

�

�

��

��

��

�	��
� �� ��� ��� ���

� �� ��� ��� ���

����	
�

����	
�

����	
�

(c) Puck delivery rate

Fig. 7: Results: 60 robots adaptively foraging 3 patches of randomly placed pucks. Allocation is patch 1:=18 robots, 2:=24,

3:=18. Sleep time is zero. Sustainable, but too few robots to maximize yields of all three patches. Time is measured in

hundreds of seconds. Puck delivery rate is patch 1:=6.81 pucks/time, 2:9.69, 3:=9.77, all:=26.27.

�

�
�
��
�
��
�
�
	

�
��
�
�

�

��

��

��

��

���

�

��

��

��

��

���

���
� �� ��� ��� ���

� �� ��� ��� ���

�	
���

�	
���

�	
���

(a) Patch population

�

�
�
��
�
��
�	

��
��
�
��

�
�
�
�
�
��
��

�
�

�

�

��

��

��

�

�

��

��

��

����
� �� ��� ��� ���

� �� ��� ��� ���

����	
�

����	
�

����	
�

(b) Patch growth rate

�

�
�
�
�
��
�
�	

�
��
��

��

��
�
�
�
�
��
	�

�
�

�

�

��

��

��

�

�

��

��

��

�	��
� �� ��� ��� ���

� �� ��� ��� ���

����	
�

����	
�

����	
�

(c) Puck delivery rate

Fig. 8: Results: 80 robots adaptively foraging 3 patches of randomly-placed pucks. Allocation is patch 1:=35 robots, 2:=27,

3:=18. Sustainable and optimal (maximum productivity is 10 pucks/unit time).

�

�
�
��
�
��
�
�
	

�
��
�
�

�

��

��

��

��

���

�

��

��

��

��

���

���
� �� ��� ��� ���

� �� ��� ��� ���

�	
���

�	
���

�	
���

(a) Patch population

�

�
�
��
�
��
�	

��
��
�
��

�
�
�
�
�
��
��

�
�

�

�

��

��

��

�

�

��

��

��

����
� �� ��� ��� ���

� �� ��� ��� ���

����	
�

����	
�

����	
�

(b) Patch growth rate

�

�
�
�
�
��
�
�	

�
��
��

��

��
�
�
�
�
��
	�

�
�

�

�

��

��

��

�

�

��

��

��

�	��
� �� ��� ��� ���

� �� ��� ��� ���

����	
�

����	
�

����	
�

(c) Puck delivery rate

Fig. 9: Results: 100 robots adaptively foraging 3 patches of randomly placed pucks. Allocation is patch 1:=43 robots, 2:=33,

3:=24. Sustainable and optimal (maximum productivity is 10 pucks/unit time).

�

�
�
��
�
��
�
�
	

�
��
�
�

�

��

��

��

��

���

�

��

��

��

��

���

���
� �� ��� ��� ���

� �� ��� ��� ���

��	��

��	��

��	��

��	��

��	���

(a) Patch population

�

�
�
��
�
��
�	

��
��
�
��

�
�
�
�
�
��
��

�
�

�

�

��

��

��

�

�

��

��

��

����
� �� ��� ��� ���

� �� ��� ��� ���

�����

�����

�����

���	�

������

(b) Patch growth rate

�

�
�
�
�
��
�
�	

�
��
��

��
�

��
�
�
�
�
��
	�

�
�

�

�

��

��

��

�

�

��

��

��

�	��
� �� ��� ��� ���

� �� ��� ��� ���

�����

�����

�����

���	�

������

(c) Puck delivery rate

Fig. 10: 20 robots forage on patch 3 only. The plots show the system evolution for different starting patch sizes

{20,40,60,80,100}. The system reaches optimal sustainable foraging in each case.

3314

more abstract model above to demonstrate the robustness

of the adaptive method. We disable robot-robot collisions

in the simulator to prevent spatial interference effects from

dominating the results of this first study. New pucks are

placed at random in their patch, so small variations of

transportation time are present in the simulation.

As before, the puck growth rate is r = 0.4 and carrying

capacity K = 100. Initial population P0 is 60 pucks. Puck

handling times are hp = 10 seconds for and hd = 8 seconds

for drop off. The simulation runs for 20,000 simulated

seconds. The patch growth period is s = 100 seconds. The

adaptive controller gains are kincr = 4.0 and kdecr = 3.5.

The robot start times are staggered to avoid all the robots

reaching patch and home at same time.

There are three patches, all with the same logistic growth

parameters, but located at different distances from home, at

2, 3 and 4 times unit distance. We run the system with robot

populations of 60, 80 and 100 robots.

The overall performance metric we mean to optimize is

the sustained delivery rate of the entire robot system, which

is simply the total number of pucks delivered by all robots

per unit time. With these parameters the optimal delivery rate

is 10 pucks per unit time.

Figure 7 shows the system evolution for 60 robots, where

plot (a) shows the patch population over time. The population

of patches 2 and 3 is decreased to the optimal population

size of 50 after around 50 * 100 seconds. Patch 1 has

the largest round trip time, and not enough robots were

available to service it completely. Its population grows to

the carry capacity, which drops the growth rate (b) to below

the maximum of 10 pucks per unit time. The number of

robots allocated to each patch is shown in the caption. The

foraging is sustainable and optimal on patches 2 and 3 but

trivially sustainable and suboptimal on patch 1 due to lack

of robot work capacity.

Figure 8 shows the system evolution for 80 robots. The

patch population plot (a) shows the robots initially over-

harvest all patches and the populations drop quickly. Adapt-

ing to the falling population, the robots increase their sleep

time and the population climbs again, overshooting the ideal

size until the robots adapt again, bringing the population back

to the approximately optimal size. The patch growth rate is

shown in (b) and an early drop can be seen until recovery

at around 80 ∗ 100 seconds. The puck delivery rate is seen

in (c), climbing from zero as robots are are deployed, rising

above 10 pucks per unit time as the patch is over-harvested,

dropping as the population declines, then converging to vary

slightly around the optimal of 10 pucks per unit time for

each patch.

Figure 9 shows the results for 100 robots. A similar

evolution as before can be seen, but with larger value

swings over shorter time. Again the system converges to

approximately the Maximum Sustainable Yield. The excess

work capacity has been turned into sleep time to avoid over-

harvesting.

To demonstrate the controller’s ability to drive the system

into MSY from different initial conditions, we had 20 robots

forage on patch 3 only, and repeat for different initial patch

sizes {20, 40, 60, 80, 100}. Figure 10 shows the system

evolution, which converges to the MSY in each case.

VI. CONCLUSION AND FUTURE WORK

This paper introduced the Sustainable Robot Foraging

problem and describes how the MSY model can be applied

to obtain a practical and near-optimal task-allocation for a

multi-robot system. Online fine-grained feeback control of

robot work rate is required to achieve maximum sustainable

yield due to variations and/or uncertainties in all practical

systems.

The method presented here does fine-grained adaptation to

an initially close-to-optimal global robot allocation. The ini-

tial allocation is easily obtained if the logistic model parame-

ters for each patch is known, and no communication between

robots is required for convergence. In future we will present

another controller that converges (usually more slowly) to

the optimal behaviour even when no model parameters are

initially known, using only locally-obtained information and

modest local communication between robots.

Also of interest is a separate mechanism to robustly

avoid the destruction of patches. This is easily done if the

minimum viable population is known, but when this value

is not available we may simply set a conservative threshold

below which we stop harvesting. If we have no a priori data

on how to set the threshold, we may be able to estimate

it by observing the productivity / production curves by

sampling, or in the worst case we may observe the accidental

destruction of patches and adapt to avoid repeating the same

mistake.

Finally, recognizing that spatial interference can dominate

performance in high-density robot populations, we should

examine its effects on sustainable foraging. One intriguing

possibility is that interference may make pucks harder to find

when patch population is small and a patch is full of robots,

reducing harvesting rates and allowing the patch to regrow.

This is a potentially useful source of emergent feedback

control to avoid destroying a patch3.

This is an early step towards the development of machines

that can harvest biomass from the environment indefinitely

without damaging it. This is a challenge that has defeated

even the smartest primates, historically.

OPEN EXPERIMENTAL METHODOLOGY

All source code, scripts and configurations used to

generate the results in this paper are available for

download at http://autonomylab.org/pub/song_

IROS2013.tar.gz. The SHA1 hash of the package be-

gins ec85ab8febe0e9d7.

ACKNOWLEDGEMENTS

This work was supported by NSERC in Canada.

3This idea is due to Jens Wawerla.

3315

REFERENCES

[1] P. Verhulst, “Notice sur la loi que la population suit dans son
acroissement,” Corr. Math. et Phys, vol. 10, p. 113, 1838.

[2] T. Malthus, “An essay on the principle of population,” London, 1798.
[3] J. Hjort, G. Jahn, and P. Ottestad, “The optimum catch,” Hvalradets

Skrifter, vol. 7, pp. 92–127, 1933.
[4] L.-A. G. Etienne Danchin and F. Czilly, “Behavioural ecology,” Oxford

University Press, 2008.
[5] D. W. Stephens, J. S. Brown, and R. C. Ydenberg, Foraging. Chicago:

University of Chicago Press, 2007.
[6] J. Wawerla and R. T. Vaughan, “Online robot task switching under

diminishing returns,” In Proceeding of the Twelfth International Con-

ference on Aritifical Life (ALife XII), pp. 789–796, 2010.
[7] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile

robotics: Antecedents and directions,” Autonomous Robots, vol. 4, pp.
7–27, 1997.

[8] K. Lerman and G. A., “Macroscopic analysis of adaptive task allo-
cation in robots,” In Proc of the Int. Conf. on Intelligent Robots and

Systems (IROS-2003), Las Vegas, NV, pp. 1951–1956, 2003.
[9] M. Ashikaga, M. Kikuchi, T. Hiraguchi, M. Sakura, H. Anonuma,

and J. Ota, “Foraging task of multiple mobile robots in a dynamic
environment using adaptive behavior in crickets,” Journal of Robotics

and Mechatronics, vol. 19, no. 4, pp. 446–473, 2007.
[10] R. Pearl and L. Reed, “On the rate of growth of the population of the

united states since 1790 and its mathematical representation,” Proc.

Nat. Acad. Sci., vol. 6, pp. 275–288, 1920.
[11] F. E. Smith, “Population dynamics in dapthnia magna and a new model

for population growth,” Ecology, vol. 44, no. 4, pp. 651–663, 1963.
[12] H. Fujikawa, A. Kai, and S. Morozumi, “A new logistic model

for escherichia coli growth at constant and dynamic temperatures,”
Elsevier Ltd., vol. Food Microbiology 21, pp. 501–509, 2004.

[13] E. Yoshida, T. Arai, J. Ota, and T. Miki, “Effect of grouping in local
communication system of multiple mobile robots,” Intelligent Robots

and Systems ’94. ’Advanced Robotic Systems and the Real World’,

IROS ’94. Proceedings of the IEEE/RSJ/GI International Conference

on, vol. 2, pp. 808 –815 vol.2, sep 1994.
[14] V. Tereshko and A. Loengarov, “Collective decision-making in honey

bee foraging dynamics,” School of Computing, University of Paisley,
pp. 1–7, 2005.

[15] C. Clark, “The economics of overexploitation,” Science, vol. 118, pp.
630–634, 1973.

[16] A. Punt and A. Smith, “The gospel of maximum sustainable yield
in fisheries management: birth, crucifixion and reincarnation,” in
Conservation of exploited species, ser. Conservation biology series,
J. Reynolds, Ed. Cambridge University Press, 2001. [Online].
Available: http://books.google.ca/books?id=W8WldjwSjZYC

3316

