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Abstract— This paper presents a novel computational ap-
proach for modeling and generating multiple object manipula-
tion behaviors by a humanoid robot. The contribution of this
paper is that deep learning methods are applied not only for
multimodal sensor fusion but also for sensory-motor coordina-
tion. More specifically, a time-delay deep neural network is ap-
plied for modeling multiple behavior patterns represented with
multi-dimensional visuomotor temporal sequences. By using the
efficient training performance of Hessian-free optimization, the
proposed mechanism successfully models six different object
manipulation behaviors in a single network. The generalization
capability of the learning mechanism enables the acquired
model to perform the functions of cross-modal memory retrieval
and temporal sequence prediction. The experimental results
show that the motion patterns for object manipulation behav-
iors are successfully generated from the corresponding image
sequence, and vice versa. Moreover, the temporal sequence
prediction enables the robot to interactively switch multiple
behaviors in accordance with changes in the displayed objects.

I. INTRODUCTION

For robots to cooperate with humans in daily living envi-
ronments, it is essential for the robots to select appropriate
behaviors in accordance with environmental changes while
coping with the difficulties in handling high-dimensional
and large-scale raw sensory inputs. Hence, in most of
the robotic applications, the sensory inputs are commonly
preprocessed with dedicated feature extraction mechanisms,
such as color region extraction or optic flow, for example.
These approaches, however, have the side effect that the
information filtering by designers possibly neglects essential
information and limits the chances for the robot to develop
its own capability from the sensory input level.

Meanwhile, deep networks have received increased atten-
tion in the machine-learning community and it has been
successfully applied to unsupervised feature learning for
single modalities such as text [1], image [2], or audio [3].
In such studies, various information signals, even with high-
dimensional representation, were effectively abstracted in a
reversible manner. The same approach has also been applied
to learning fused representation over multiple modalities
showing a significant improvement on speech recognition
performance [4]. Another study on multimodal integration
learning has succeeded in cross-modal memory retrieval by
complementing missing modalities [5]. However, most of the
current studies on multimodal integration learning utilizing
deep networks are focused on finding correlations between
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static modals such as image and text [6]. Thus, few studies
have investigated methods not only for multimodal sensor
fusion but also for sensory-motor coordination problems [7]
of robot behaviors.

Against these backgrounds, our general interest in this
study is to examine the possibility of applying a deep learn-
ing framework to the sensory-motor coordination problem on
robotic applications, especially with high-dimensional and
large-scale raw sensory temporal sequences. To be more
specific, the objectives of this paper are (1) to propose a novel
approach for application of multimodal temporal sequence
learning and cross-modal memory retrieval mechanisms for
robot behavior control tasks, and (2) to demonstrate the
effectiveness of sensory-motor coordination on object ma-
nipulation behaviors by a humanoid robot.

To achieve our objectives, we construct a multimodal inte-
gration learning mechanism based on a deep learning frame-
work, and the algorithm called Hessian-free optimization [§]
is adopted as a method for training the proposed mechanism.
The raw color image inputs acquired from a camera are
directly input into an auto-encoder and the corresponding im-
age features are generated. The image features are combined
with the joint angles and the multimodal temporal sequence
is integrated by another auto-encoder. Our experimental
results demonstrate that (1) the proposed method can retrieve
temporal sequences over different modalities and predict
future sequence from the past, and (2) behavior-dependent
unified representations that fuses sensory-motor modalities
together are extracted in the temporal sequence feature space.

This paper is organized as follows. In Section II, we
briefly review the Hessian-free optimization for training deep
networks. In Section III, we describe the general framework
of the multimodal temporal sequence learning. In Section
IV, we present the practical construction of the proposed
framework and the experimental setups for the evaluation. In
Section V, we analyze the results, and finally we conclude
our work in Section VI.

II. DEEP NEURAL NETWORKS
A. Training deep neural networks

Deep neural network (DNN) is a multilayer neural network
model that has more than one layer of hidden units between
its inputs and its outputs. Hinton et al. [9] first proposed
an unsupervised algorithm to use greedy layer-wise unsu-
pervised pre-training followed by fine-tuning methods for
overcoming the higher prevalence of unsatisfactory local op-
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Martens [8] proposed a novel attempt to introduce a second-
order optimization method as the Hessian-free approach
for the training of deep networks. The proposed approach
effectively and efficiently trained the models by a general
optimizer without the pre-training process. We adopt the
learning method proposed by Martens for optimizing mul-
tiple auto-encoders, one for the self-organization of image
features and the other for the temporal sequence learning.

B. Hessian-free optimization

The methodology of the Hessian-free algorithm originates
with the conventional numerical optimization theory, known
as Newton’s method. A canonical second-order optimization
scheme such as Newton’s method iteratively updates the
parameters § € RY of an objective function f by computing
gradient vector p, and updates 6 as 6,11 = 0,, + ap, with a
learning parameter «. The primary task of Newton’s method
is to locally approximate f around each 6, up to the second
order, by the quadratic equation,

1
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where By, is a damped Hessian matrix of f at #,,. As H can
become indefinite, the Hessian matrix is re-conditioned to be
By, = H(6,) + A, where A\ > 0 is a damping parameter
and [ is the unit matrix

In the standard Newton’s method, My is optimized by
computing the N x N matrix B and then solving the system
By, pn = —V f(0,)T. This computation, however, is very
expensive for a large N, which is a common case even
with modestly sized neural networks. To overcome this issue,
the version of Hessian-free algorithm developed by Martens
utilizes the linear conjugate gradient (CG) algorithm for
optimizing quadratic objectives in combination with the use
of a positive semi-definite Gauss-Newton curvature matrix
in place of a possibly indefinite Hessian matrix. The name
“Hessian-free” means that the CG does not necessarily
require the costly explicit Hessian matrix; instead, the matrix-
vector product between the Hessian H or the Gauss-Newton
matrix G and the gradient vector p is sufficient. For more
details on the concrete implementation, see [8], [10], and
[11].

III. MULTIMODAL TEMPORAL SEQUENCE
LEARNING MECHANISM

A. Self-organization of image feature vector

High-dimensional image inputs are converted to low-
dimensional feature vectors by the auto-encoder (image
compression network). The input-output mappings of the
image compression network are defined as follows:

ut = f(Tt) 2
feo= [N (w), 3)

where ¢, us, and 7; are the vectors representing the input im-
age, the corresponding image feature, and the reconstructed
image, respectively. Functions f(.) and f~1(.) represent the
transformation mapping from the input layer to the central
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Fig. 1. Cross-modal memory retrieval and temporal sequence prediction

hidden layer and the central hidden layer to the output layer
of the network, respectively.

B. Multimodal learning of temporal sequence using time-
delay network

A time-delay neural network (TDNN) is a method for uti-
lizing a feed-forward neural network for multi-dimensional
temporal sequence learning [12]. Motivated by TDNN, we
apply the auto-encoder to the temporal sequence learning
problem (temporal sequence learning network). An input to
the temporal sequence learning network at a single time step
is defined by a time segment of the pair of joint angle vectors
and image feature vectors, as follows:

St = (ataut) 4)
{tft—T+1<t <t} 5)

where s; and a; are the input to the network and the joint
angle vector at time ¢, respectively, and 7' is the length of the
time window. Here, t represents the previous 7' steps of the
temporal segment from ¢, and a vector with the subscript t
means a time series of the vector. The input-output mappings
of the temporal sequence learning network are defined as
follows:

v = g(se) (6)
3 = g H(w), )
where v; and §; = (a¢,Ut) are the multimodal feature

vector and a segment of the restored multimodal temporal
sequence, respectively. Functions g(.) and g~!(.) represent
the transformation mapping from the input layer to the
central hidden layer and the central hidden layer to the output
layer of the network, respectively.

One of the merits of applying neural networks for mul-
timodal temporal sequence learning is their generalization
capability. Because the network can complement deficiencies
in the input data, the temporal sequence learning network
can be used in two different ways. One way is to retrieve a
temporal sequence from one modal for use in another (Fig.
1(a), (b)) and the other way is to predict a future sequence
from the past sequence (Fig. 1(c)). Thus, the temporal
sequence learning network serves as a cross-modal memory
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retriever or a temporal sequence predictor by masking the
input data from outside the network in either spacial or
temporal ways and iteratively feeding back the generated
outputs to the inputs as the substitutions for the masked
inputs. The practical implementation of these functions is
described in the following subsections.

C. Cross-modal memory retrieval

Cross-modal memory retrieval is realized by providing an
input data sequence to either of the two modals and self-
generating the corresponding sequence for the other modal
inside the network by constructing a recurrent loop from the
output nodes to the masked input nodes. The input and output
sequences are stored in the buffer (Fig. 1(a), (b)). Hence, in
the case of generating a motion from an image sequence,
input to the network is defined as follows:

s¢ = (G, ug). (8)

In the same way, in the case of retrieving an image sequence
from a motion, input to the network is defined as follows:

st = (ag, ). 9)

In both cases, the time segment of the recurrent input is
generated by shifting the corresponding previous outputs of
the network to the time direction for one step by discarding
the oldest time step output and filling the latest time step
with the value of the newest time step acquired from the
output (Fig. 2).

duplicate

input
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Fig. 2. Buffer shift of the recurrent input

D. Temporal sequence prediction

Similarly, the temporal sequence prediction is realized by
constructing a recurrent loop from the output layer to the
input layer. The difference is that among all of the T steps
of the time window, only the first T}, steps (the past T;,
shifts to the present time step t) of both modals are filled
with the input data and the rest (the future 7' — T, shifts to
the predicted time step) are filled with the outputs from the
previous time step. Hence, input to the network is defined as
follows:

S(t) = (at17&t27ut17at2)7 (10)
{t1]t = Tinn +1 <ty <t} (11)
{tolt +1 <t <t + (T —Ti)} (12)

The prediction segment of the recurrent input is generated by
shifting the corresponding previous outputs of the network
to the time direction for one step (Fig. 3).
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Fig. 4. Multimodal behavior learning and retrieving mechanism

IV. EXPERIMENTS

A. Construction of the proposed framework

Fig. 4 depicts a schematic diagram of the proposed frame-
work. Two independent deep neural networks are utilized
for image compression and temporal sequence learning. The
image compression network (Fig. 4(a)) inputs raw RGB
color images 7; acquired from a camera mounted on the
head of the robot and outputs the corresponding feature
vectors u; from the central hidden layer. The image features
are synchronized with the joint angle vectors a; acquired
from both arm joints and multimodal temporal segments
s; are generated. The multimodal temporal segments are
then fed into the temporal sequence learning network (Fig.
4(b)). Accordingly, multimodal features v; and reconstructed
multimodal temporal segments 4, are acquired from the
central hidden layer and the output layer of the network,
respectively.

The outputs from the temporal sequence learning network
is used for both robot motion generation and image retrieval.
The joint angle outputs a; from the network are rescaled
and sent back to the robot as joint angle commands for
generating motion. The network can also reconstruct the
retrieved images in the original form 7; by decompressing
the image feature outputs 4 because the image compression
network models the identity map from the inputs to the
outputs via feature vectors in the central hidden layer.
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Fig. 5. Object manipulation behaviors. (a) Ball lift: holding a yellow ball
on the table with both hands and raising the ball to shoulder height three
times with up-and-down movements, (b) Ball roll: iteratively rolling a blue
ball on top of the table to the right and left and using both arms alternately,
(c), (d) Bell ring L/R: ringing a green bell placed on either the right or left
side of the table by the corresponding arm motion, (e) Ball roll on a plate:
rolling an orange ball placed in a deeply edged plate attached to both hands
and alternately swinging both arms up and down, (f) Ropeway: swinging a
red ball hanging from a string attached to both hands by alternately moving
both arms up and down.

B. Experimental settings

The performances of the proposed mechanisms are eval-
uated by conducting object manipulation experiments with
the small humanoid robot NAO, developed by Aldebaran
Robotics [13]. The multimodal data, including image frames
and joint angles, are recorded synchronously at approxi-
mately 10 fps. For the image data input, the original 320
x 240 pixels image is resized to 20 x 15 pixels. For the
joint angle data input, 10 degrees of freedom of the arms
(from the shoulders to the wrists) are used.

Six different object manipulation behaviors identified by
different colorful toys (Fig. 5) are prepared for training the
learning mechanism. We record the multimodal temporal
sequence data by generating the different arm motions corre-
sponding to each object manipulation by direct teaching. The
resulting lengths of the motion sequence are between 100
and 200 steps (equivalent to between 10 and 20 seconds). To
roughly balance the total motion sequence lengths between
different behaviors, the direct teaching is repeated 5 to 10
times for each behavior so that the number of repetition be-
comes inversely proportional to the motion sequence length.
Among all the repetitions, one result is used as test data
and the others are used as training data. For the multimodal
temporal sequence learning, we use a contiguous segment
of 30 steps from the original time series as a single input.
By sliding the time window by one step, consecutive data
segments are generated.

Table I summarizes the datasets and associated experimen-
tal parameters. For both the image feature and the temporal
sequence learning, the same 12-layered (number of layers
of connecting weights) deep neural networks are used. In
each case, the decoder architecture is the mirror image of the
encoder, yielding a symmetric auto-encoder. The parameter
settings of the network structures are empirically determined
in reference to the previous works such as [9], or [14]. The

TABLE I
NUMBER OF DATA SAMPLES AND EXPERIMENTAL PARAMETERS

TRAIN" TEST" 1/0* ENCODER DIMS”
8444 948 900  1000-500-250-150-80-30
Temp. seq. 6848 776 1200 1000-500-250-150-80-30

* TRAIN, TEST, /O, and ENCODER DIMS give the size of the
training data, the test data, the input and output dimensions, and the
encoder network architecture, respectively.

Img. feat.

input and output dimensions of the two networks are defined
as follows: 900 for the image feature learning, which is
defined by 20 x 15 pixels for the RGB colors, and 1200
for the temporal sequence learning, which is defined by
the 30-step segment of the 40-dimension multimodal vector
composed of 10 joint angles and the 30-dimension image
feature vector. For the activation functions, linear functions
are used for both of the central hidden layers and logistic
functions are used for the rest of the layers.

V. RESULTS

We begin by examining the cross-modal memory retrieval
and the temporal sequence prediction performances of the
proposed mechanism. Then, we analyze the self-organized
structure of the multimodal feature space.

A. Evaluations of cross-modal memory retrieval and tempo-
ral sequence prediction

We conduct two experiments for evaluation of the cross-
modal memory retrieval performance: one generates the joint
angle sequence (motion) by providing image sequences, and
the other generates an image sequence by providing the
joint angle sequence. For these experiments, inputs for either
modal of the full 30 steps are provided and the sequence
for the other modal is internally generated in a closed-
loop manner (see III-C). In the experiment to evaluate the
temporal sequence prediction experiment, the input window
length is defined as 73, = 25 and the corresponding future
5 steps are internally generated as the prediction (see III-
D). For all of the experimental settings above, although the
initial values for the recurrent inputs are randomly generated,
the internal values eventually converge to the corresponding
states in association with the input values of the other modal
by the generalization capability of the network.

Fig. 6 shows the results of the joint angle sequence
generation from the image sequence input and the tem-
poral sequence prediction. The figures on the second row
prove that the appropriate trajectories are generated and the
configurations of the trajectories are clearly differentiated
according to the provided image sequences. The figures on
the bottom row show that the proposed mechanism can
correctly predict the future joint angles at 5 steps ahead of the
25 steps of the multimodal temporal sequence. The reason
for the low reconstruction qualities of the first 30 steps is
that random values are supplied for the recurrent inputs at
the initial iteration of the generation process. Fig. 7 shows
the results of image sequence generation from the joint angle
sequence input. In these results, a single frame is drawn
among the series of images for each behavior. Although
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Fig. 6. Motion reconstructions by the proposed model. The graphs on the top row (a) show the original motion trajectories in the test data. The graphs
on the second row (b) and the bottom row (c) show the reconstructed trajectories acquired by the cross-modal memory retrieval from the image sequence
and the temporal sequence prediction, respectively. The reconstructed trajectories correspond to the same behaviors as the top row. The results from the
cross-modal retrieval demonstrate that after the 30th step, it takes about 10 to 30 steps to converge the internal state to produce the correct trajectories.
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Image reconstructions by the proposed model. The images on the top row (a) show the original ones decompressed from the image feature vector

Fig. 7.

in the test data. The images on the bottom row (b) show the reconstructed images decompressed from the feature vectors acquired by the cross-modal
memory retrieval from the joint angle sequence. The reconstructed images correspond to the same behaviors as the top row.

the details of the images are slightly different, the objects
showing up in the images are correctly reconstructed and the
location of the color blobs are properly synchronized with
the phase of the motion.

Table II summarizes quantitative evaluation results of the
cross-modal memory retrieval (IMG — MTN: from image
to motion and MTN — IMG: from motion to image) and
the temporal sequence prediction (PRED) performances for
the six behavior patterns. The numbers given in each entry
of the table represent the root mean square (RMS) errors,
range between 0 and 1, of the reconstructed trajectories on
the test data.

B. Visualization of multimodal feature space

Fig. 8 presents the scatter plot of the three-dimensional
principal components of the acquired multimodal features.
The multimodal feature vectors are generated by recogniz-
ing the training data from the temporal sequence learning
network and recording the activations of the central hidden
layer. This figure demonstrates that the feature space is
segmented according to the different object manipulation

TABLE I
RECONSTRUCTION ERRORS

IMG — MIN MTN — IMG PRED
Ball lift 0.0245 0.1440 0.0415
Ball roll 0.0640 0.1012 0.0446
Bell ring L 0.0384 0.0644 0.0235
Bell ring R 0.0274 0.0896 0.0221
Ball roll on a plate 0.0189 0.1349 0.0432
Ropeway 0.0172 0.1150 0.0298

behaviors and the feature vectors are self-organizing multiple
clusters.

C. Real-time adaptive behavior selection according to envi-
ronmental changes

As an evolutionary experiment, we try to switch the robot’s
behavior according to changes in the objects displayed to
the robot. The approach is a combination of cross-modal
memory retrieval and temporal sequence prediction in the
sense that the joint angles 5 steps ahead are predicted from
the past 25 steps of the image input sequence. By iteratively
sending the predicted joint angles as the target commands
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Fig. 8. Acquired multimodal feature space. PC1 to PC3 axes correspond
to principal components 1 to 3, respectively.

Fig. 9. Real-time transition of object manipulation behaviors according to
changes in the displayed objects. The behavior changes are in the order of
Ropeway, Bell ring R, and Bell ring L.

for each joint angle of the robot, the robot generates motion
in accordance with the environmental changes. For the initial
trial, we tested the raw image input and confirmed that the
robot can properly generate motion according to changes of
the displayed object. However, we found that the reliability
for the generated image feature vector is severely affected
by the environmental light conditions. Therefore, for the
second trial, we went back to the conventional color region
segmentation approach and used the coordinates of the center
of gravity of the color blobs as a substitution to the image
feature vector. With this approach, we successfully enabled
the robot to stably switch the appropriate behaviors according
to changes of the displayed objects. Fig. 9 shows photos
of the transition of multiple behaviors in the real-time and
interactive manner.

VI. CONCLUSIONS

In this paper, we introduced a deep neural network for
modeling multiple behavior patterns represented by multi-
dimensional visuomotor temporal sequences. We presented
two applications of the proposed mechanism: the cross-
modal memory retriever and the temporal sequence predictor.

Their performances were proved by the object manipulation
behavior learning experiments conducted in the real-world
environment with a humanoid robot. In the experiments, six
different object manipulation behaviors were successfully
modeled. The analysis of the self-organized feature space
revealed that the multimodal features can be utilized as
abstracted information for recognizing robot behaviors.

The results from the real-time robot behavior switching
experiment revealed that the current approach for utilizing
raw image inputs as a means to perceive environment is
still not stable enough for handling drastic changes in the
environmental lightning conditions. One of the challenges
for future study is to improve the robustness of image
recognition capability by drawing out the potential of the
generalization capability of deep networks by developing
methods to train the network with training data sets having
more variety.
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