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Abstract²New smartphone technologies are emerging which 

combine head-mounted displays (HMD) with standard 

functions such as receiving phone calls, emails, and helping 

with navigation. This opens new opportunities to explore cyber 

robotics algorithms (robotics sensors and human motor plant). 

To make these devices more adaptive to the environmental 

conditions, user behavior, and user preferences, it is important 

to allow the sensor-equipped devices to efficiently adapt and 

respond to user activities (e.g., disable incoming phone calls in 

an elevator, activate video recording while car driving). This 

paper hence presents a situation awareness system (SAS) for 

head-mounted smartphones.  After collecting data from inertial 

sensors (accelerometers, gyroscopes), and video data (camera), 

SAS performs activity classification in three steps. Step 1 

transforms inertial sensor data into a head orientation-

independent and stable normalized coordinate system. Step 2 

extracts critical features (statistical, physical, GIST). Step 3 

classifies activities (Naive Bayes classifier), distinguishes 

between environments (Support Vector Machine), and finally 

combines both results (Hidden Markov Model) for further 

improvement. SAS has been implemented on a sensor-equipped 

eyeglasses prototype and achieved high accuracy (81.5%) when 

distinguishing between 20 real-world activities. 

 

I. INTRODUCTION 

Head mounted displays (HMDs) embedded in eyeglasses are 
the next innovation along the path of communication 
techniques. Such devices are hand-free systems. Although 
this is not a new idea, currently released and commercially 
available products (such as the Project Glass by Google) 
show the immense potential of this technology. They 
function as stand-alone computers; their light glass frame is 
equipped with a variety of sensors; a projector displays 
images and information onto the eye. While wearing these 
eyeglasses, the user is continuously exposed to the displayed 
information. To avoid bombarding a user with unwanted 
clutter, a management system is required. This management 
system identifies important messages (e.g., phone calls, email 
SRSXSV��WKDW�DUH�UHOHYDQW�WR�D�XVHU¶V�VLWXDWLRQ��7R�HYDOXDWH�WKH�
importance of a messaJH��KRZHYHU��NQRZOHGJH�RI� WKH�XVHU¶V�
activity is essential. Thus the challenge of this paper is to 
present an effective approach to classify activities from 
sensor data of the eyeglass frame. The data is recorded by a 
sensor cluster of IMU sensors (accelerometers, gyroscopes) 
and a camera. Beyond wearable smartphones, the proposed 
algorithms have potential applications for other types of 
embedded and robotics systems (e.g., sensors mounted on a 
robotic vehicle operating over different kinds of terrain). 

Although, the functionality of eyeglasses is similar to that 

of a smartphone, the interaction is often only limited to voice 
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commands. Instead of, e.g., rejecting messages each time via 

voice commands, the management system could 

automatically take over decision control in certain daily 

situations [Fig. 1]. Adapting these settings and filtering 

information will guarantee a high usability of the eyeglasses. 

Furthermore, logging classified activities throughout the day 

allows support for many other fields. One example is 

delivering activity information to health care programs for 

obesity prevention, treatment, or healthy life style 

recommendations [1].  

Figure 1.  Sample decisions of an individual profile of an eyeglass user 

Studies on activity classification have been demonstrated 
with a variety of sensors, mostly inertial sensors 
(accelerometer, gyroscope), but also in combination with 
pressure sensors [1] or a camera [9]. This paper also presents 
a multi-sensor approach that consists of an accelerometer, a 
gyroscope and a camera. 

Research on activity classification has been done by 

placing inertial sensors on various body parts: thigh, hip, 

waist, forearm, chest, lower back, knee, ankle, neck, or foot 

[1], but rarely head [4][5]. Most work claims that placements 

around the waist are the closest to the center of mass and thus 

better represent human motion and activities [5]. Most 

studies for this scenario were performed with small databases 

ranging from five to nine activities. Five activities were 

successfully recognized by a wrist-worn accelerometer 

(94.13 %) [7] and a waist-worn accelerometer (99.5%) [6]. 

Six activities achieved also good results with a pocket-worn 

(91.7 %) [10] and a belt-worn (82.8 %) [2] smartphone 

accelerometer. An IMU placed at the front hip was able to 

differentiate between nine activities (90%) [8]. Activities 

from large databases were performed with distributed inertial 

sensor networks (up to six sensor modules) with sensor data 

simultaneously collected from multiple body parts e.g. hip, 

wrist, arm, ankle, and thigh [5]. The most promising 

distributed sensor networks scored with almost 84% accuracy 

on 20 different activities [4]. An inertial sensor network 

combined with a camera succeeded with 61% on 29 kitchen 

activities [9]. For fewer activities (up to six) most of the 

sensor networks achieved results in the 85-95% range [4]. 
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Head placements are rare for activity classification, and have 

only been used for detecting falls and measuring balance 

during walking [5]. One possible reason is that sensor data is 

strongly affected by variations of head orientation. However, 

when effectively compensated for head movements, sensor 

data from eyeglasses have one significant advantage over 

other body placements: People are wearing eyeglasses with 

only slight position variations. Smartphones, however, can be 

put into the right or left pocket, in a purse or backpack. For 

daily use, sensor-equipped clothes or shoes are less practical 

because they are often changed. Eyeglasses are convenient 

particularly for people wearing prescription eyewear anyway. 

Furthermore, eyeglasses are self-contained and do not need a 

wired or wireless connection to sensors distributed all over 

the body, such as sensor networks do. The approach 

presented in this paper is also an eyeglass solution, but it has 

a set of unique contributions: (1) a face-mounted design of a 

sensor cluster to record sensor data, (2) an effective 

compensation technique for head movements, (3) the 

identification of critical features, (4) a large database with 

previously identified activities, (5) a classification technique 

to use the above ideas to classify and learn future activities in 

a short time. 

II. THE SAS APPROACH 

(1) Placement and design of the sensor cluster 

The head placement has certain benefits when recording data 
with a sensor cluster. From a view point of inertial sensors, 
the head captures full-body motions (e.g. walking, jogging) 
with similar results as other body parts. Part-body motions 
(e.g. washing dishes, eating) can only be captured indirectly. 
When measuring part-body motions, the sensors actually 
record small counter-motions of the head. These counter-
motions appear when the upper body compensates for lower 
body movements (e.g. lifting a hand). This is the reason why 
also part-body motions can be observed with inertial sensors. 
From the view point of a camera, the head is an optimal 
location to collect activity data. The camera is mostly 
directed to where the eyes pay attention to and do not have to 
deal with occlusion problems (such as smartphones in 
backpack, pocket, or purse). From an ergonomic point of 
view, the eyeglasses allow a very comfortable and easy daily 
use. Both IMU sensors and camera are integrated in the left 
earpiece of our prototype IMU+Camera eyeglasses [Fig 2].  

Figure 2.  Design of the eyeglasses. The sensors are attached to the left 

earpiece  

The design of the eyeglasses is reduced to two minimum 
necessary sensors to classify an activity: A Pololu MinIMU-9 
v2 Inertial Measurement Unit captures activities via 
accelerometer and gyroscope. A 160x120 pixels camera 
records images of the environment to put classified activities 
into the right contextual setting (e.g. indoors, outdoors). 

(2) IMU data transformation into stable coordinate system 

One contribution of SAS is to extract features that are not 

affected by the orientation of the head or the exact placement 

of the glasses on the head. When a person performs a head 

movement, the local sensor coordinate system will change 

accordingly. The key idea of the SAS approach is to keep the 

sensor data in a coordinate system that will stay stable even 

when the head moves. Thus the sensor data needs to be 

transformed from its dynamic local sensor coordinate system 

into a normalized coordinate system. This normalized 

coordinate system is defined as the x-axis pointing out of the 

eye, the y-axis points out of the right ear and the z-axis points 

vertically down. The normalized coordinate system 

compensates for any head orientation variation in roll and 

pitch angle, but ignores the yaw angle. The reason for 

ignoring the yaw angle is that the direction in which an 

activity is performed is not relevant. For example, walking 

north-bound (yaw = 0°) should result in the same as walking 

south-bound (yaw = 180°). When variations in roll and pitch 

angle happen, the accelerometer data will be significantly 

affected by gravitational acceleration. One can walk with the 

head facing up, down, or tilted to the side [Fig. 3]. 

 
Figure 3.  Sensor data from any head orientation is transformed in a stable 

normalized coordinate system  

The local sensor coordinate system will change its 

orientation along with the head orientation. Particularly 

accelerometer data will be influenced by different head 

orientations [Fig 4].  

 
Figure 4.  Sequences of walking with different head orientations.  
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As a result, for example, statistical or physical features, such 

as mean, variance, or energy will show very different results 

for each head orientation. Most likely it will also influence 

the performance of the classifier. The transformation into a 

stable normalized coordinate system will eliminate this 

effect and will compensate for any head orientation changes.  

The physical idea behind the transformation is to use the 

gravity vector (g) as a static reference. This vector always 

points vertically down and aligns with the z-axis of the 

normalized coordinate system. The g-vector can be 

measured via the accelerometer. Furthermore, gyroscope 

input and fusion techniques (DCM Algorithm) are used to 

make the calculation of the g-vector very robust ± even 

when measuring fast motion activities (e.g. jogging, 

running). When transforming, the z-axis of the local sensor 

coordinate system is rotated until aligned with the g-vector. 

In other words, it is now aligned with and transformed into 

the normalized coordinate system. As a result, the roll and 

pitch angle of the new coordinate system will be 0° at all 

times independent from the head orientation. Now the sensor 

data is completely invariant from the orientation of the head 

and prepared for feature extraction.  

(3) Identification of critical features 

Feature extraction is separately performed for inertial sensor 

data and video data. 

When extracting features from inertial sensor data, SAS 

differentiates between statistical and physical features. 

Statistical features are purely statistical operations (e.g. 

mean, variance) on sensor data. Physical features, however, 

are calculated from an equation with physical meaning (e.g. 

movement intensity, energy consumption). Previous research 

work uses either pure statistical features [9] or both 

statistical and physical features combined [8]. Feature 

extraction from video data is limited to one feature per 

image. Each feature is a large GIST vector that describes the 

context of a scene. 

(4) Creating an extendable database 

SAS must be trained with activities and types of 

environments in advance to classify them. First, one minute 

of inertial sensor data was recorded for each of the 20 

activities. 22-dimensional feature vectors were extracted 

from six second windows and stored in the activity database. 

Activities that are composed of many different motions (e.g. 

folding clothes) tend to widely spread out. Activities with 

one clearly defined motion (e.g. brushing teeth) mostly 

accumulate in small local areas [Fig.5]. In addition, SAS can  

 
Figure 5.  Dimension-reduced activity features displayed in 2D via 

principal component analysis. Each color represents a different activity 

easily extend the activity database. Each new activity 

requires only one minute of inertial sensor data, to calculate 

sufficient new features for classification. 

Second, 3000 images of video data of two types of 

environments were recorded (2100 indoors, 900 outdoors). 

A 512-dimensional GIST vector was extracted from each 

image and stored in the environment database [Fig. 6]. 

 
Figure 6.  Dimension-reduced environment database in 2D via principal 

component analysis with two classes (inside, outside) 

(5) Classification technique for activities 

First, a Naive Bayes classifier was trained with the activity 

database. It compares incoming activity features with 

database features and outputs a list of probabilities of 

matching activities. Second, a Support-Vector-Machine is 

trained with the environment database. It compares 

incoming environment features with database features and 

outputs the matching type of environment.  

III. THE MEASUREMENT IN DETAIL 

A. Overview 

SAS records IMU data with a frequency of 50 Hz, camera 

images with 2.5 Hz. Furthermore, the architecture can be 

structured in three major processing steps [Fig. 7]. Step 1 

prefilters sensor data and transforms it from a local dynamic 

coordinate system into the stable normalized coordinate 

system. Step 2 handles the feature extraction for both IMU 

and camera data. IMU data is segmented into windows, 

followed by the extraction of statistical and physical features 

from each window. For each image in the camera data, one 

GIST feature is calculated. Step 3 is performing 

classification (activities, environments) by using a network 

of multiple classifiers. The result of SAS is a list of activities 

with assigned probabilities. 

 

Figure 7.  Overview of the system architecture 
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Classification 

SAS uses the extracted features to classify a situation. A 

situation is specified by an activity and an environment. For 

this reason, the classification process is split into three parts. 

First, a Naive Bayes classifier distinguishes activities by 

analyzing inertial data. In parallel, a Support Vector 

Machine (SVM) classifies between environments via video 

data. Finally, both results are combined in a Hidden Markov 

model (HMM) to further improve the activity classification. 

The Naive Bayes Classifier (activity classification) is 

trained with one minute of training data per activity. This 

training data is divided into 10 training windows ± each 6 

seconds. A Naive Bayes Classifier only requires a relatively 

small amount of training data to estimate its two internal 

parameters (mean, variance) for classification. The SVM 

(environment classification) is an effective classifier for high 

dimensional data [8][12]. SVM is trained with GIST features 

of 1680 images (1260 indoors and 420 outdoors). The 

HMM combines both classification results (activities, 

environment) and used as observation inputs in the HMM. 

The number of possible observations (40) is the amount of 

activities (20) times the amount of environments (2) [Fig. 9]. 

Furthermore, HMM is used to model transition probabilities 

between activities. Therefore, the matrices with transition 

and emission probabilities were designed based on real-

world behavior: Activity states are more likely to repeat 

themselves than switching into a different activity state. 

Indoor activities are more likely to transfer into indoor 

activities. This applies to outdoor activities accordingly. 

Overall, the walking state is a more likely transfer state, 

because it connects most activities in the real world. 

Figure 9.  HMM architecture (40 observation states, 20 hidden states) 

IV. TEST RESULTS 

A. Performance tests of Naive Bayes and SVM 

SAS was tested with data chunked into 6s windows with 3s 

overlap. Each window was classified. The training and 

testing was performed on different days by the same subject. 

Test data only included activities which the database was 

previously trained for [Fig. 10]. The device may need to be 

trained for each further subject in future (similar to speech 

recognition). First, the classification performance for 

activities (Naive Bayes Classifier) was tested with sets of 5, 

10, 15 and 20 activities. Then, the success rate of the SVM 

classifier for environments was measured. Finally, the fusion 

performance of the HMM was determined. 

 
Figure 10.  The 20 daily activities used for testing 

Activity classification with inertial data: The performance 
of SAS was first tested with a small set of 5 basic motion 
activities (lying down, walking, jogging, biking, running). 
Then, 10 activities were tested by adding mainly indoor tasks 
(vacuum cleaning, washing dishes, brushing teeth, taking 
stairs, eating) followed by 15 activities by including hobby 
tasks (playing cello, playing piano, playing table tennis, 
computer work, reading book). Finally, all 20 activities 
were tested by adding complex activities (folding laundry, 
doing laundry, wiping cupboard) or activities (driving car, 
taking elevator) that had a very similar head motion pattern 
to an activity already existing in the database (computer 
work). 

  

 

 

 

 

 

 

 

Figure 11.  Test results of activity sets with pure inertial data 

Results show that pure physical features and all features 
combined show a slightly stronger performance than pure 
statistical features. For large databases (20 activities), pure 
physical features (80.3%) even showed a slightly better 
performance than all features combined (79.3%) [Fig. 11]: It 
turns out that statistical features do not improve the overall 
result of physical features. Therefore, only physical features 
were used for further testing with HMM. 
Environment classification with video data: The SVM 
classifier over GIST data showed a successful performance of 
89.8% correct classification. 

B. Full system testing (including HMM) 

The overall classification performance of SAS was tested. 

For this reason, both outputs of Naive Bayes (activities) and 

SVM (environments) were assigned to the HMM. The HMM 

re-classified activities to take environment information into 

account. The HMM classification performance is shown in a 

confusion matrix (in %) [Fig. 12]. 
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Figure 12.  Hidden Markov Model Results: Correct classification (green), 

wrong classification (red), transition errors (orange), initializing error (blue) 

HMM achieved a classification result of 81.5%. Because of 
the transition probabilities and the SVM input, the activities 
were recognized in a significantly more stable way than only 
using Naive Bayes. This greater temporal stability was the 
main added value of the HMM. However, the classification 
still fails in certain situations. For example, stopping a car at 
an intersection will naturally discontinue the characteristic 
VHQVRU�GDWD�SDWWHUQ�IRU�³GULYLQJ�FDU´��:KHn the stop lasts for 
too long, the classified activity is likely to switch from 
³GULYLQJ�FDU´�LQWR�D�EHWWHU�PDWFKLQJ�VHQVRU�GDWD�SDWWHUQ��H�J��
³FRPSXWHU�ZRUN´�RU�³WDNLQJ�HOHYDWRU´ (during constant-speed 
travel, and discounting the initial / final vertical acceleration 
phases) [Fig. 12]. Under certain circumstances, classifying an 
activity can completely fail, if an activity can be performed in 
WRR�PDQ\�GLIIHUHQW�ZD\V��:KLOH�³ZLSLQJ�FXSERDUG´�LQ�FHUWDLQ�
directions, head counter motions apparently showed a too 
KLJK�VLPLODULW\�WR�³ELNLQJ´�DQG�³WDNLQJ�VWDLUV´��$V�D�UHVXOW��the 
HMM misclassified it. Furthermore, unstable and frequent 
switching of the Naive Bayes classifier and low HMM 
transition probabilities were further contributing to the 
misclassified state [Fig. 12]. However, SAS shows a very 
stable and promising overall result with most activities being 
classified with 85% and higher success rate. Interestingly, 
this result was obtained when using the physical features 
only, as we found that the contribution from statistical 
features was negligible. A sample video was recorded for all 
20 activities and demonstrates the classification outcomes of 
all three classifiers [see attached video]. 

V. FUTURE IMPROVEMENTS AND CONCLUSION 

Activities without a distinct motion (computer work, taking 
elevator), or with too wide a range of possible submotions 
(wiping cupboard, folding laundry), are easily misclassified. 
Besides extracting physical features, the composition of these 
activities needs to be further studied. If a complex activity 
such as folding clothes can be broken into all submotions, a 
probability distribution (e.g. 40% shaking, 20% vertical 
movement, 40% horizontal movement) could possibly lead to 

a more promising result. When extending the database with 
more activities, the video data need to further be used to 
distinguish between significantly more environments or even 
object recognition. Often, eyeglasses come along with 
microphones. Additional sensor input could also contribute 
by measuring the surrounding noise level (e.g. car noises in 
street, sound of music instruments, pure silence). 
SAS showed that head-mounted sensor systems can be 
successfully used to measure 20 activities with an accuracy 
of 81.5% (15 activities with 91.3%). With the new eyeglass 
devices entering the market of communication technology, 
situation-adapted controlling of system settings guarantees a 
high-usability for daily use. By providing valuable activity 
classification, we hope that SAS made a contribution to the 
development of situation awareness systems for eyeglasses. 
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