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Abstract— Sampling-based probabilistic roadmap algorithms
such as PRM and PRM* have been shown to be effective at
solving certain motion planning problems, but the large graphs
generated to express the connectivity and a metric on the
configuration space may require much storage space and be
expensive to search. Recent work by Marble and Bekris [14],
[19] applied spanner algorithms to PRM*; these algorithms
prune some edges in a dense graph, while guaranteeably main-
taining an approximation to the metric. In this paper, we apply
(and improve) a state-of-the-art streaming spanner algorithm to
prune PRM* roadmaps. The algorithm we present has the main
advantage of computational speed; when applied to PRM*, the
processing time per vertex is independent of the number of
sampled vertices, n, as compared to O(n log2 n log logn) in [19].
In practice, the algorithm we present prunes a graph with about
20 million edges in less than 20 seconds on a modern desktop
computer; compared to the time required for generating such
a roadmap, this additional processing time is essentially trivial.
In fact, because the combination of this algorithm with PRM*
avoids the need for many collision detections, the combination
runs several times faster than PRM* alone.

I. INTRODUCTION

Recently, it has been shown that a sampling-based prob-
abilistic roadmap algorithm, PRM* [15], can asymptotically
approximate the underlying metric of a configuration space.
As might be expected, however, the roadmaps generated
contain very many vertices and edges. Work by Marble
and Bekris [14], [19], [20] (Incremental Roadmap Spanners,
IRS) applied spanner algorithms to PRM*; these spanner
algorithms relax the metric approximation by a specified
multiplicative constant, called the stretch, while reducing the
number of edges stored in the resulting graph.

In this paper, we introduce a state-of-the-art streaming
spanner algorithm from the graph theory community [10]
to construct sparse spanner roadmaps incrementally with
limited resources (time and space). The advantage of this
algorithm over other spanner algorithms is its constant per-
edge processing time. We implemented the algorithm and
conducted experiments using the Open Motion Planning
Library (OMPL) [26], but the resulting graphs still contained
60%–90% as many edges as the original; these results are
much worse than those reported for the IRS algorithm
developed by Marble and Bekris [14], [19].

We have found a variation of the algorithm that prunes
essentially as many edges as IRS [14], [19] for sufficiently
large stretch or sufficiently large graphs, and we present a
proof of the correctness of this variation.

We will refer to the combination of this improved stream-
ing spanner algorithm with PRM* as SS-PRM*. We believe
SS-PRM* to be quite practically useful. The number of
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neighbors for each vertex is a user-tunable parameter in the
original PRM; in a way, SS-PRM* and other spanner algo-
rithms automatically choose this value intelligently and non-
uniformly as necessary. In our experiments, we found that
compared to PRM with a small fixed number of neighbors,
SS-PRM* typically produces much shorter routes in a similar
amount of time; in most cases, the median route length of
regular PRM is twice as long as SS-PRM*; for details see
table V.

Because many edges can be discarded without collision
detection, SS-PRM* is several times faster than PRM*,
as well as being very much more memory-efficient. And
perhaps surprisingly, we have found experimentally that even
with large stretch, SS-PRM* does not cause a significant
degradation of average route length relative to PRM*. For
example, even with a stretch of 11, we found the average
route length increased by only 10% to 54% in our experi-
ments.

A. Related work
Probabilistic roadmap (PRM) algorithms were developed

in the mid-1990s [16]. Shortly after the PRM algorithm
was introduced, several other sampling-based algorithms,
such as Rapidly-Exploring Random Tree (RRT) [17] and
non-holonomic PRM [5], [12], [13] were developed. These
sampling-based algorithms became popular almost immedi-
ately; they are simple to implement, and can solve many
problems that are challenging for deterministic geometric
algorithms, such as [7], [9], [18], [25]. Recently, Karaman
and Frazzoli [15] proved that a variation on the PRM
algorithm, PRM*, asymptotically approximates a metric on
the space.

In the graph theory community, over the past decade, many
successful spanner algorithms have been developed [3], [8],
[22], [23], [4], [24] to sparsify graphs. Extending some of
these ideas, Marble et al. developed offline [20] as well
as online [19], [21] algorithms that could find spanners of
roadmaps.

Recently, streaming spanner algorithms have been devel-
oped [1], [2], [10], [11]. These algorithms process each
incoming edge (for example, as the edge is generated by
PRM*) only once, while using only a small amount of
working memory—always sublinear in the size of the input
graph, and typically not much larger than the size of the
spanner constructed.

II. PRELIMINARIES

Definition 1: A t-spanner Ĝ = (V, Ê) of an undirected
graph G=(V,E) is a subgraph of G (i.e., Ê ⊆E) that satisfies
d̂(u,v) ≤ t × d(u,v) for all u,v ∈ V . Here d and d̂ are the
shortest-path metrics on G and Ĝ respectively. The factor t
is called the stretch of the spanner. The definition extends
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naturally to weighted graphs (using weighted shortest-path
metrics), where each edge e ∈ E has a weight w(e)≥ 0.

For any graph G that is not a tree, there are some edges
such that G will remain connected even if we delete these
edges. By deleting suitable edges while maintaining the
connectivity of the roadmap, and not allowing any distance
to grow by more than a factor of t, we obtain a subgraph
satisfying the requirements of a spanner.

A few decades ago, Cohen [8] developed an algorithm
to construct a spanner of an unweighted graph using tree
structures. The basic idea is to use a certain probability
distribution to select a subset of vertices as roots of trees
with depth at most (k− 1); then cross-connect the trees to
ensure that any two vertices that were adjacent in the input
graph are at distance at most (2k−1). The resulting subgraph
is a (2k−1)-spanner.

To extend this algorithm to weighted graphs, we first
normalize the edge weights so that the least and great-
est weights are 1 and ŵ, respectively. We fix a constant
ε > 0 and partition the edges of the weighted graph G
into ` = dlog1+ε ŵe parts, creating edge-disjoint subgraphs
G1, . . . ,G`: an edge e with weight w(e) is put into Gi if
(1 + ε)i−1 ≤ w(e) < (1 + ε)i. For each subgraph Gi, we
construct a t-spanner Ĝi as if Gi were unweighted; the union⋃`

i=1 Ĝi is easily shown to be a (1 + ε)t-spanner of the
original weighted graph.

Cohen’s algorithm influenced subsequent work on span-
ner algorithms using tree structures [23]; including recent
streaming spanner algorithms developed in the graph theory
community [10], [11]. Most notably, an algorithm developed
by Elkin [10] has constant processing time O(1) per edge on
unweighted graphs, and can be extended to weighted graphs
using the above partitioning strategy. In this work we apply
and improve Elkin’s algorithm to construct sparse roadmaps.

A. Streaming spanner algorithm

True streaming graph algorithms process each edge only
once, and decide to store or discard the edge immediately.
We now describe Elkin’s state-of-the-art streaming spanner
algorithm for unweighted graphs [10], first at a conceptual
level, and then with the necessary details that achieve fast
processing and low memory usage.

The algorithm implicitly arranges the n vertices of the
input graph into clusters, initially all singletons. As each
edge is read, the clustering is modified. Associated with each
cluster P is a base vertex zP, which itself may not always
belong to the cluster, and an integer radius r(zP) chosen
at random from a truncated geometric distribution with the
guarantee that r(zP)≤ k−1. An important invariant is that all
vertices that have ever been assigned to cluster P are within
distance r(zP) of its base vertex. The algorithm distinguishes
between “boundary” vertices, those at distance exactly r(zP)
from zP, and “interior” vertices, which are closer to the base
vertex.

Upon reading an edge (u,v), where u is farther from its
cluster’s base vertex than v is (ties being broken by vertex ID,
say), the algorithm branches as follows. If u is an interior
vertex, then v is reassigned to u’s cluster and the edge is
retained. If u is a boundary vertex, then the edge is retained—
and called a cross edge—if it is the first such edge between
v and u’s cluster; otherwise the edge is discarded.

Algorithm 1: ReadEdge((u,v)) [10]
Let u be the vertex such that P(u)� P(v);
if P(u) is a selected label then

P(v)← P(u)+n;
return true;

else if B(P(u)) 6∈M(v) then
M(v)←M(v) ∪ {B(P(u))};
return true;

return false;

The end result is clearly a subgraph Ĝ of the input graph
G. Whenever an edge (u,v) is discarded, with u being the
“farther” vertex, the algorithm will have retained a cross edge
(x,v) for some vertex x that at some point belonged to u’s
cluster, P. Therefore, Ĝ will have a path from u to zP to x
to v, with length at most r(zP)+ r(zP)+ 1 ≤ 2k− 1, by the
invariant. This ensures that Ĝ is a (2k−1)-spanner for G.

To implement this algorithm one needs to maintain the
clustering information, as well as distance information from
base vertices, efficiently. For this, Elkin uses an integer label
P(v) at each vertex v that encodes both pieces of information
as follows. For a label P, its base value B(P) = P mod n
gives the cluster number, while its level L(P) = b(P−1)/nc
gives the distance from vertices with that label to the base
vertex of their current cluster. Each vertex v gets a unique
initial label I(v) from the set {1,2, . . . ,n}. The labeled
vertices are totally ordered as follows: we let P(u) � P(v)
if either P(u) > P(v) or else P(u) = P(v) and I(u) > I(v).
Additionally, the algorithm needs to keep track of whether a
vertex has previously been connected to a particular cluster.
This is done by keeping a list M(v), initially empty, of base
values of labels (identifying the corresponding clusters).

The random radius at each vertex is chosen as follows.
Put p = ((logn)/n)1/k. For each vertex v, independently, we
choose r(v) according to the distribution given by P(r(v) =
i) = pi(1− p), for 0≤ i≤ k−2, and P(r(v) = k−1) = pk−1.
The base vertex zP corresponding to label P is the unique
vertex such that I(zP) =B(P). A label P is said to be selected
if L(P)< r(zP); vertices with selected labels are precisely the
aforementioned “interior” vertices.

The appropriate manipulation of labels that implements the
previously described idea is shown in Algorithm 1. Returning
true/false indicates that an edge is to be retained/discarded
respectively. This pseudo-code is close to that given by Elkin,
except that his version maintains more information explicitly,
for notational purposes in the analysis. We refer the reader to
his paper [10] for this analysis, which shows that the size of
the spanner is O(kn1+1/k(logn)1−1/k) with high probability.

Figure 1 shows an example run of this algorithm on a small
instance: a complete graph on 9 vertices, with the setting
k = 3, so that we are computing a 5-spanner. In this example,
the randomly chosen radii include r(D) = 2, r(F) = r(I) = 1.
Notice that each radius is at most k−1. The edges are then
read in an order that causes the final assignment of labels to
(implicitly) define three clusters as shown, with D, F , and I
being their base vertices.
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Fig. 1: An example of a 5-spanner (corresponding to k= 3) of
a complete connected graph. The final clustering, determined
by base values of vertex labels, is shown with base vertices
shaded. Clusters 1, 2, 3 have radii 2, 1, 1, respectively, so that
C, E, G, H are boundary vertices while the rest are interior
vertices. Edges (C,G), (H, I), and (E, I) are cross edges.

III. INCREMENTALLY CONSTRUCTING SPANNERS WITH
PRM* AND READEDGE

The algorithm developed by Elkin is one of the fastest
spanner algorithms, with a runtime that is only constant
per edge. We first applied this streaming spanner algorithm
for weighted graphs to construct sparse spanner roadmaps
incrementally. In this section, we show how to apply this
algorithm with PRM* [15], and also discuss experimental
results, which show that the number of edges stored was
unfortunately large when used with the weighted, already-
somewhat-sparse graphs generated by PRM*.

A. Combining PRM* and ReadEdge

To initialize the combined PRM spanner algorithm, we
first need to know n, the number of samples (vertices of
the graph). This number will be used to assign radii and
initial labels for each vertex. We also need to find (or
somehow enforce) the minimum and maximum edge lengths
in the graph constructed by the PRM; these distances will be
used to normalize the edge lengths, compute the number of
required subgraphs l, and assign edges to various subgraphs
as each edge is processed. If we use PRM*, we can easily
estimate the maximum weight of an edge based on the
PRM*’s radius bound.

The minimum edge weight in a roadmap can be found by
sampling the vertices before running the PRM, and checking
all distances between pairs of vertices, without collision
detection. Alternatively, a quasi-random sampling strategy
could be used [6], allowing the minimum weight to be
computed directly.

During execution of the PRM, after computing a poten-
tial edge, the spanner algorithm can be used to determine
whether or not to keep the edge; if the edge is stored,
some bookkeeping is done to update the labels for vertices
involved.

The slowest step in roadmap construction, collision de-
tection, is called when two vertices are being connected. In
PRM, the local planner computes a distance between two
vertices, and also performs the collision detection. However,

Fig. 2: Four environments. From top left to lower right:
Alpha, bugtrap, cubicles, Easy.

if we separate these two steps, then we can avoid the collision
detection step if the spanner algorithm decides to discard the
edge based on the distance returned by the local planner.

B. Selection of roadmap size

The sharp reader may observe that since Elkin’s algorithm
requires that n be known in advance, the combination of
PRM* and ReadEdge is not truly incremental. This has some
disadvantages:

1) We may not know how to choose the number of
vertices necessary for a particular environment.

2) It is meaningless to consider the asymptotic optimality
of the PRM* metric, if the number of vertices is a fixed
constant.

3) The number of levels of subgraphs is determined by
the minimum distance between vertices; for large n,
the number of subgraphs (though logarithmic) could
become large, if samples are chosen unluckily.

All of these difficulties can be overcome quite easily.
Choose an initial n. Use a quasi-random sequence to generate
the samples; for the current value of n, this allows the
minimum distance between vertices to be computed directly.
Construct a roadmap for the current value of n, and store this
roadmap. If there is time remaining, double n and repeat the
process. Since the runtime of each iteration for a fixed n
is super-linear, the total run-time is less than twice that of
the run-time for the largest roadmap; the asymptotic runtime
is not worse than if we knew the ‘correct’ value for n in
advance.

C. Experiments with PRM* filtered by ReadEdge

We used the Open Motion Planning Library (OMPL) [26]
to conduct experiments, with a few different 3D environ-
ments: Alpha, Bugtrap, Cubicles, Easy.

For each environment, we sampled 50000 vertices, and
connected them using PRM*. Table I shows the results of
filtering with different values for k (recall that the stretch is
2k− 1), including how many edges (relative to the original
PRM*) were stored. We used ε = 0.1 (the approximation
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Alpha Bugtrap Cubicles Easy
k = 2 96.5% 96.2% 90.2% 96.0%
k = 3 86.8% 89.7% 87.3% 81.9%
k = 4 79.9% 83.4% 78.9% 75.2%
k = 5 69.6% 81.0% 72.3% 69.0%
k = 6 67.3% 77.9% 70.4% 64.6%

TABLE I: Streaming (2k− 1)-spanners on different envi-
ronments. The table shows the percent of edges stored
for different k. The original dense roadmaps for different
environments contain between 4 million and 26 million
edges.
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Fig. 3: An example of redundant edges being stored in the
original spanner algorithm for weighted graphs.

term that appears for weighted graphs) for all the experi-
ments. The results are disappointing: the spanners generated
stored many more edges than expected—between 60% and
90% as many as the original graph, depending on the selected
stretch.

IV. IMPROVED SPANNERS WITH PRM* AND
PROPAGATEDREADEDGE

Careful examination of the spanner roadmaps reveals some
apparent redundancy in the edges kept, due to the separation
of the weighted graph into several subgraphs based on edge
weights, using the basic technique described in Section II.
We now propose an algorithm that addresses this redundancy,
while remaining provably correct in terms of its stretch
guarantee.

To understand the issue, consider an edge e = (u,v) that
belongs to G j, such that when this edge is read we have
already retained a path in Gi (for some i < j) between u
and v, but there is no such path in G j. According to Elkin’s
algorithm, we would definitely retain e in the spanner for
G j. However, each edge in Gi has smaller weight than each
edge in G j. Therefore, if the u–v path in Gi has length at
most 2k− 1, then in the weighted graph G its length is at
most (2k−1)w(e), which means that we can safely discard
edge e without violating the stretch requirement.

For a concrete example, consider three vertices as in
Figure 3: edge (A,B) ∈ G6, (B,C) ∈ G8, and (A,C) ∈
G10. Procedure ReadEdge from Algorithm 1 (as applied to
weighted graphs) stores all three edges, since no subgraph
knows the connection information in any other subgraph.
However, if (A,B) and (B,C) arrive earlier than (A,C), then
for a large enough stretch parameter (A,C) need not be stored
since A and C are already connected and at distance below
the stretch.

To achieve a reduction in redundancy, we revisit the way
that ReadEdge modifies the clustering of vertices when it
reads an edge. In our improved algorithm, we allow modifica-
tions in the clustering at one subgraph Gi to propagate to all

“higher” subgraphs G j, with j > i. To be precise, we maintain
a label Pi(v) and a cross-connection list Mi(v) for each index
i, corresponding to subgraph Gi. Intially, Pi(v) = I(v) and
Mi(v) =∅ for each i. These are then manipulated as shown
in Algorithm 2. Recall that the edge weights are normalized
to lie in the interval [1, ŵ], and notice that the formula
1+ blog1+ε wc identifies the index q of the subgraph Gq to
which an edge with weight w belongs.

Algorithm 2: PropagatedReadEdge
Input: Edge (u,v) with weight w
q← 1+ blog1+ε wc ;
Let u be the vertex such that Pq(u)� Pq(v);
if Pq(u) is a selected label then

/* Update labels: */
for i = q to l do

Select u as the vertex such that Pi(u)� Pi(v);
if L(Pi(u))< (t−1) then

Pi(v)← Pi(u)+n;

return true;
else if B(Pq(u)) 6∈Mq(v) then

/* Update cross-connection list: */
Mq(v)←Mq(v) ∪ {B(Pq(u))};
return true;

return false;

When applied to the roadmap construction, once we decide
to store the edge, we do not update the labels or cross-
connection lists at once. We return true, and run collision
detection. If the collision detection indicates there is no
collision along the path, we then update the corresponding
label or cross-connection list. Additional processing can be
applied to algorithm 2, such as broadcasting cross-connection
list (increasing storage space), but only a limited number of
edges are additionally discarded. In algorithm 2, we choose
the most simple and effective modification.

Algorithm 2 should be able to avoid saving some re-
dundant edges, but it does not increase storage space. (For
details of the storage space and the expected number of
edges, please reference [10].) The algorithm propagates
selected information between different subgraphs. When an
edge (u,v) is stored, it might belong to a tree (update the
labels), or cross connection (append to a cross connection
list). Updating labels cannot increase the space requirements,
since for every vertex a label is maintained in each subgraph
in the original algorithm. We do not propagate information
about cross connections, so this cannot cause a blow-up in
storage either.

We now prove that our algorithm correctly computes a
spanner. For this we need a more sophisticated version of
the invariant described in Section II. Recall that for a label
P, zP is the unique vertex such that I(zP) = B(P) and that
r(v) is the randomly assigned radius for vertex v.

Lemma 1: Let v be a vertex of G and let j be an index of
some subgraph G j. If Pj(v) ever takes the value P, then in the
unweighted graph H j = G1 ∪ ·· · ∪G j, the distance between
v and zP is at most L(P). Consequently, this distance is at
most r(zP).

Proof: The latter conclusion follows from the former,
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because by design (and by definition of “selected label”) we
have L(P)≤ r(zP) for any label P that is ever used. For the
former conclusion, we use induction on L(P). When L(P) =
0, P must be the initial label I(v). Thus zP = v and indeed v
is at distance 0 from zP.

Suppose L(P) > 0. Then Pj(v) was assigned the value
P upon reading an edge (u,v) with Pj(u) = P− n. Since
L(P−n) = L(P)−1 and B(P−n) = B(P), by the inductive
hypothesis, u is at distance at most L(P)−1 from zP in the
graph H j. By design of PropagatedReadEdge, the edge (u,v)
falls in some subgraph Gq with q≤ j, so this edge is in H j
as well. Thus, the distance between v and zP is at most L(P),
completing the proof.

Theorem 2: Algorithm 2 applied to a weighted graph
generates a (1+ ε)(2k−1)-spanner.

Proof: Let Ĝ be the weighted graph created by the
algorithm. It suffices to prove that for an arbitrary edge e =
(u,v) that is not retained, there is a path in Ĝ of weighted
length at most (1+ε)(2k−1)w(e). Suppose edge e belongs
to Gq and P = Pq(u) � Pq(v). We must have B(P) ∈Mq(v),
so we must have retained some cross edge (v,x) belonging to
Gq, where x had a label satisfying B(Pq(x)) = B(P). By the
invariant in Lemma 1, both u and x are at distance at most
r(zP) from zP. Therefore, following a path from u to zP to x
to v, we see that v is at distance at most 2r(zP)+1≤ 2k−1
from u, in the retained subgraph of the unweighted graph
Hq = G1∪·· ·∪Gq.

Every edge in Hq has weight at most (1+ ε)q, whereas
w(e)≥ (1+ε)q−1. It follows that the weighted distance from
u to v in Ĝ is at most (1+ ε)(2k−1)w(e), as required.

A. Processing time per edge
As we already know, the original streaming spanner algo-

rithm on unweighted graphs has constant processing time per
edge. However, when we extend the algorithm to weighted
graphs, the processing time per edge is no longer O(1),
and becomes worst case O(`) (where ` is the number of
subgraphs as defined in Section II, ` = dlog1+ε ŵe). The
number of subgraphs is typically small; in our experiments,
we found that for graphs with as many as 50,000 vertices, `
is less than 50.

Analysis of the amortized run-time suggests that the
processing time per-edge is on average much less than O(`).
If (u,v) belongs to a tree, a for loop will be invoked which
will run in O(`). For a graph with n vertices, there are at
most O(n) edges that could belongs to some tree. For a graph
with |E| edges, to process all edges, we need O(|E|+n · `)
operations. Then, the amortized runtime per edge is O(1+
n · `/|E|). For a PRM* roadmap, |E| = O(n logn), so the
amortized runtime per edge is O(max{`/ logn,1}).

In practice, we find that the runtime of improved algorithm
is very close to the original algorithm, which has constant
processing time per edge. To process a roadmap with 50000
vertices, ReadEdge takes about 23 seconds, and Propagate-
dReadEdge takes about 26 seconds.

B. Experimental results for improved spanner algorithm
We applied SS-PRM* on six environments using OMPL,

including the four environments previously tested with Read-
Edge. The same PRM* parameters were adopted, and similar
roadmaps were generated. The number of edges on the
roadmaps ranged from 4 million to 26 million. The ratio

k=2 k=3 k=4 k=5 k=6
Alpha 20.7% 7.68% 4.99% 4.76% 3.96%

Apartment 39.1% 14.1% 8.71% 7.82% 6.56%
Bugtrap 20.9% 4.21% 3.17% 2.10% 2.00%
Cubicles 48.6% 42.8% 21.4% 14.6% 12.8%

Home 49.1% 42.0% 26.5% 16.9% 14.8%
Easy 56.3% 40.4% 26.1% 20.4% 15.1%

TABLE II: Results of running SS-PRM* on different en-
vironments with different k to construct (2k− 1)-spanners.
Each roadmap contains 50000 vertices.

PRM* 2 SS-PRM* 4 SS-PRM* 6 SS-PRM* PRM
Alpha 160 48 40 36 23

Apartment 152 70 60 55 25
Bugtrap 60 32 26 22 20
Cubicles 170 94 86 80 22

Home 117 93 77 70 26
Easy 101 61 54 49 24

TABLE III: Runtime comparison (in minutes) between
PRM*, SS-PRM* for different k, and PRM that connects
to 15 nearest neighbors.

k=2 k=3 k=4 k=5 k=6
Alpha 104% 135% 136% 142% 154%

Apartment 103% 104% 105% 107% 110%
Bugtrap 102% 107% 109% 115% 118%
Cubicles 101% 104% 106% 108% 110%

Home 101% 104% 105% 107% 110%
Easy 101% 103% 106% 109% 111%

TABLE IV: Average increase of path lengths. The table
shows the average route length for SS-PRM* over the length
of corresponding route for PRM*. The experiments are
conducted on corresponding environments with 5000 vertices
instead of 50000 vertices. In each resulting roadmap, we
calculated all-pair-shortest paths to compare the lengths of
different paths.

of edges stored by SS-PRM*, for various stretch values, is
shown in table II. Compared to the results for ReadEdge,
these roadmaps are much sparser.

C. Runtime of PRM, PRM*, and SS-PRM*
We ran 15-nearest-neighbor PRM, PRM* by itself, and

SS-PRM* for different k, and compared the runtimes, as
shown in table III. The experiments were run on a modern
desktop computer. The runtime of SS-PRM* is much less
than that of the full PRM*, but not necessarily proportional to
the number of edges processed and stored, since the collision
detection only ran on the edges the algorithm considered
storing. Even though the runtime of SS-PRM* is not as
fast as the original PRM, note that PRM only connects 15
neighbors while PRM* (and SS-PRM*) may connect each
vertex to thousands of neighbors.

D. Average stretch
In spite of the few edges stored and the stretch we

enforced, we would like to know how much the algorithm
relaxed different routes in the average case. PRM* and
SS-PRM* were run on the same environments with each
roadmap containing 5000 vertices. All-pairs shortest paths
were calculated on each roadmap (because of the high time
cost of all-pairs shortest paths, experiments on roadmaps with
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k=2 k=3 k=4 k=5 k=6
Alpha 2.23 1.54 1.32 1.25 1.19

Apartment 1.42 1.33 1.28 1.13 1.06
Bugtrap 0.89 0.76 0.63 0.58 0.55
Cubicles 2.73 2.52 2.30 1.94 1.87

Home 2.26 2.03 1.97 1.95 1.89
Easy 2.01 1.97 1.87 1.66 1.54

TABLE V: The median of the route length of 15-neighbor
PRM over the route length of SS-PRM* with different k.

Fig. 4: For a roadmap with 5000 vertices on Alpha environ-
ment with k = 6, the paths in spanner increased with different
percentage. The figure showed how many edges belong to
each different range. The average ration (path ratio) is 2.0. In
the original roadmap, there are 0.4 million edges, and there
are about 0.06 million edges left in the spare roadmap.

50000 vertices are infeasible) to compare the average route
length increase. Experiments show that even when the stretch
is large (when k = 6, the stretch is 11), on average the route
lengths increased very little. Figure 4 shows the distribution
of route cost increases on a roadmap generated for the Alpha
environment with 5000 vertices.

We hypothesize the reason the average route length in-
creased by very little compared to the worst bound is as
follows: short edges are mostly stored while many long edges
are discarded. Only the routes that are originally short are
approximated by the factor close to the worst bound (stretch),
while the routes that are long are approximated by many
short edges, with length similar to the original cost. The
weight distribution, e.g. the number of edges belonging to
each subgraph, is plotted in figure 5, and lends some support
to this hypothesis. We also see a sudden drop of number of
edges stored in 19th subgraph and above. We believe this to
be because lower-level subgraphs have fewer edges and are
already sparse.

We also compared the route lengths between roadmaps
returned by 15-nearest-neighbor PRM, and SS-PRM*. The
median route length of 15-nearest-neighbor PRM over the
median route length of SS-PRM* for different k is shown in
table V.

E. Comparison to the Incremental Roadmap Spanner

We compared the results to results reported for the Incre-
mental Roadmap Spanner (IRS) algorithm in [14], [19]. For
small k, such as k = 2, IRS stored 10−25% of the original
edges, while SS-PRM* stored about 30−60%; however, for

Fig. 5: The weight distribution of edges in the roadmaps
returned by SS-PRM*.

Environment No. of vertices IRS SS-PRM*

Bugtrap
5000 18.5 0.9
10000 98.8 5.1
20000 325.0 15.3

Apartment
5000 35.2 5.5
10000 129.2 14.8
20000 499.1 29.9

TABLE VI: Runtime comparison in minutes between IRS
and SS-PRM* on two environments with 5000, 10000, and
20000 vertices.

k = 6, IRS algorithm stored about 4− 10% of the original
edges, and SS-PRM* stored 2− 15% of original edges.
Overall, SS-PRM* stored more edges when k is small, but
the percentage drops rapidly as k grows.

On the other hand, the run time of SS-PRM* is less
than that of IRS [19]. For each edge, PropagatedReadEdge
has O(max{`/ logn,1}) processing time, and each vertex
has O(logn) neighbors, so for each of the n vertices, our
algorithm requires O(max{`,1}) = O(max{log1+ε ŵ, logn}),
while IRS [19] requires O(n · log2 n · log logn) per vertex in
the worst case.

We used IRS code provided by the authors of [19], and
ran some experiments to compare runtime between IRS and
SS-PRM*. Results are shown in table VI. Due to the lengthy
run-time of IRS, we were not able to conduct experiments
with more than 20,000 vertices.

Significantly, we can see that for some number of vertices,
the runtime of IRS will dominate the run-time, while for SS-
PRM*, collision detection remains the dominant term.

F. Graph size and density affect PropagatedReadEdge

The performance (the number of edges stored) of the
streaming spanner algorithm is greatly affected by both size
and the density of the original graph. To explore this, we
randomly generated different (unweighted) roadmaps with
different sizes (number of vertices, figure 6) and density
(number of neighbors, figure 7).

From figures 6 and 7, it is not hard to conclude that for
larger and denser graphs, the streaming spanner algorithm
performs better, as will PropagatedReadEdge. Therefore, for
even larger and denser roadmaps (more complex environ-
ments and more complex robots), we expect SS-PRM* to still
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Fig. 6: For random roadmaps with different number of
vertices, the percentage of edges stored for different k in
a (2k−1)-spanner using streaming spanner algorithm.

Fig. 7: For random roadmaps with 1000 vertices, but different
number of edges (density), the percentage of edges stored
using streaming spanner algorithm with different k.

produce roadmaps computationally efficiently while storing
an even smaller percentage of edges.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a state-of-art streaming span-
ner algorithm for pruning graphs representing distances and
connectivity. The algorithm stores a number of edges that
is competitive with the IRS algorithm, but has a processing
time that is essentially constant per vertex.

Previous work on sparse roadmaps has been applied to
symmetric systems, with undirected graphs; we would like to
extend our work to directed graphs. Current directed spanner
algorithms are off-line rather than streaming, however. We
have developed an algorithm that can construct directed span-
ners incrementally, but the size of the resulting spanner is
currently theoretically unbounded, even though experimental
results are promising.
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