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Abstract— We present a general approach to design modular
controllers for limit cycle locomotion over unperceived rough
terrain. The control strategy uses a Central Pattern Generator
(CPG) model implemented as coupled nonlinear oscillators
as basis. Stumbling correction and leg extension reflexes are
implemented as feedbacks for fast corrections, and model-based
posture control mechanisms define feedbacks for continuous
corrections. The control strategy is validated on a detailed
physics-based simulated model of a compliant quadruped robot,
the Oncilla robot. We demonstrate dynamic locomotion with a
speed of more than 1.5 BodyLength/s over unperceived uneven
terrains, steps, and slopes.

I. INTRODUCTION

Design of legged locomotion controllers has always been

a challenge. This is due to the fact that successful legged

locomotion consists of many tasks including coordination of

multiple degrees of freedom, balance control, dealing with

the switching dynamics imposed by the discrete contacts, etc.

The problem of locomotion control becomes even more chal-

lenging when the target environment is both irregular and

unperceived (through external sensors like laser scanners).

Here in this paper we focus on the design of controllers

for dynamic locomotion of quadrupeds over unperceived

rough terrain of medium difficulty. Therefore we will not

extensively address the research about static locomotion

control (e.g. [1], [2]), the ones which only has been tested

on a flat terrain (e.g. [3], [4]), or the ones which are tested

on perceived rough terrain, like the majority of the works

done on the LittleDog [5] under the Learning Locomotion

program [6].

One of the first successful attempts to dynamic locomotion

with quadruped robots was the seminal work of Raibert et al.

[7], [8]. Their control approach is based on dividing the lo-

comotion control into three main subtasks: hopping control,

speed control by adapting the step length, and posture control

via adjusting the joint torques. Though Raibert’s control was

not extensively tested on unperceived rough terrain back in

80’s, it has been extended and successfully used on robots

like BigDog [9] for dynamic locomotion over unperceived

rough terrain, however the details are not publicly disclosed.

There are also other locomotion control approaches ap-

plied to quadrupeds running on unperceived rough terrain.

This includes the research done on the Tekken robot

[10], [11] where a bio-inspired control approach consist-

ing of pattern generators and reflexes is applied. Another

example is the control approach presented by Maufroy et
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Fig. 1. Oncilla platform. The simulated robot (left) is a detailed model
of the hardware robot (right). Legs are passively compliant, and implement
pantograph mechanisms.

al. [12]. They utilize a Central Pattern Generator (CPG)

[13] model enriched with phase modulations based on legs

loading/unloading. They tested their approach on uneven

terrain in simulation and on the Kotetsu robot facing lateral

perturbations and steps.

Moreover, there are the recent locomotion controllers

based on the floating-based inverse dynamics control. This

includes the control strategy used on the HyQ robot, which

is based on inverse dynamics and virtual model control [14],

and the operational space control on the StarlETH robot

[15]. Both of these control approaches have been tested with

robots running on a treadmill with occasional unperceived

obstacles, on slopes, and against lateral perturbations.

Our main motivation here is to introduce a simple way

to design controllers for quadruped locomotion over rough

terrain. More precisely, we want our controller to have the

following properties:

1) The controller should be modular and hierarchical.

This means that the control should be divided into

meaningful modules, and a lower level module should

be able to work even in the absence of the higher level

ones. Different modules should be tuned on top of each

other, and should not be strongly interconnected. This

fact will reduce the complexity of finding the right

control parameters since they can be set sequentially.

2) Our target robots are comparatively cheap and

lightweight robots. So the control approach should

depend on as little sensory information as possible,

and it should not be computationally heavy.

3) The controller should allow for dynamic and relatively

fast gaits (at least more than 1 BL/s) over unperceived

rough terrain of medium difficulty (BL: Body Length).

The first property distinguishes our desired control strategy

from interconnected controllers like the ones on Tekken

[10], [11]. The second property makes our desired control

strategy different from approaches which strongly depend on
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Fig. 2. The control architecture. Coupled nonlinear oscillators implement
a CPG model as the basis. Reflex and posture control feedbacks affect the
CPG states. A state machine controls the activation of the feedbacks. r is
the CPG radial outputs controlling joint angles, θ is the CPG phases, δ is
the on/off contacts, q is the sensed joint angles, ξr and ξp are reflex and
posture control feedbacks, and χ is the CPG radial offsets.

sensory information or rather heavy computation, e.g. inverse

dynamics controllers like in [14], [15], These controllers

need torque controlled robots which are equipped with torque

and/or full contact sensing which, as of this moment, are not

cheap. Finally the third property distinguishes our desired

control strategy from control approaches like ZMP [16] ones,

whose constraints prevent high speed locomotion.

To design a controller with the mentioned properties, we

use Central Pattern Generators (CPG), implemented using

coupled nonlinear oscillators, as the low level module for

generating the locomotion patterns. We have shown in a

recent study [17] that CPGs, even used in open-loop, if

properly applied to a passively compliant quadruped, can

lead to forward locomotion speeds up to 6.9 BL/s, equal to

a froud number fr = 1.3. We believe that CPGs are good

bases for fast locomotion.

We add reflex feedbacks to the oscillators to compensate

for situations where a rapid correction is needed. We also

add model-based posture control feedbacks to continuously

adjust body rotations while traveling over rough terrain. As a

result, we introduce a systematic way of designing feedback

signals for Central Pattern Generator controllers as well.

We systematically test our control strategy on a simulated

quadruped locomoting over unperceived rough terrain. This

simulated quadruped is a detailed model of the Oncilla robot

(Figure 1) which will be used for a full validation in near

future. This paper is an extension of our previous study [18]

on a stiff torque controlled simulated quadruped.

II. CONTROL METHODOLOGY

The modular controller introduced here uses a computa-

tional Central Pattern Generator (CPG) model as the core.

CPGs have proven to be useful for limit cycle locomotion

and has been widely used on different robots [10]–[12],

[19], [20]. An open-loop CPG might suffice for flat terrain

locomotion, but sensory feedback is needed to compensate

for perturbations. We implement reflexes for fast corrections,

and model-based posture control for continuous corrections,

and both of these feedbacks affect the CPG states. An overall

schema of this modular control strategy is depicted in Figure

2.

These modules will be detailed in the following sections.

We need to mention that each leg of the robot has three

actuated degrees of freedom (DOF), first the joint respon-

sible for leg abduction/adduction (lateral hip joint), second
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Fig. 3. An one-dimensional ex-
ample phase portrait of a morphed
amplitude controlled oscillator. The
desired limit cycle is defined by
f(θ) = sin(3θ) tanh(cos(θ)) + 1,
γ = 10, and µ = 1. The radial
limit cycle is globally asymptotically
stable, and the oscillator converges to
the limit cycle from any state. Please
note that the illustrated phase portrait
is only for positive r values.

for leg protraction/retraction (sagittal hip joint), and last for

leg extension/flexion (sagittal knee joint). These joints will be

addressed with AA, PR, and FE subscripts. The movements

of the ankle joints are coupled to the knee joints (pantograph

mechanism), and they are not directly actuated.

In total, there are N = 12 controllable DOF in the robot

and L = 4 legs. Individual joints will be addressed with i
and j subscripts, and legs will be addressed with l subscripts.

So xPRl
means the x state of the PR joint of the lth leg.

A. Central Pattern Generators

We use morphed oscillators to implement a Central Pattern

Generator model. Morphed oscillators are nonlinear oscilla-

tors which can exhibit desired arbitrary limit cycle shapes

defined as functions of phase. We employ coupled morphed

amplitude controlled oscillators, defined as:

θ̇i = Ωi (1)

ṙi = µΩif
′
i(θi) + γ (µfi(θi) + χi − ri) + ξr + ξp (2)

Ωi = ω +

N
∑

j=1

cij sin(θj − θi − φij) (3)

where θi, Ωi and ri respectively are the phase, the coupling

dynamics, and the radial output of the ith oscillator. µ is

the radius of the amplitude controlled oscillator, γ is the

convergence rate, ω is the locomotion frequency multiplied

by 2π, and cij and φij are the coupling strength and

phase difference between the ith and jth oscillators. fi(θ)/µ
defines the shape of the limit cycle of the ith oscillator and

f ′
i(θ) = ∂fi(θ)/∂θ. fi : θ 7→ r can be any arbitrary C1-

differentiable function of phase.

ri is the joint angle reference for the ith DOF, χi is an

additional feedback offset added to the reference, and ξr and

ξp are reflex and posture control angular velocity feedbacks

(sections II-B and II-C).

The radial limit cycles of these oscillators are glob-

ally asymptotically stable (phase is indifferent). With non-

negative cik values and consistent phase differences, these

oscillators always converge to the desired phase differences

and the desired limit cycle, even facing (finite-time) pertur-

bations (see Appendix I for a brief proof). This fact eases

the process of feedback integration and ensures stability. An

example phase portrait is depicted in Figure 3.

B. Reflexes

Reflexes are crucial in cases where fast corrections are

needed. There are two kind of reflexes that we address:
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Fig. 4. Reflexes. Left) Leg hits an obstacle in the swing phase. A stumbling
correction reflex for extra knee flexion is activated. Right) A missing contact
situation. Knee extension reflex increases the leg length to quickly acquire
ground contact. Note that the legs follow a pantograph mechanism, so
movements of knee and ankle joints are coupled.

1) Stumbling correction reflex: As the study by Forssberg

et al. [21] on cats shows, an extra and fast leg flexion reflex

is evoked when a limb hits an obstacle in the swing phase.

We formulate this reflex as an impulse feedback to quickly

flex the knee (Figure 4-left): ξr
set
←− kr.

2) Leg extension reflex: The study by Daley et al. [22]

shows that if a guinea fowl misses a contact at the beginning

of the stance phase, then the leg is extended or at least

kept extended until a contact is sensed, and they discuss that

such a reaction stabilizes the locomotion. This reflex can be

implemented by extra extension of the knee joint when the

expected contact is missing (Figure 4-right): ξr
set
←− −kr.

The above reflexes can be simply implemented by setting

a constant instantaneous activation ±kr. The timing of these

reflexes are important, and the state machine in Figure 5

illustrates when each feedback is activated. The discussed

reflex impulses should be active for a short time, and we use

a simple first order filter to implement a fading memory:

ξ̇r = −βrξr (4)

where βr is set such that the feedback is forgotten (by a ratio

of 99.99%) in less than 10% of the stride duration.

C. Posture Control Feedbacks

Posture control mechanisms are needed as soon as the

robot locomotes on inclined or irregular surfaces, where body

rotations and leg postures should be continuously adjusted.

We implement three posture control feedbacks: 1) ξatt for

attitude control; 2) ξdir for direction control; and 3) angle

of attack control directly affecting χi states.

Attitude and direction control use the same mechanism,

but we keep them separate since attitude control is more

important compared to direction control and we want to be

able to have bigger gains for the attitude control. The posture

control feedback signal ξp is the sum of the attitude and

direction control feedbacks ξatt and ξdir.

1) Attitude control: In [18] we used Virtual Model Con-

trol (VMC) [23] to convert posture control virtual forces

to joint torques. VMC uses the Jacobian transpose method

[24] to generate torques representing the desired virtual

forces. If one wants to generate virtual velocities in the

task space (instead of virtual forces), then similarly Jacobian

inverse can be used to calculate the joint angular velocities

which represent those task space virtual velocities1. This later

1This method is also commonly used for iterative / velocity-based inverse
kinematics. In the context of quadruped locomotion, see e.g. [25].
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Fig. 5. The state machine used for feedback timing (for one leg). The state
machine uses the on/off contact status δ and the leg’s sagittal hip phase
θ = θPRl

to activate feedbacks. The stumbling correction reflex (SCR)
is activated in the SCR state (when a swing leg hits an obstacle), and the
leg extension reflex is activated in the Missing Contact state. The posture
control feedbacks are active in the Stance phase when the leg is in contact.
For this figure, Θ∗ is the phase span each state is active in, extracted from a
flat terrain run. ∗ can be early swing (esw), swing (sw), late swing (lsw),
early stance (est), stance (st), late stance (lst). ρ determines whether a
leg is protracting, which is 1 if ṙPRl

> 0. The dashed arrows indicate
immediate transitions.

method does not need a torque controlled machine.

To have a general idea, Figure 6 illustrates how task space

virtual velocities can be generated to adjust the posture. If

Figure 6-left is the present state of the robot, and the (arbi-

trary) desired body position and orientation are the ones in

Figure 6-middle, then virtual velocities in the Figure 6-right

(red arrows) can be generated to adjust the posture while

keeping the feet at the place they are (without slippage).

Performing attitude control consists of three tasks: estimat-

ing ground inclination, adjusting body rotation, and adjusting

body position. The sensory information to do all these tasks

is the binary (on/off) contact status of each leg, δ, the joint

angles read by encoders, and the rotation matrix indicating

robot’s orientation w.r.t. world coordinates, Rryp, given by

an absolute orientation sensor. Rotation matrix Rryp can be

described by roll, yaw and pitch angles (Figure 1) which will

be addressed with ∡r, ∡y and ∡p respectively. We also use

the symbol R(., ., .) as the function to reconstruct a rotation

matrix from roll-yaw-pitch angles.

We first calculate the yaw-less rotation matrix Rrp =
R(∡r, 0,∡p), and use it to estimate the ground’s pitch

(inclination) angle α:

∆p = Rrp(pfore − phind)

α = tan−1(∆py/∆px) (5)

where pfore and phind are the Cartesian positions of one

fore and hind contact legs w.r.t. the frame attached to the

robot’s trunk. Knowing the ground inclination, we try to keep

the body parallel to the ground, and compensate for all the

body roll. So the rotation matrix to be adjusted is:

Radj = R (∡r, 0,∡p − α) (6)

Additionally, we want the vertical projection of the

neck/tail point to be in between the fore/hind feet, to prevent
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Fig. 6. Using task space virtual velocities to adjust the posture. Left) The initial posture. Middle) An arbitrary desired adjustment of robot’s position and
orientation. Right) The robot can transit to the desired posture while keeping to feet at the position they are (preventing slippage). This defines the virtual
velocities in the task space (red arrows) which bring the robot from the initial posture to the desired one.

a laterally skewed posture. So the position adjustments are:

pl,adj =
1

2
(pl + pcontra{l}) , l = 1..4 (7)

where pl and pcontra{l} respectively are the Cartesian posi-

tion of the lth foot and its contralateral foot w.r.t. the frame

attached to the robot’s trunk.

Finally, if Radj orientation adjustments, and pl,adj po-

sition adjustments should be made, the task space virtual

velocities performing this adjustments are:

vl = (I−Radj)pl + I(pl,adj − 0) , l = 1..4 (8)

and the required joint space velocity feedbacks are:




ξattAAl

ξattPRl

ξattFEl



 = −katt J
−1

l vl δl , l = 1..4 (9)

where Jl is the 3×3 Jacobian of the forward kinematics of

lth foot Cartesian position w.r.t. the world coordinates, katt
is the attitude control gain, δl is the on/off contact status

of the lth leg, and ξatt∗ are attitude control angular velocity

feedbacks which are added to the CPG (as a part of ξp∗).

2) Direction control: Direction control is done in the

same way as attitude control. Assuming that the desired yaw

(heading) angle is ∡des
y , then the rotation matrix to correct

the locomotion direction is:

Rdir = R
(

0,∡des
y − ∡y, 0

)

(10)

and no position adjustments are needed for turning. Finally

Equations 8-9 (replacing Radj ← Rdir, pl,adj ← 0, katt ←
kdir and ξatt∗ ← ξdir∗ ) are used to calculate ξdir∗ terms.

3) Angle of attack: We know from both the Raibert’s

control [8], and the studies on the Spring Loaded Inverted

Pendulum (SLIP) [26], that the angle of attack can be chosen

to accelerate or decelerate the body. A more vertical angle

of attack will speed up the locomotion, while a more flat

angle of attack will causes a break [27]. We use this fact

to change the angle of attack while locomoting on slopes,

which needs adding (for upwards slope) or removing (for

downwards slope) energy to/from the system. Since the PR
joint (sagittal hip joint) controls the angle of attack, we

linearly couple its oscillation offset to the ground inclination:

χPRi
= kχα (11)

where kχ is the angle of attack control gain, which should

be around 1 to have a rather vertical leg posture w.r.t. world

coordinates.

III. EXPERIMENTS

A. The Simulation Platform

We experiment with a simulated robot which is a detailed

model of the Oncilla robot [28], see Figure 1. The for-

ward dynamics physics simulation is done using the Webots

commercial software (with customized physics plugins to be

as close as possible to the robot), and interfaced using the

AMARSi Software Architecture [29]. Both physics simula-

tion and control loop are working at 500Hz (2ms timestep).

The (simulated) robot is a lightweight quadruped with

passively compliant legs. The robot weighs 3.9Kg, the stand-

ing hip height is about 180mm, the distance between the

shoulder/hip axes is 215mm ipsilaterally , and 128mm con-

tralaterally. Each leg follows a three segmented pantograph

mechanism, keeping the first and third segments parallel.

All actuation is done proximally, so the legs are low-inertia.

AA and PR joints are controlled on their motor axes, and

the FE joint is controlled using a cable-clutch mechanism,

actuated near the shoulder/hip point. Because of the parallel

mechanism, the range of motion does not allow for singular

configurations (e.g. a fully stretched leg).

All the results which are reported in the following are

for the simulated robot locomoting with a trot gait with a

forward speed of about 0.4m/s, more than 1.7BL/s (BL: Body

Length, ipsilateral shoulder to hip distance). At the time of

writing, the hardware robot experiments are initiated, and

the hardware robot locomotes with the CPG module on flat

terrain with a forward speed similar to the simulated one.

An absolute rotation sensor (MicroStrain 3DM-GX3-35) is

being mounted on the robot, and rough terrain locomotion

control will be validated on the robot in near future. A video

of the hardware robot running with an open-loop CPG on flat

terrain is included in the accompanied_video.

B. Parameter tuning

As we discussed during the introduction, we aim for a

control architecture where the modules can be tuned on top

of each other. Here we will show how this goal is obtained.

All the gains are initialized with zero values, and then they

are set sequentially.
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Fig. 7. Roll and pitch variations (RPV) for different attitude control gains.
A good value of for katt stabilizes the RPV and make it more periodic,
however excessive increase of this gain can have a counter effect.

The first module to tune is the CPG module. Many loco-

motion controllers, including CPG models, inverse dynamics

controller, etc need the joint angle references to be provided.

These joint angle profiles can be hand-tuned or set using

optimization techniques. We hand-tune the PR and FE joint

angle profiles (starting from sine profiles, and modifying for

about 20 to 30 trials), which in turn defines the f functions

defining the limit cycle shape of the oscillators (f = 0
for AA joints). f functions are modeled using piecewise

cubic Hermite polynomials [30] with four knot points in

one period. Stride duration is set to 0.4s, which gives the

locomotion frequency of 2.5Hz. CPG’s convergence rate γ
is set such that typical perturbations are damped in less than

10% of the stride duration. This defines γ = 50. For all the

oscillators cij = 5, and the phase differences φij define a

trot gait. The phase difference between PR and FE joints

is set to be π/3.

After tuning the CPG module, we tune the attitude control

gain katt. As we have shown in our previous study [18],

attitude control regularizes the role-pitch variations (RPV)

and stabilizes them. So we set the katt such that it stabilizes

the RPV (Figure 7). Normally a step-by-step increase of katt
makes RPV more periodic, but excessive increase of it can

disturb the locomotion. We have illustrated the RPV for four

values in Figure 7. As it is shown, there a good value around

katt = 125.

We then set the angle of attack offset kχ such that the

robot could go down a 20% slope. We start with a default

value of 1, and then slightly increase it to obtain the desired

performance. This gives a value of kχ = 1.25.

After that we set the reflex gain kr such that the robot

could overcome an obstacle, and a step-down with height

equal to 20% of the leg-length. This leads to a reflex gain of

kr = 50. We finally set the direction control gain kdir such

that the robot could turn with a minimum turning rate of 45

deg/s, which gives kdir = 25.

Fig. 8. Unperceived rough terrain scenarios. Left) Randomized uneven
terrain. Middle) Step. Right) Downwards slope.

C. Rough Terrain Locomotion

Three different scenarios were used to evaluate the pro-

posed control strategy (Figure 8):

• Randomized uneven terrain, 12% of the leg-length

height variations (max local slope = ±20%);

• 20% downward slopes;

• Step down, 20% of the leg-length height.

Each of the above scenarios is repeated 25 times from

different initial conditions (robot is placed in different initial

positions w.r.t. the rough terrain). Each experiment is ran

for 20 seconds from which the first 5 − 8 seconds is used

for initialization (unperturbed). The same gains as described

in section III-B are used for all the scenarios, and we do

not change or re-tune the gains for different scenarios. The

controller does not have any kind of prior information about

the environment and the perturbation scenario.

The overall results of the rough terrain locomotion

scenarios are shown in Figure 9, and provided in the

accompanied_video. A CPG-only control was partially

successful on the randomized uneven terrain. As from our

previous study on a stiff quadruped [18], we were expecting

the open-loop control to perform badly, however, a 56%

success rate was obtained. This partial success is due to

the compliance, which prevents minor stumblings by passive

deflection of the legs, and moderately self-stabilizes the roll

and pitch oscillations. This is similar to what is reported

in [17]. Nevertheless, the posture control mechanisms are

needed for a better performance. As Figure 9 shows, a 96%

success rate is obtained by applying the closed-loop control.

The CPG-only control was mostly unsuccessful in the step

scenario and only 20% of the trials were successfully passed.

In contrast, the CPG control with reflex and posture control

feedbacks successfully passed the trials. The leg extension

reflex is very important for this scenario, as it compensates

for the missing contact at the step down. The posture control

mechanism comes into play after the step where the body

oscillations, induced by the perturbation caused by the step,

should be stabilized.

None of the slope experiments were successfully passed

using a CPG-only control. Again, both reflex and posture

control mechanisms are crucial for success in this scenario

as they prevent stumbling, compensate for missing contacts,

and keep the body roll and pitch oscillations contained.

We additionally tested our control method against 36.5%

(20 degrees) downward slopes, which are quite difficult as

unperceived rough terrain. We realized that a fine tuning of

the reflex gains is needed for this case (kr = 120 for the

extension reflex and kr = 50 for the stumbling correction
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Fig. 9. Performance of the CPG only, CPG + posture control and CPG +

reflex + posture control controllers on unperceived rough terrain. The CPG

only control is partially successful on the uneven terrain because of the
compliance, and the compliance fulfills the role of a weak reflex mechanism.
A much better performance can be obtained by adding the posture control
module. Only the complete control (CPG + posture control + reflex) is
successful in all of the scenarios. We additionally test with an extra scenario,
downward 36.5% slopes, and the robot was successful in 19 out of 25 trials.
In all the scenarios, a consistent increase of the performance is observed by
adding the posture control and reflex modules.
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Fig. 10. Variations of the control parameters. Black) The control can be
overtuned to perform well on 36.5% slopes, but overtuning will affect the
performance in the other scenarios. Purple) A weaker reflex (kr = 25)
leads to lower performance in step and slope environments. Azure) Weaker
posture control gain (katt = 60) affects the whole performance.

reflex), and then the robot can pass this scenario successfully

(Figure 10, black columns). This means that, having the prior

knowledge about the environment, the reflex gain can be

coupled to the slope inclination. This can be a direction for

further research.

To show the importance of the reflex and posture control

modules, we ran the control with different reflex and posture

control gains. Figure 10 shows the performance of the control

with reduced posture control and reflex gains. A lower reflex

gain (kr = 25) lowers the performance in case of the steps

and the steeper slopes, and a reduced posture control gain

(katt = 60) affects the overall performance.

D. Control Signals

Figure 11 illustrates the evolution of the control signals

over time for locomotion on the randomized uneven terrain2.

The illustrations are for three stride cycles of a hind knee

(FE) joint. Posture control feedbacks continuously adjust

the joint angle reference, while reflexes are short term and

for fast corrections. The CPG state ri converges back to the

coded limit cycle fi in each swing phase (white background),

and the effect of the feedbacks are damped since there is no

ground contact, hence the control system resynchronizes.

2For Figures 11-13, left and right y-axes correspond to the solid and
dashed lines respectively. For example, the top subplot in Figure 11 contains
two trajectories, closed-loop reference ri with black solid lines, and open-
loop reference fi with red dashed lines. The y-axis quantities are different
for each subplot, and correspond to the ones in Equation 2.
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Fig. 11. Control signals for an example run on uneven terrain. The signals
are for the control of a hind knee (FE) joint. Posture control feedback
continuously adjusts the control reference. Stumbling correction reflex is
activated just after t = 12s and the leg extension reflex is activated two
times before t = 12.2s and t = 12.6s. Please note that positive values for
the FE joint relate to flexions (shortening of the leg length).
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Fig. 12. Control signals for the moment that the robot goes over a
downwards step (fore knee). The step occurs around t = 6.7s, and causes a
missing contact state, and a leg extension reflex is activated until a contact
is sensed. At that moment, since the robot is pitched, the posture controller
is strongly activated to correct the body posture. Since the robot is pitched
the fore leg drags on the ground in the beginning of the two next swing
phases, and stumbling correction reflexes are activated. The hind leg comes
down the step around t = 7.4 (see the correction in the pitch angle), and
causes a small impact which slightly lifts the front of the robot, and another
leg extension reflex is activated in the fore knee to acquire ground contact.
The reflex and posture control feedbacks are damped in the beginning of
each swing phase (white background), and the system resynchronizes.

Figure 12 illustrates example control signals at the moment

of a step down, for a fore knee (FE) joint. Again, the posture

control feedbacks are continuously adjusting the joint angles

reference, while the reflexes are quick and short term. Please

refer to the caption of Figure 12 for details.

Figure 13 corresponds to locomotion on a downwards

36.5% slope. The signals are for the sagittal hip (PR) joint

of a fore leg (since there are no reflexes implemented for the

PR joint, ξr is given for the FE joint of the same leg). As

the figure shows, the body rotations are stabilized, and the

activation of the feedbacks are repetitive over the cycles. The

effect of the angle of attack feedback χPRl
is also visible in

the offset added to the ri reference.

E. Extension: Vision Feedback

Note: This extension is contrary to the main topic of this

paper (environment being unperceived), and is only given
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Fig. 13. The control signals for a saggital fore hip (PR) in a 36.5% slope
scenario. the angle of attack control adds an extra offset χPRl

to the ri
joint angle reference (there is a soft joint limit at ri = 1). The activation
of reflex and posture control feedbacks is quite repetitive, which means that
the robot is in a new limit cycle behavior adjusted for the slope. The same
gains as in section III-B are used.

as a proof-of-concept. This extension is not used for the

previously reported results. �

In the slope scenario, the locomotion direction is always

along the slope. We tested our control when going on the

slopes with a heading (yaw) angle different from zero. The

control can tolerate heading angles up to ±15 degrees, and

could successfully travel on the slopes, but is unsuccessful

for heading angles bigger than that.

For this reason, we extended our control with a simple

vision feedback to detect the heading angle towards the slope

before going on it. This extension uses a camera mounted

above the shoulders of the robot. As Figure 14 illustrates, the

line of horizon can be detected utilizing canny edge detection

and probabilistic Hough transform [31]. The orientation of

this line is correlated with the robot’s heading w.r.t the slope

direction. If the calculated horizon orientation is h, then the

desired locomotion direction (Eq. 10) can be corrected:

∡des
y = kvish (12)

where kvis (set to 10) is the correlation gain, determining

how fast the direction should be corrected. Applying this

vision feedback, the robot corrects the direction before going

on a slope. The extension here is a simple implementation,

and is presented as a proof-of-concept how exteroception can

be added to the control. More complex setups like stereo

vision should be used for a real environment.

IV. DISCUSSION

We presented a modular control approach to locomotion

based on modules that are meaningful, and that can be hier-

archically put on top of each other. The control approach is

fit for unperceived rough terrain locomotion with cheap and

lightweight quadruped platforms. Sensing of the joint angles

(encoders), body rotations (absolute rotations sensor), and

on/off contact data (bumpers) are the sufficient ingredients

of the proposed control method.

A Central Pattern Generator (CPG) implemented as cou-

pled nonlinear oscillators is used as the core, which can

encode the desired arbitrary limit cycle shape ensuring its

h

Fig. 14. Detecting the horizon angle
h for heading (yaw) correction be-
fore a downwards slope. If the robot
is not straight towards the slope then,
in the filed of view, the distance to
the slope is different for the left and
right pixels of the camera image.
This causes a rotated line of the
horizon, which can be detected using
the Hough transform. The horizon
angle h can then be correlated to the
locomotion direction.

global asymptotic stability. This means that adding (finite-

time) feedbacks to the CPG will not cause any instability

and the system will go back to the desired limit cycle as

soon the feedbacks are not active (in the swing phase).

Reflex modules are added to the CPG for fast correction

including the stumbling correction reflex and leg extension

reflex. Additionally, model based posture control mecha-

nisms are added to adjust body position and orientation

continuously over time. The obtained control architecture

allows for moderately fast (more than 1.7BL/s forward

speed) dynamic locomotion over unperceived rough terrain

of medium difficulty.

Compared to the CPG approaches in [10], [12], the pro-

posed control architecture is simple and hierarchical as the

modules are not strongly interconnected and can be tuned on

top of each other. Also we experiment with more difficult

rough terrain scenarios and more systematically, however

only in simulation so far. Hardware robot experiments are

now underway to validate our results. Nevertheless, the

purpose of this paper is only to introduce a modular control

methodology apt for unperceived rough terrain locomotion.

The proposed control approach does not depend on inverse

dynamic control (like in [14], [15]) that makes the low-level

control gains smaller (less stiff control), but is instead lighter

and simpler. Our methodology does not depend on careful

sensing of the ground reaction forces, a need for torque

sensors, or a requirement to know about the mass properties

of the robot like the inertia tensors.

Future extensions of the introduced control strategy in-

clude: 1) exploiting body acceleration information for lateral

foot placement; 2) implementing a phase resetting mecha-

nism (the state machine in Figure 5 already has the activation

state for this, but the feedback is not yet implemented);

and 3) Exploiting compliance for energy efficiency. We have

observed that in a certain range of the attitude control gains,

the leg springs can go into a resonance-like behavior. We

will explore this effect further in the future.
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APPENDIX I: STABILITY

The coupled morphed oscillators in Equations 1-3 form a

hierarchical system. The phase dynamics drives the radial
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dynamics, but is not affected by it. This means that the

stability of the phase dynamics can be analyzed separately.

The coupling dynamics have the potential function:

U(θ) = −

N
∑

i=1

N
∑

j=1

cij cos(θj − θi − φij) (13)

which has the minima at ∀i, j : θi = θj−φij+2kπ, ∀k ∈ Z.

Since dU
dt

= −
∑N

j=1
( ∂U
∂θj

)2, then U(θ) plays a role of

Lyapunov’s function (with cij > 0), proving the asymptotic

stability of the coupling. Now if the phase differences are

consistent, the system will not be perturbed and remains

synchronized. When the oscillators are coupled and not

perturbed, they converge to the desired phase differences in

the long term. Consequently, the phase dynamics become:

θ̇i = ω + ǫ, ǫ → 0, and the dimensions become decoupled.

So the radial stability of the whole system can be proved by

addressing the stability of each dimension. To analyze the

asymptotic stability of the radial dynamics of one dimension,

lower and upper phase-dependent bounds are defined as:

BL|U (θ) = µf(θ) + χ+ κ; κ ≶ 0 (14)

These bounds define closed regions in an orientable 2-

manifold of θi × ri : [0, 2π)× R which the dynamics flows

(strictly) enter them and never leave them, for all κ ∈ R− 0
(κ = 0 is the limit cycle itself). Utilizing the Poincaré-

Bendixson theorem [32], this proves the asymptotic stability

of the radial limit cycle. Detailed stability analyses is out of

the scope of this paper, and is currently in-press [33].
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