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Abstract— Robots with a large number of actuated degrees of
freedom are usually redundant w. r. t. a given task. That kine-
matic redundancy can be utilized to execute additional tasks
simultaneously, e. g. via null space projection techniques. We
introduce a new representation of hierarchical robot dynamics
which are based on a set of particular null space velocities.
Dynamic consistency is preserved, and strict compliance with
the order of priority is ensured at all times due to a power-
conserving cancellation of coupling terms by active control.
No external force measurements have to be performed. We
show asymptotic stability of the generic closed-loop system with
an arbitrary number of hierarchy levels. Several simulations
confirm our results.

I. INTRODUCTION

Robots are kinematically redundant if they have more ac-
tuated degrees of freedom (DOF) than necessary for a given
task. Null space projection techniques [1], [2] can be applied
to resolve that redundancy and enable to simultaneously
execute additional tasks. Numerically very efficient methods
have been developed for hierarchical inverse kinematics [3]
and dynamics [4], [5]. In this context, the operational space
formulation (OSF) by Khatib [6] provides a powerful tool
for task-oriented control of manipulators in a dynamically
consistent way. Natale [7] extended a Cartesian impedance
controller by a null space task and showed asymptotic
convergence of the null space velocity error. In impedance
control, the minimization of a quadratic norm of a low
priority error has been treated in [8].

However, a thorough stability analysis for the general
case with an arbitrary number of priority levels is extremely
difficult and not performed so far due to the complexity of
the dynamic systems and the applied hierarchies. But before
introducing future service robots to domestic environments,
this criterion has to be met. Up to now, that field has
been covered quite sparsely [7], [9], [10], and most of the
concepts only refer to the kinematic case or a hierarchy
with only two levels. The key for stability analyses is the
kind of representation of the system dynamics. In [11],
Park extended the Jacobian matrix of the primary task
to an invertible square matrix. As a result, the primary
Cartesian coordinates were augmented by some null space
velocities. The dynamically consistent pseudoinverse, known
from the OSF, was used. As a result, the inertia matrix of
the error dynamics becomes block-diagonal. That can be
interpreted as a decoupling of the kinetic energies related to
the involved tasks. A formulation based on a dynamically
consistent extended Jacobian matrix was also utilized by

observe scene

avoid
collisions

grasp object avoid self-
collisions

avoid
singular
config.

P
ri

or
ity

 L
ev

el

avoid collisions

avoid self-collisions

grasp object

observe scene

avoid singular conf.

Fig. 1. Example for a task hierarchy with several simultaneous objectives.

Oh [12] for the implementation of an impedance controller.
However, the stability analysis was limited to null space
damping control. Baillieul [13] described the null space
dynamics by introducing additional coordinates. However,
new algorithmic singularities may arise, which depend on the
particular choice of these coordinates. A decoupling between
the tasks can only be achieved by shaping of the reflected
inertia. But that requires feedback of the external forces.

The operational space formulation [6] is a well approved
method for the implementation of task hierarchies. The
applied feedback linearization allows to specify a desired dy-
namic behavior with particular stability properties. However,
the performed inertia shaping, i. e. the realization of a desired
inertial behavior, demands feedback of the external forces. If
multi-DOF manipulators in dynamic and unstructured envi-
ronments are considered, for example service robots, contacts
are very probable. But even if a robot is equipped with
force/torque sensors at the end-effectors, the identification of
external forces and torques applied on other parts of the robot
structure (e. g. in case of contacts) is not implicated. One way
could be to attach a large number of sensors. However, the
costs, increasing complexity, energy supply, available space
and so on are strong reasons against this solution. Another
way would be to use joint torque sensing to compute the
external loads. However, a disturbance observer is required,
which introduces a lag in turn. Moreover, the accuracy of
the dynamic model in the observer has substantial influence
on the quality of the measured forces/torques. Summarized,
identifying the external loads is a very challenging issue and
sometimes even not possible at all [8].
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In this paper, we extend the work initiated in [9], where
the dynamic equations were formulated using specific null
space velocities, and a stability analysis was performed.
However, only two piority levels were considered. Here we
derive the general case of a hierarchy with an arbitrary
number of priority levels (Fig. 1) and conclude with a
thorough stability proof for the complete system. This work
has two main contributions. The first one is the design
choice of a particular set of local null space velocities.
By enforcing orthogonality of all involved tasks similar to
classical null space-based approaches, the order of priority
is strictly ensured. The new coordinates combined with a
controller, which cancels couplings in the system equations,
lead to a largely decoupled dynamics formulation. A key
property of the approach is the deliberate avoidance of
external force measurements for the feedback control law.
The determination of external forces/torques is very chal-
lenging and sometimes even impossible. The second main
contribution is a thorough stability analysis of the closed-
loop dynamics. The stability proof guarantees successive,
asymptotic stability of all tasks. This is the first proof of
that kind for a generic robot with an arbitrary number of
DOF and a hierarchy with an arbitrary number of priority
levels. Finally, simulations validate the main results of this
work including the decoupling, the controller design, and the
successive asymptotic convergence of the tasks.

The paper is structured as follows: After the problem
formulation in Sec. II, the new dynamics representation
is derived in Sec. III. Section IV presents the controller
including task execution and power-conserving feedback to
cancel velocity dependent couplings between the levels. The
stability analysis is conducted in Sec. V and discussed in
Sec. VI. Finally, Sec. VII provides several simulations that
validate our main contributions, i. e. the decoupling via the
new dynamics representation, the controller performance,
and the stability proof.

II. PROBLEM FORMULATION

The dynamics of an n DOF robot can be formulated as

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext (1)

with the joint configuration given by q ∈ Rn. The inertia
matrix M(q) ∈ Rn×n is symmetric and p. d., and the
Coriolis/centrifugal matrix C(q, q̇) ∈ Rn complies with
Ṁ(q) = C(q, q̇) +C(q, q̇)T . That relation is equivalent to
the skew symmetry of Ṁ(q)− 2C(q, q̇). One can interpret
that property as passivity of (1) with respect to input τ and
output q̇. The gravity torques are represented by g(q) ∈ Rn,
the generalized forces τ ∈ Rn describe the control inputs,
and τ ext ∈ Rn are the external forces.

The task hierarchy is supposed to contain r ∈ N levels.
Thus we introduce r task coordinate vectors by the mappings
xi = f i(q) ∈ Rmi ∀ 1 ≤ i ≤ r, with the task dimensions
mi ∈ N. In the order of priority i = 1 is at the top, and
an increasing index stands for a less important task. The
mappings from joint to task velocities are defined by the

Jacobian matrices J i(q) ∈ Rmi×n ∀ 1 ≤ i ≤ r:

ẋi = J i(q)q̇ , J i(q) =
∂f i(q)

∂q
. (2)

The following analysis is based on the assumption of non-
singular Jacobian matrices, i. e. they are of full row-rank.
That restriction will be particularized at the end of Sec. V.
The primary task is of dimension m1 < n so that a kinematic
redundancy of n−m1 DOF remains to execute the subtasks
in its null space. Moreover, the task hierarchy shall have the
following features:

1) A task with lower priority may not disturb any task
with higher priority. Hence, a low priority task is
executed in the null space of all higher priority tasks.

2) Every task can be described by a p. d. potential func-
tion Vi(x̃i(q)) related to the task coordinate x̃i = xi−
xi,d, where xi,d is the virtual equilibrium. Damping is
injected by the p. d. damping matrixDi(q) ∈ Rmi×mi .

3) The lowest level in the hierarchy r may be of a larger
dimension such that

∑r
i=1 mi > n, e. g. it may be

defined in the configuration space.

III. HIERARCHICAL NULL SPACE DYNAMICS

In the control design, the dynamics of each priority level
will be largely decoupled from all other levels. While the
inertial terms can be decoupled by a smart change of the
coordinates, the off-diagonal entries in C(q, q̇) have to
be cancelled by active control (Sec. IV). The following
coordinate change is motivated by [9] but it extends the
existing work by generalizing to a hierarchy with an arbitrary
number of priority levels.

A. Definition of Local Null Space Velocities

We will reformulate the dynamics (1) to distinguish the
different priority levels. In [13], Baillieul introduced addi-
tional task coordinates. However, that choice leads to new
algorithmic singularities. Instead we follow the two-level
approach by Park [14], wherein n − m1 local null space
velocities v2 = J̄2(q)q̇ were introduced. Here, we extend
that concept to the general case

vi = J̄ i(q)q̇ ∀ 1 ≤ i ≤ r . (3)

From now on, the dependencies on the system states are
omitted in the notations in most of the equations for the
sake of simplicity. All mappings J̄ i ∈ Rmi×n have to be
chosen in a way such that the so-called extended Jacobian
matrix J̄ ∈ Rn×n becomes non-singular.v1...

vr

 = J̄ q̇ =

J̄1

...
J̄r

 q̇ . (4)

For consistent notations, v1 and J̄1 are used although it is
clear that v1 = ẋ1 and J̄1 = J1 holds. In general the local
null space velocities vi ∈ Rmi are non-integrable. In other
words, compatible global null space coordinates ni(q) (for
2 ≤ i ≤ r) do not exist such that J̄ i(q) = ∂ni(q)/∂q would
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hold. A dynamically consistent null space projection [6], [9]
can be applied for 2 ≤ i ≤ r when choosing

J̄ i = (ZiMZTi )
−1ZiM , (5)

where Zi is a full row-rank null space base matrix of the
augmented Jacobian matrix [2]

Jaug
i−1 =


J1

J2

...
J i−1

 (6)

that takes all tasks ”down” to level i − 1 into account.1 As
a result, the orthogonality of all tasks is enforced so that a
strict order of priority is guaranteed. The formal description
of that condition is

Jaug
i−1Z

T
i = 0 . (7)

That in turn leads to the simple form of

J̄
−1

=
(
JM+

1 ,ZT2 , . . . ,Z
T
r

)
(8)

for the inverse of the local mapping. The superscript M+

denotes the weighted pseudoinverse w. r. t. M , i. e. the dy-
namically consistent one [6]. Replacing (8) in (4) delivers
the joint velocities

q̇ = JM+
1 v1 +

r∑
i=2

ZTi vi (9)

consisting of all task contributions. However, the question of
the choice of Zi for all null space levels is still open.

B. Choice of Zi: Connection to the Classical Approach

The dynamics are formulated in the coordinates introduced
in (4), but they still have to equal the classical approach with
the well-known null space projector [6]

N i = I − (Jaug
i−1)

T ((Jaug
i−1)

M+)T (10)

=MV i−1(V
T
i−1MV i−1)

−1V T
i−1 . (11)

The matrix V i−1 ∈ Rn×(n−
∑i−1

j=1mj) comprises orthonormal
vectors and spans the null space of Jaug

i−1. The singular value
decomposition of Jaug

i−1 is one way to obtain V i−1. A task
force from the i-th level (with i ≥ 2) is projected via N iJ

T
i .

In our notations that equals the use of J̄Ti ZiJ
T
i instead. In

other words, a task force from the original space (2) has to
be successively projected three times:

1) Projection into the configuration space via JTi .
2) Projection into the new, local directions via Zi.
3) Projection back into the configuration space via J̄Ti .

So the solution of

J̄
T
i ZiJ

T
i =N iJ

T
i (12)

1The matrix Jaug
i−1 is also assumed to have full row-rank. That restriction

is discussed at the end of Sec. V.

for the matrix Zi has to be found, which is

Zi = J iM
−1N i (13)

= J iV i−1(V
T
i−1MV i−1)

−1V T
i−1 (14)

for all null space levels but the lowest one (2 ≤ i < r).
For i = r, a projection into Jr is useless, because no lower
priority levels exist. In other words, the complete remaining
null space can be utilized by choosing Zr = V T

r−1, as also
done in [9] for level 2. In fact, the shape of (14) is not
surprising: The appearance of J i is justified by the necessity
of reducing the available null space of dimension n× (n−∑i−1
j=1 mj) by projecting it on the subspace that is really used

on level i. And the remaining terms on the right of (14) have
the typical form known from the classical approach (11).

C. Dynamics Formulation

The above results finally lead to the dynamics

Λv̇ + µv = J̄
−T

(−g + τ + τ ext) (15)

in the new coordinates, where v = (vT1 , . . . ,v
T
r )
T . The

block-diagonal inertia matrix Λ and the (fully coupled)
Coriolis/centrifugal matrix µ are given by

Λ = J̄
−T
MJ̄

−1
= diag (Λ1, . . . ,Λr) , (16)

µ = Λ
(
J̄M−1C − ˙̄J

)
J̄

−1
, (17)

Λi =

{
(J1M

−1JT1 )
−1 if i = 1

ZiMZTi if 2 ≤ i ≤ r
. (18)

Notice that the block-diagonal shape of Λ is a result of
choosing M as the weighting for the pseudoinversion in (5)
and (8). This specific dynamics formulation using inertia-
decoupled null space velocity coordinates is useful for the
design of feedback controllers. While such a decoupling
could also be achieved via active control by means of
feedback linearization (as done in the OSF [6], [15], [16]),
the controller design in Sec. IV will aim at a passivity-
based compliance controller which deliberately avoids inertia
shaping2 so that it can be implemented without measurement
of external forces acting on the robot.

IV. CONTROL DESIGN

The control law

τ =

r∑
i=1

τ i + τµ + g (19)

consists of three parts. The first term is composed of the task
contributions from all hierarchy levels. The gravity torques
are taken into account by g, and τµ is a compensation term
for off-diagonal entries in the Coriolis/centrifugal matrix as
mentioned in Sec. III.

2Inertia shaping describes the feedback of the actual acceleration to
directedly modify the effective, reflected inertia. For that reason, a control
without that feedback is often called compliance control.
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A. Main Task Control

Since the main task (i = 1) is not constrained by any null
space projections, it is treated separately here.

τ 1 = −JT1

((
∂V1(x̃1)

∂x1

)T
+D1ẋ1

)
(20)

The damping matrix D1 may be configuration dependent as
long as it stays positive definite. Inertia shaping is deliber-
ately avoided here because that would require measuring and
feedback of the external forces τ ext.

B. Null Space Control

The null space task torques (2 ≤ i ≤ r) have to pass their
respective null space projectors (12) additionally:

τ i = −J̄
T
i ZiJ

T
i

((
∂Vi(x̃i)

∂xi

)T
+Diẋi

)
. (21)

Again, the damping matrix Di may be configuration de-
pendent as long as it stays positive definite. The stability
properties of this intuitive control law alone are not trivial.
As a result of the null space projection via J̄Ti Zi or N i [6],
respectively, the projected control torques do not represent a
passive feedback action in general.

C. Power-Conserving Cancellation of Coriolis and Centrifu-
gal Couplings

While the inertia matrix Λ is already block-diagonal
in (15), the projected Coriolis and centrifugal matrix µ
is still fully occupied. To obtain decoupled dynamics, we
compensate for the off-(block)diagonal entries in µ. This
can be achieved by feedback of the form

τµ =

r∑
i=1

J̄Ti
i−1∑
j=1

µi,jvj +

r∑
j=i+1

µi,jvj

 . (22)

A block entry in µ which is located in row i and column j
is denoted µi,j ∈ Rmi×mj . An important property of (22) is
that it is a power-conserving feedback, i. e. the transmitted
power Pµ = τTµ q̇ is always zero. This is due to µi,j =
−µTj,i, which in turn is a result of the skew symmetry of
Λ̇ = µ + µT or Ṁ = C + CT , respectively. This feature
is very useful from a robustness point of view, because it is
independent of parameter uncertainties in the model. While
in practice these dynamic effects are of minor importance,
their cancellation is essential for the stability analysis in
Sec. V in order to obtain largely decoupled dynamics.

D. Decoupled Closed-Loop Dynamics

The effect of external forces/torques on the levels is also
relevant for the compliance control goal although those loads
are not used in the feedback control law. Since the extended
Jacobian matrix J̄ is invertible, we can replace the external
torque τ ext uniquely by its components F ext

i ∈ Rmi related

to the corresponding priority level such that the following
relation holds:

τ ext = J̄
T

F
ext
1
...

F ext
r

 . (23)

Applying (19) finally yields the dynamics of the closed loop.
On level 1 we obtain

Λ1v̇1 +
(
µ1,1 +D1

)
v1 +

(
∂V1(x̃1)

∂x1

)T
= F ext

1 . (24)

And the lower levels (2 ≤ i ≤ r) deliver dynamics following

Λiv̇i + µi,ivi +ZiJ
T
i

((
∂Vi(x̃i)

∂xi

)T
+Diẋi

)
= F ext

i .

(25)
The system (24)–(25) indicates a large decoupling of the
priority levels so that the subtasks can be executed in the
specified order. One has to keep in mind that an indirect
coupling between the levels exists due to the dependencies
on q, e. g. in the reflected inertias Λi(q), as well as due to
the occurrence of q, q̇ in the remaining Coriolis/centrifugal
terms µi,i(q, q̇). Despite these couplings, the change of
the kinetic energy associated with each priority level only
depends on the dynamics on the same level. That is a direct
consequence of the power-conserving feedback (22).

The decoupled dynamics (24)–(25) represent one of the
major contributions of this paper, and they constitute the
basis for conducting the following stability analysis.

V. STABILITY ANALYSIS

This stability analysis utilizes the same theorems as [9]
but it is an extension to the general case with an arbitrary
number of priority levels.

Proposition 1: Consider the system (9), (15) with the
control law (19) with (20), (21), and (22). The potential
functions Vi(x̃i) for i = 1 . . . r are positive definite with
respect to x̃i, and the damping matrices Di for i = 1 . . . r
are symmetric and positive definite. Then the closed-loop
system is strictly output passive with respect to the input F ext

1

and the output ẋ1. Suppose also that the Jacobian matrices
J i for i = 1 . . . r are of full row-rank in the considered
workspace, and J̄ is non-singular. The virtual equilibrium
configuration qd, defined as the unique minimum of all Vi,
is asymptotically stable for the case of free motion, i. e.
τ ext = 0.

Proof: The passivity statement can be easily proven by
considering the positive semi-definite function

S1 =
1

2
vT1 Λ1v1 + V1(x̃1) (26)

as a storage function for the first priority level. Using the
property Λ̇1 = µ1,1 + µT1,1 one can show that the time
derivative of S1 along a solution of the closed-loop system
is given by

Ṡ1 = vT1 F
ext
1 − vT1D1v1 (27)
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from which the passivity property of the Proposition can be
directly concluded.

The proof of asymptotic stability will be based on the
following theorem which uses the notation of conditional
stability [17]

Theorem 1: [17] Let the system

ż = g1(z) + g2(z)u ,

y = h(z)

with state z ∈ Rn, input u ∈ Rm, and output y ∈ Rm

be strictly output passive for the output y = h(z). Let
further A be the largest positively invariant set contained in
{z ∈ Rn|h(z) = 0}. If the equilibrium z∗ is asymptotically
stable conditionally to A, then it is asymptotically stable for
u = 0.
By iteratively applying Theorem 1, one can show the stability
statement in Proposition 1. We have already proven strict
output passivity w. r. t. output ẋ1. From (24) we can conclude
that, for F ext

1 = 0 (free motion), the largest positively
invariant set contained in (q,v1 = 0,v2, . . . ,vr) is

A1 = {(q,v1 = 0,v2, . . . ,vr)|f1(q) = x1,d} .

Therefore, we have to show asymptotic stability of the
system conditionally to the set A1. In order to achieve that,
we must use Theorem 1 again. But now, it is applied to the
system conditionally to A1. We consider the storage function

Si =
1

2
vTi Λivi + Vi(x̃i) (28)

for the priority level i = 2. The time derivative of S2 along
the solutions of (24), conditionally to A1, is given by

Ṡ2 = vT2 F
ext
2 − vT2Z2J

T
2D2

∂x2

∂q
q̇

− vT2Z2J
T
2

(
∂V2(x̃2)

∂x2

)T
+

∂V2(x̃2)

∂x2

∂x2

∂q
q̇ (29)

From (9) and J iZTj = 0 ∀ j > i (which follows from (7)),
we can conclude that, in the set A1, the term (∂x2/∂q)q̇
simplifies to (∂x2/∂q)q̇ = (∂x2/∂q)Z

T
2 v2. The last two

terms in (29) cancel out and we obtain

Ṡ2 = vT2 F
ext
2 −vT2Z2J

T
2D2J2Z

T
2 v2︸ ︷︷ ︸

≤ 0

from which we conclude strict output passivity w. r. t. input
F ext

2 and output v2. That passivity property only holds
conditionally to the set A1, i. e. after convergence of the
main task. It remains to show asymptotic stability of the
free system conditionally to the largest positively invari-
ant set in {(q,v1 = 0,v2 = 0,v3, . . . ,vr)|f1(q) = x1,d},
which is given by the set

A2 = A1

⋂{
v2 = 0,Z2(q)(∂V2(x2(q)))/∂q)

T = 0
}

.

In order to show that, we proceed similarly as before. Starting
with (28) for i = 3, we follow the same steps as above to
prove strict output passivity for the output v3. The procedure
can be iteratively repeated until the lowest priority level i = r

is reached. It is important to notice that, if we consider the
dynamics of the i-th priority level conditionally to the set

Ai−1 := {(q,v1 = 0,v2, . . . ,vr)|f1(q) = x1,d,

ZjJ
T
j

(
∂Vj(x̃j)

∂xj

)T
= 0, vj = 0, j = 2 . . . i− 1} ,

(where the higher priority tasks have already converged), all
velocities vj for j < i are zero. At the lowest priority
level i = r, we consider (28) as a Lyapunov function
candidate. From Ṡr = vTr F

ext
r − vTr ZrJ

T
rDrJrZ

T
r vr we

can conclude conditional stability of the system conditionally
to the set Ar−1 for the case of free motion F ext = 0.

Additionally, conditional asymptotic stability of the equi-
librium (q = qd,v = 0) can be ensured by referring
to LaSalle’s invariance principle. According to that, the
state converges to the largest positively invariant set con-
tained in Ar−1 where vr = 0. By observing the closed-
loop dynamics (25), one concludes that this set requires
ZiJ

T
i (∂Vi(x̃i)/∂xi)

T
= 0 for all null space levels i =

2 . . . r. Since each Zi is a full row-rank null space base
matrix, the point q = qd is an isolated point in this set.
Thus, the system is asymptotically stable conditionally to
the set Ar−1. Combining that and the strict output passivity
on each hierarchy level, we go back in the iteration and apply
Theorem 1 to conclude asymptotic stability conditionally to
the sets Ai for i = r− 1 . . . 1. The asymptotic stability con-
ditionally to the set A1, together with the passivity property
of the main task, lets us conclude asymptotic stability of the
complete system for the case of free motion.
Intuitively, the iterative application of Theorem 1 can be
interpreted as a sequential convergence of the different tasks
according to their priority levels. In addition to asymptotic
stability, the proof also contains a hierarchical passivity
statement in the sense that after convergence of all higher
priority tasks, each lower priority task i shows a passive
behavior for the input F ext

i and the respective output vi.
That passivity property does not necessarily demand that the
desired equilibrium configurations are reached on each level,
an arbitrary steady state is sufficient.

The whole analysis refers to the case of non-singular
Jacobian matrices. A change in the rank of Jacobian matrices
is not dealt with in any stability analysis so far. Combining
singularity-robust techniques [18], [19] and stability analyses
is topic of current research in the robotics community.
The condition of non-singular Jacobian matrices is also a
restriction on the workspace in which the stability proof is
valid, cf. Proposition 1. Note that the classical approaches
[6], [2] suffer from the same problems.

VI. DISCUSSION

In this section, the properties of our approach are summa-
rized and comparisons with other approaches are presented
briefly. The analysis performed here ensures asymptotic sta-
bility and guarantees successive convergence w. r. t. the order
of priority. Approaches based on the OSF [6], [4] provide
stronger stability statements (exponential stability). However,
in order to achieve that, external forces have to be used in
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Fig. 2. Sketch of the planar simulation model. The four links are connected
via four revolute joints. Each link is modeled by a point mass of 1 kg
which is placed in the middle of a bar with length 0.5 m. The dynamics
are simulated using g = 9.81m/s2. Zero joint angles are obtained in the
upright configuration.

TABLE I
INITIAL CONDITIONS AND DESIRED VALUES

Priority Description Initial Value Goal Value

Level 1 x of TCP 0.84 m 0.90 m
y of TCP 0.96 m 0.8 m

Level 2
∑4

i=1 qi -1.37 rad -1.57 rad
Level 3 q1 0.40 rad 0.35 rad

the control law. As mentioned in the introduction, such a
measurement or identification is very difficult, deteriorates
the robustness, and is even impossible in some cases. In
the approach proposed here, no external force measurements
have to be performed, which constitutes the main difference
to most of the state-of-the-art methods. In summary, one
can say that OSF concepts are better qualified for trajectory
tracking (without contacts), and the compliance control in
this paper is better suited for interaction tasks.

Another aspect worth mentioning is the computation time.
Several numerically costly calculations have to be performed.
In inverse kinematics and dynamics, a variety of dedicated
solvers have been developed [3], [5]. In order to apply the
controller in real-time scenarios, one should consider the
usage of such efficient numerical algorithms.

VII. SIMULATIONS

Simulations with a planar 4 DOF robot are performed to
confirm the results of Sec. III/IV (decoupled dynamics, con-
troller) and of Sec. V (successive convergence). A schematic
representation of the simulated model is given in Fig. 2. In
both runs, three priority levels are applied:

Level 1: translational Cartesian compliance of the TCP,
Level 2: compliance of the TCP rotation,
Level 3: joint compliance of first joint.

The regulation case is considered for all hierarchy levels.
The initial and goal values are listed in Table I.

A. Simulation #1 - Validation of the Controller and the
Decoupling

The controller parameterization is provided in Table II. In
this experiment the damping is set comparatively high on all
levels and the task execution as well as the decoupling quality
are analyzed. The errors in the operational space are given
in Fig. 3. They all converge to zero within less than 0.5 s.

TABLE II
CONTROLLER PARAMETERIZATION

Priority Gain Unit Simulation #1 Simulation #2

Level 1 K1 N/m diag(1000, 1000) diag(500, 500)
D1 Ns/m diag(40, 40) diag(30, 30)

Level 2 K2 Nm/rad 800 600
D2 Nms/rad 5 1.5

Level 3 K3 Nm/rad 2400 600
D3 Nms/rad 15 1.5
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Fig. 3. Simulation #1: The errors in the operational spaces of the hierarchy
levels converge to zero. Initial and goal values are summarized in Table I.

The corresponding control torques from the three levels are
depicted in Fig. 4. Solving the dynamics (24)–(25) for the
accelerations, one can evaluate the undesired effects induced
by active control on the other priority levels, see Fig. 5. The
couplings stay in a range that does not lead to any relevant
perturbations. One can conclude that a strict hierarchy is
realized, and the conditions imposed in Sec. IV are met.
The figure also shows that, in this simulation, the remaining
couplings due to the dependencies of the mass matrices and
the Coriolis/centrifugal terms on q, q̇ can be disregarded.

B. Simulation #2 - Validation of the Stability Proof

The controller is parameterized according to Table II and
the reference values are taken from Table I again. Now
the damping is set very low in order to demonstrate the
stability properties without eliminating undesired effects by
energy dissipation through damping injection. Fig. 6 shows
the errors on all levels of the hierarchy. As expected, the
lower damping leads to more distinct oscillations. The main
task (top) is undisturbed, and it converges very fast in both
Cartesian directions. For t > 0.4 s, the primary task error
is almost zero, and it is not affected by the remaining null
space motions (bottom) as stated in Sec. V. The latter require
a longer time to get into a steady state at zero. The energies
are depicted in Fig. 7. In accordance to the primary task
error, the total energy on the first level converges to zero.
The two bottom diagrams illustrate the energy contributions
on the two null space levels. When looking at the interac-
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Fig. 4. Simulation #1: Contributions of the control input depending on the
corresponding hierarchy level. All signals lie in about the same range, but
they do not interfere with each other (w. r. t. the operational space behavior).

tion between potential and kinetic energy, the low damping
with regard to the eigenfrequencies becomes obvious here,
particularly on level 3. Obviously, the total energies on level
2 and level 3 are not monotonically decreasing. However,
that complies with the stability proof based on conditional
stability. If one considers the fact that the total energy of the
high priority task (level 1) requires at least 0.25 s to reach
about zero, the behavior on level 2 is proper. For t > 0.25 s,
the total energy on level 2 monotonically decreases. The
same applies to the third level w. r. t. the second level for
t > 0.4 s. The stability analysis demands a monotonically
decreasing total energy on level 3 as soon as level 2 has
converged.

VIII. SUMMARY

This paper has two main contributions: First, we repre-
sented the classical concept of hierarchy-based control for
torque-controlled, redundant manipulators in a new formu-
lation of the dynamic equations. These constituted a large,
hierarchical decoupling. Second, we performed a thorough
stability analysis with a strict task hierarchy realized by
means of null space projections. Asymptotic stability and
successive convergence of all hierarchy levels were con-
cluded. Among others, that was made possible by adapting
standard control algorithms through power-conserving feed-
back of dynamic couplings between the different priority
levels. Although hierarchical control approaches based on
null space projections have been abundantly used in the last
decades, such a stability analysis has not been conducted
so far. The major difference of our concept compared to the
classical operational space approach is that no measurements
of external forces/torques have to be performed. Especially
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Fig. 5. Simulation #1: The plots depict disturbing accelerations on the
levels induced by the control inputs from the other levels. The values stay
in a range that is negligible. In conclusion, a strict hierarchy is realized.
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Fig. 6. Simulation #2: Errors on the three priority levels. The primary task
(upper plots) converges very fast, while the null space tasks (bottom plots)
require a longer time to get into a steady state. The damping in the null
space is set very low compared to the primary Cartesian task.

when considering relevant scenarios for redundant robots
such as human-robot interaction or multiple contacts, the
exact measurement or identification of external loads is a
very challenging task and sometimes not possible at all.
Simulations on a 4 DOF system validated the main results
of our approach.
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