
Negotiating the Probabilistic Satisfaction of Temporal Logic Motion
Specifications

Igor Cizelj and Calin Belta

Abstract— We propose a human-supervised control synthesis
method for a stochastic Dubins vehicle such that the probability
of satisfying a specification given as a formula in a fragment
of Probabilistic Computational Tree Logic (PCTL) over a set
of environmental properties is maximized. Under some mild
assumptions, we construct a finite approximation for the motion
of the vehicle in the form of a tree-structured Markov Decision
Process (MDP). We introduce an efficient algorithm, which
exploits the tree structure of the MDP, for synthesizing a
control policy that maximizes the probability of satisfaction.
For the proposed PCTL fragment, we define the specification
update rules that guarantee the increase (or decrease) of the
satisfaction probability. We introduce an incremental algorithm
for synthesizing an updated MDP control policy that reuses the
initial solution. The initial specification can be updated, using
the rules, until the supervisor is satisfied with both the updated
specification and the corresponding satisfaction probability. We
propose an offline and an online application of this method.

I. INTRODUCTION

Temporal logics, such as Linear Temporal Logic (LTL)
and Computational Tree Logic (CTL), have been recently
employed to express complex robot behaviors such as “go
to region A and avoid region B unless regions C or D are
visited” ([KGFP07], [KF08], [WTM09], [BKV10]).

In order to use existing model checking and automata
game tools for motion planning (see [BK08]), many of
the above-mentioned works rely on the assumption that the
motion of the vehicle in the environment can be modeled as
a finite system [CGP99] that is either deterministic [DLB12],
nondeterministic [KB08], or probabilistic ([LAB12]). If a
system is probabilistic, probabilistic temporal logics, such as
Probabilistic CTL (PCTL) and Probabilistic LTL (PLTL), can
be used for motion planning and control. In particular, given
a robot specification expressed as a probabilistic temporal
logic formula, probabilistic model checking and automata
game techniques can be adapted to synthesize control poli-
cies that maximize the probability that the robot satisfies the
specification ([LAB12], [CB12]).

However, in many complex tasks, it is critically important
to keep humans in the loop and engaged in the overall
decision-making process. Therefore, we propose a theoretical
framework for a human-supervised control synthesis method,
with an offline and online phase.

In the offline phase (i.e., before the deployment) the super-
visor gives an initial specification and the control synthesis

This work was partially supported by the ONR MURI under grant
N00014-10-10952 and by the NSF under grant CNS-0834260.

The authors are with the Division of Systems Engineering
at Boston University, Boston, MA 02215, USA. Email:
{icizelj,cbelta}@bu.edu.

algorithm returns the initial satisfaction probability. If the
supervisor is not satisfied with the satisfaction probability, the
system generates a set of specification relaxations that guar-
antee an increase in the satisfaction probability. The offline
phase ends when the supervisor agrees with a specification
and the corresponding satisfaction probability. In the online
phase (i.e., during the deployment), events occurring in the
environment can affect the satisfaction probability. If such an
event occurs, the system returns the updated control policy,
and if necessary proposes an updated specification that will
increase the satisfaction probability.

We focus on controlling a stochastic version of a Dubins
vehicle such that the probability of satisfying a specification
given as a formula in a fragment of PCTL over a set
properties at the regions in the environment is maximized.
We assume that the vehicle can determine its precise initial
position in a known map of the environment. However,
inspired by practical applications, we assume that the vehicle
is equipped with noisy actuators and sensors. We extend our
approach presented in [CB12] to construct a finite abstraction
of the motion of the vehicle in the environment in the form
of a tree-structured Markov Decision Process (MDP). For the
proposed PCTL fragment, which is rich enough to express
complex motion specifications, we introduce the specification
update rules that guarantee the increase (or decrease) of the
satisfaction probability.

We introduce two algorithms for synthesizing MDP con-
trol policies. The first provides an initial policy and the
corresponding satisfaction probability and the second is used
for obtaining an updated solution. In general, given an
MDP and a PCTL formula, solving a synthesis problem
requires solving a Linear Programing (LP) problem (see
[BK08], [LAB12]). By exploiting the special tree structure
of the MDP, obtained through the abstraction process, as
well as the structure of the PCTL fragment, we show that
our algorithms produce the optimal solution in a fast and
efficient manner without solving an LP. Moreover, the second
algorithm produces an updated optimal solution by reusing
the initial solution. Once the MDP control policy is obtained,
by establishing a mapping between the states of the MDP and
the sensor measurements, the policy is mapped to a vehicle
feedback control strategy.

The work presented in this paper is, to the best of our
knowledge, novel. The closest related research problem is
automatic formula revision for LTL specifications [Fai11],
where if a specification can not be satisfied on a particular
environment, the framework returns to the user an updated
specification that is satisfiable. The presented work addresses

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4320

a different but related problem; the problem of automatic
formula revision for PCTL motion planning specifications.
Additionally, our framework allows for noisy actuators and
sensors and for environmental changes during the deploy-
ment. Due to space limitations, preliminaries are not included
in this paper. We refer readers to [BK08] for information
about MDPs and to [BK08], [LAB12] for detailed descrip-
tion of PCTL. Furthermore, we omit all proofs of all results.
An extended version of this paper can be found in [CB13].

II. PROBLEM FORMULATION

Motion model: A Dubins vehicle ([Dub57]) is a unicycle
with constant forward speed and bounded turning radius
moving in a plane. In this paper, we consider a stochastic
version of a Dubins vehicle, which captures actuator noise:[

ẋ
ẏ
θ̇

]
=

[
cos(θ)
sin(θ)
u+ ε

]
, u ∈U, (1)

where (x,y) ∈R2 and θ ∈ [0,2π) are the position and orien-
tation of the vehicle in a world frame, u is the control input
(angular velocity before being corrupted by noise), U is the
control constraint set, and ε is a random variable modeling
the actuator noise. For simplicity, we assume that ε is
uniformly distributed on the bounded interval [−εmax,εmax].
However, our approach works for any continuous probability
distribution supported on a bounded interval. The forward
speed is normalized to 1. We denote the state of the system
by q = [x,y,θ]T ∈ SE(2).

Motivated by the fact that the optimal Dubins paths use
only three inputs ([Dub57]), we assume U = {−1/ρ,0,1/ρ},
where ρ is the minimum turn radius. We define W = {u+
ε|u ∈ U,ε ∈ [−εmax,εmax]} as the set of applied control
inputs, i.e, the set of angular velocities that are applied to
the system in the presence of noise. We assume that time
is uniformly discretized (partitioned) into stages (intervals)
of length ∆t, where stage k is from (k− 1)∆t to k∆t. The
duration of the motion is finite and it is denoted by K∆t.We
denote the control input and the applied control input at stage
k as uk ∈U and wk ∈W , respectively. We assume that the
noise ε is piece-wise constant, i.e, it can only change at the
beginning of a stage. This implies that the applied control
is also piece-wise constant, i.e., w : [(k− 1)∆t,k∆t] → W ,
k = 1, . . . ,K, is constant over each stage.

Sensing model: We assume that the vehicle is equipped
with only one sensor, which is a limited accuracy gyroscope.
At stage k, the gyroscope returns the measured interval
[wk,wk]⊂ [uk−εmax,uk+εmax] containing the applied control
input. Motivated by practical applications, we assume that the
measurement resolution of the gyroscope, i.e., the length of
[wk,wk], is constant, and we denote it by ∆ε . For simplicity of
presentation, we also assume that n∆ε = 2εmax, for some n∈
Z+. Then, [−εmax,εmax] can be partitioned1 into n intervals:
[ε i,ε i], i= 1, . . . ,n. We denote the set of all noise intervals as
E = {[ε1,ε1], . . . , [εn,εn]}. At stage k, if the applied control

1Throughout the paper, we relax the notion of a partition by allowing the
endpoints of the intervals to overlap.

input is uk + ε , the gyroscope will return the measured
interval [wk,wk] = [uk−ε,uk+ε], where ε ∈ [ε,ε]∈ E . Since
ε is uniformly distributed:

Pr(uk + ε ∈ [uk− ε i,uk + ε i]) = Pr(ε ∈ [ε i,ε i]) = 1/n, (2)

[ε i,ε i] ∈ E , i = 1, . . . ,n.
Environment model: The vehicle moves in a static envi-

ronment X ⊆ R2 in which regions of interest are present.
Let Π be a finite set of propositions satisfied at the regions
in the environment. Let [·] : 2Π → 2X be a map such that
[Θ], Θ ∈ 2Π, is the set of all positions in X satisfying all
and only propositions π ∈Θ. Inspired by a realistic scenario
of an indoor vehicle leaving its charging station, we assume
that the vehicle can precisely determine its initial state qinit =
[xinit ,yinit ,θinit]

T in a known map of the environment.
Specification: Formulas of PCTL are interpreted over states
of an MDP and are constructed by connecting properties
from Π using standard Boolean operators, the temporal
operator U (“until”), and the probabilistic operator P . In
this work, we assume that the vehicle needs to carry out a
motion specification expressed as a PCTL formula φ over
Π:

φ : = Pmax=?[P≥p1 [ϕ1U (ψ1∧P≥p2 [ϕ2U (ψ2∧
. . .∧P≥p f [ϕ f U ψ f])])]],

(3)

f ∈ Z+, where ∀ j ∈ {1, . . . , f}, ϕ j and ψ j are PCTL for-
mulas constructed by connecting properties from a set of
propositions Π using only Boolean operators in Conjunctive
Normal Form (CNF) and Disjunctive Normal Form (DNF)2,
respectively, and p j ∈ [0,1]. We assume that φ is in Negation
Normal Form (NNF), i.e., Boolean operator ¬ appears only
in front of the propositions.

Example 1: Consider the environment shown in
Fig. 2. Let Π = {πp,πt1,πt2,πd1,πd2,πu}, where
πp,πt1,πt2,πd1,πd2,πu label pick-up, test1, test2,
drop-off1, drop-off2 and the unsafe regions,
respectively. Consider the following motion specification:

Specification 1: Starting form an initial state qinit reach a
pick-up region, while avoiding the test1 regions, to pick
up a load. Then, reach a test1 region or a test2 region.
Finally, reach a drop-off1 or a drop-off2 region to
drop off the load. Always avoid the unsafe regions.

The specification translates to PCTL formula φ :

φ : = Pmax=?[P>0[¬πu∧¬πt1U (¬πu∧πp∧
P>0[¬πuU ((¬πu∧πt1)∨ (¬πu∧πt2)∧
P>0[¬πuU (¬πu∧πd1)∨ (¬πu∧πd2)])])]]. �

(4)

Next, we define the satisfaction of φ (Eqn. 3) by a trajec-
tory q : [0,K∆t]→ SE(2) of the system from Eqn. (1). The
formal definition is given in [CB13]. Informally, the word
o produced by q(t) is the sequence of sets of propositions
satisfied by the position (x(t),y(t)) of the robot as time
evolves. A trajectory q(t) satisfies PCTL formula φ iff the
corresponding sequence satisfies the formula.

2A formula is CNF if it is a conjunction of clauses, where a clause is a
disjunction of propositions. A formula is in DNF if it is a disjunction of
clauses, where a clause is a conjunction of propositions.

4321

As time evolves and a sequence o is generated, we can
check what part of φ is satisfied so far. If P≥p1 [ϕ1U (ψ1∧
. . .∧P≥pi [ϕiU ψi]] part of φ is satisfied we say φ is satisfied
up to i, 0 ≤ i ≤ f (for more details see Sec. IV-B). Given
φ satisfied up to i, 0 ≤ i ≤ f , the updated PCTL formula,
denoted φ+, is obtained from φ by removing the already
satisfied part of φ , and then by 1) adding or removing
conjunction clause from ψ j, or 2) adding or removing a
disjunction clause from ϕ j, or 3) increasing or decreasing p j,
for any j∈{i, . . . , f}. Formal definitions are given in Sec. IV-
B. To illustrate this idea consider the following example:

Example 2: Consider Specification 1 and assume that at
k∆t the vehicle enters a pick-up region, while avoiding
the test1 and the unsafe regions, and additionally, that
the drop-off2 regions become unavailable for the drop
off, i.e., the vehicle is allowed to drop off the load only at
the drop-off1 regions. Then, the updated formula is:

φ
+ : = Pmax=?[P>0[¬πuU ((¬πu∧πt1)∨ (¬πu∧πt2)∧

P>0[¬πuU (¬πu∧πd1)])]],
where φ+ is obtained from φ by removing the already
satisfied part of φ , P>0[¬πu ∧ ¬πt1U ¬πu ∧ πp], and by
removing the conjunction clause, (¬πu∧πd2), from ψ3. �

While the vehicle moves, gyroscope measurements
[wk,wk] are available at each stage k. We define a vehicle
control strategy as a map that takes as input a sequence
of measured intervals [w1,w1][w2,w2] . . . [wk−1,wk−1] and re-
turns the control input uk ∈U at stage k. We are ready to
formulate the main problem that we consider in this paper:

Problem 1: Given a set of regions of interest in environ-
ment X ⊆ R2 satisfying propositions from set Π, a vehicle
model described by Eqn. (1) with initial state qinit , an
initial and updated motion specifications, expressed as PCTL
formulas φ and φ+, respectively, over Π (Eqn. (3)), find a
vehicle control strategy that maximizes the probability of
satisfying φ and then φ+.

III. CONSTRUCTION OF AN MDP MODEL

In order to use the abstraction process from [CB12], we
need to transform the input formula φ into a formula where
the propositions are classified into two nonintersecting sets
according to whether they represent regions that must be
reached or avoided. Details are given in [CB13]. In short,
we introduce an extended set of propositions ΞΠ = Ξ

+
Π
∪

Ξ
−
Π

and a new map [·]ΞΠ : ΞΠ→ 2X for the interpretation of
the propositions. We translate φ into a formula φφφ where the
occurrences of terms π and ¬π have been replaced by the
members ξπ ∈ Ξ

+
Π

and ξ¬π ∈ Ξ
−
Π

, respectively. This allows
us to distinguish the regions that must be avoided (Ξ−

Π
) and

the regions that must be reached (Ξ+
Π

). We show that φ is
equivalent to φφφ under the maps [·] : Π→ 2X and [·]ΞΠ : ΞΠ→
2X . Thus, next results are given with respect to a formula φφφ

and a map [·]ΞΠ : ΞΠ→ 2X (see Fig. 1 for more details).

A. Approximation

We use qk(t) and wk, t ∈ [(k− 1)∆t,k∆t], k = 1, . . . ,K to
denote the state trajectory and the constant applied control
at stage k, respectively. With a slight abuse of notation, we

use qk to denote the end of state trajectory qk(t), i.e., qk =
qk(k∆t). Given a state qk−1, the state trajectory qk(t) can be
derived by integrating the system given by Eqn. (1) from the
initial state qk−1, and taking into account that the applied
control is constant and equal to wk. Throughout the paper,
we will also denote this trajectory by qk(qk−1,wk, t), when
we want to explicitly capture the initial state qk−1 and the
constant applied control wk.

For each interval in E we define a representative value
εi =

ε i+ε i
2 , i = 1, . . . ,n. i.e., εi is the midpoint of interval

[ε i,ε i]. We denote the set of all representative values as E =
{ε1, . . . ,εn}. We define Wd = {u+ ε | u ∈U,ε ∈ E} ⊂W as
a finite set of applied control inputs. Also, let ω : U→Wd be
a random variable, where ω(u) = u+ ε with the probability
mass function pω(ω(u) = u+ε) = 1

n (follows from Eqn. (2)).
Finally, we define a Quantized System (QS) that approx-

imates the original system as follows: The set of applied
control inputs in QS is Wd ; for a state qk−1 and a control input
uk ∈ U , QS returns qk(qk−1,ω(uk), t) = qk(qk−1,uk + ε, t)
with probability 1

n , where ε ∈ E.
Next, we denote u1u2 . . .uK , in which uk ∈ U gives a

control input at stage k, as a finite sequence of control inputs
of length K. Let ΣK denote the set of all such sequences.
For the initial state qinit and ΣK , we define the reachability
graph GK(qinit) (see [LaV06] for a related definition), which
encodes the set of all state trajectories originating from qinit
that can be obtained, with a positive probability, by applying
sequences of control inputs from ΣK according to QS.

B. Position uncertainty and MDP construction

The position uncertainty of the vehicle when its nominal
position is (x,y) ∈ R2 is modeled as a disc centered at
(x,y) with radius r ∈ R, where r denotes the uncertainty:
D((x,y),r) = {(x′,y′) ∈ R2|||(x,y),(x′,y′)|| ≤ r}. The way
we model the uncertainty along q(t) ∈ GK(qinit) is given
in [CB12]. Briefly, first, we obtain uncertainty at state qk,
denoted rk, by using a worst case scenario assumption:
if uk + εk ∈ Wd is the applied control input for QS, the
corresponding applied control input at stage k for the original
system was uk − εk or uk + εk, where εk ∈ [εk,εk]. Then,
we define r : [0,K∆t]→ R as an approximated uncertainty
trajectory and we set r(t) = rk, t ∈ [(k− 1)∆t,k∆t], k =
1, . . . ,K, i.e., we set the uncertainty along the state trajectory
qk(t) equal to the maximum value of the uncertainty along
qk(t), which is at state qk (for more details see Fig. 1).

A tree-structured MDP M that models the motion of the
vehicle in the environment and the evolution of the position
uncertainty is defined as a tuple (S,s0,Act,A,P,ΞΠ,h) where:
• S is the finite set of states. The meaning of the state is
as follows: (q(t),r(t),ε,ε,Θ) ∈ S means that along the state
trajectory q(t), the uncertainty trajectory is r(t); the noise
interval is [ε,ε] ∈ E ; and Θ ∈ 2ΞΠ is the set of satisfied
propositions along the state trajectory q(t) when r(t) is the
uncertainty trajectory (see Fig. 1 for an example).
• s0 = (qinit ,0,0,0,Θinit) ∈ S is the initial state;
• Act =U ∪ν is the set of actions (ν is a dummy action);
• A : S→ 2Act gives the enabled actions at each state;

4322

• P : S×Act×S→ [0,1] is a transition probability function
such that a) for all states s ∈ S and actions a ∈ A(s):
∑s′∈S P(s,a,s′) = 1, b) for all actions a /∈ A(s) and s′ ∈ S,
P(s,a,s′) = 0, and c) for all states s ∈ S\ s0 there exists ex-
actly one state−action pair (s′,a)∈ S×A(s′), s.t. P(s′,a,s)>
0. In other words in a tree-structured MDP, each state has
only one incoming transition, i.e., there are no cycles.
• Ξπ is the set of propositions;
• h : S→ 2Ξπ assigns proposition from ΞΠ to states s∈ S ac-
cording to the following rule: given s = (q(t),r(t),ε,ε,Θ) ∈
S, ∀ξ ∈ ΞΠ, ξ ∈ h(s) iff ξ ∈Θ.

We generate S and P while building GK(qinit) starting from
qinit . Given qk(t) = qk(qk−1,uk + ε, t) ∈ GK(qinit), and the
corresponding rk(t), t ∈ [(k− 1)∆t,k∆t], k = 1, . . . ,K, first,
we generate a sequence (Θ1

k , [t
1
k , t

1
k]), . . . ,(Θ

l
k, [t

l
k, t

l
k]), l ≥ 1,

where Θi
k ∈ 2ΞΠ is the set of satisfied propositions along

the state trajectory qi
k(t) = qk(t ′), when the corresponding

uncertainty trajectory is ri
k(t) = rk(t ′), for t ′ ∈ [t i

k, t
i
k]⊆ [(k−

1)∆t,k∆t], i = 1, . . . , l, according to the following rules:
• Let t1

k = (k−1)∆t. Then, D((xk(t1
k),yk(t1

k)),rk(t1
k))⊆ [Θ1

k]

and t1
k = max[t1

k ,k∆t]{t|D((xk(t),yk(t),rk(t)⊆ [Θ1
k]}.

• If D((xk(t),yk(t),rk(t)) ⊆ [Θi
k], t ∈ [t i

k, t
i
k] and Θ

i+1
k 6= Θi

k,
then:
1) ∃t ≥ t i

k s.t. D((xk(t),yk(t),rk(t))⊆ [Θi+1
k],

2) D((xk(τ),yk(τ),rk(τ))* [ξ], ∀τ ∈ [t i
k, t], ∀ξ ∈ ΞΠ \ (Θi

k∪
Θ

i+1
k) and

3) t i+1
k = t i

k and t i+1
k = max[t i+1

k ,k∆t]{t|D((xk(t),yk(t),rk(t) ⊆
[Θi+1

k]}.
Next, for each (Θi

k, [t
i
k, t

i
k]), i = 1, . . . , l, we generate a state

of the MDP si
k =(qi

k(t),r
i
k(t),ε,ε,Θ

k
i) such that qi

k(t)= qk(t ′)
and ri

k(t) = rk(t ′), t ′ ∈ [t i
k, t

i
k] and ε and ε are such that ε ∈

[ε,ε] ∈ E . Finally, the newly generated state si
k, i = 1, . . . l,

l ≥ 1, is added to S and the transition probability function is
updated, as follows:
• If i < l, A(si

k) = ν and P(si
k,ν ,s

i+1
k) = 1, and otherwise,

i.e., if i = l, A(sl
k) =U and ∀uk+1 ∈U , P(sl

k,uk+1,s1
k+1) =

1
n .

The former follows from the fact that k∆ is not reached
and control input for the next stage needs not to be chosen.
Under dummy action ν , with probability 1, the system makes
a transition to the next state in the sequence satisfying a
different set of propositions. The latter follows from the fact
that k∆t is reached and the control input for the next stage
needs to be chosen.
• If the termination time is reached, we set A(si

k) = ν and
P(si

k,ν ,s
i
k) = 1. Such state is called a lea f state. In [CB13]

we show that M is a valid tree-structured MDP.

IV. PCTL CONTROL POLICY GENERATION

A. Control policy for the initial PCTL formula

The proposed PCTL control synthesis is an adap-
tation of the approach from [LAB12]. Given a tree-
structured MDP M = (S,s0,A,Act,P,ΞΠ,h) and a PCTL for-
mula φφφ := Pmax=?[P≥p1 [ϕ1U (ψ1 ∧P≥p2 [ϕ2U (ψ2 ∧ . . .∧
P≥p f [ϕ f U ψ f])])]], we are interested in obtaining the con-
trol policy µφφφ that maximizes the probability of satisfying
φφφ , as well as the corresponding probability value, denoted

q1(t)

q2,1(t)

q2,3(t)

qinit

x

y

s1
1 = (q1

1(t), r1
1(t), ✏1, ✏1,⇥

1
1)

s1
2 = (q1

2,1(t), r
1
2,1(t), ✏2, ✏2,⇥

1
2)

"12 w.p
1
3

"2
2 w.p 1

3

"3
2 w.p 1

3

u1
2

u2
2

u3
2

[⇠⇡p]⌅⇧

[⇠⇡d1]
⌅⇧

t
1
2 = t22

t
2
2 = t32

t
3
2 = t42

t
4
2 = t52

t
5
2 = t62

t
6
2 = t72

t72 = 2�t

t
1
1 = t12 = �t

t11 = 0

. . .

...

⌫ w.p. 1

. . .

⌫ w.p. 1

s7
2 = (q7

2,1(t), r
7
2,1(t), ✏2, ✏2,⇥

7
2). . .

r1

q2,2(t)

r2,3 r2,2 r2,1

[⇠⇡u]⌅⇧

Fig. 1. Above: An example scenario corresponding to the MDP fragment
shown below. [ξπu]

ΞΠ , [ξπp]
ΞΠ and [ξπd1]

ΞΠ are shown in the figure. Then
[ξ¬πu]

ΞΠ = X \ [ξπu], and similarly for [ξ¬πp]
ΞΠ and [ξ¬πd1]

ΞΠ holds. Since
along the state trajectory q1(t) when the uncertainty trajectory is r1(t) = r1,
t ∈ [0,∆t] the set of satisfying propositions does not change, only one state,
denoted s1

1, is generated, where θ1 = {ξ¬πu ,ξ¬πp ,ξ¬πd1}. For the state tra-
jectory q2,1(t), when the uncertainty trajectory is r2,1(t) = r2,1, t ∈ [∆t,2∆t],
the following sequence is generated: (Θ1

2, [t
1
2, t

1
2]), . . . ,(Θ

7
2, [t

7
2, t

7
2]), where the

time interval bounds are shown on the figure and Θ1
2 = {ξ¬πu ,ξ¬πp ,ξ¬πd1},

Θ2
2 = {ξ¬πu ,ξ¬πd1}, Θ3

2 = {ξ¬πu ,ξπp ,ξ¬πd1}, . . . , Θ6
2 = {ξ¬πu ,ξ¬πp} and

Θ7
2 = {ξ¬πu ,ξ¬πp ,ξπd1}. Below: A fragment of the MDP corresponding to

the scenario shown above, where [−εmax,εmax] is partitioned into n = 3
intervals. Action u1

2 ∈ A(s1
1) enables three transitions, each w.p. 1

3 . This
corresponds to applied control input being equal to u1

2 + ε i
2 w.p. 1

3 , ε i
2 ∈ E.

The elements of si
2 are: qi

2(t) = q2,1(t ′) and ri
2(t) = r2,1(t ′), t ′ ∈ [t i

2, t
i
2],

[ε2,ε2] is such that ε1
2 ∈ [ε2,ε2] ∈ E and Θi

2, i = 1, . . . ,7.

Vφφφ , where Vφφφ : S→ [0,1]. Specifically, for s∈ S, µφφφ (s)∈ A(s)
is the action to be applied at s and Vφφφ (s) is the probability
of satisfying φφφ at s under control policy µφφφ . To solve this
problem we propose the following approach:

Step 1: Solve φφφ f := P≥p f [ϕ f U ψ f], i.e., find the set of
initial states Sφφφ f

from which φφφ f is satisfied with probably
greater than or equal to p f and determine the corresponding
control policy µφφφ f

. To solve this problem, first, let φφφ
′
f :=

Pmax=?[ϕ f U ψ f], and compute the maximizing probabilities
V

φφφ
′
f
. This can be done by dividing S into three subsets

Syes
φφφ
′
f

(states satisfying φφφ
′
f with probability 1), Sno

φφφ
′
f

(states

satisfying φφφ
′
f with probability 0), and S?

φφφ
′
f

(the remaining

states): Syes
φφφ
′
f
= Sat(ψ f), Sno

φφφ
′
f
= S \ (Sat(ϕ f)∪ Sat(ψ f)) and

S?
φφφ
′
f
= S\(Syes

φφφ
′
f
∪Sno

φφφ
′
f
), where Sat(ψ f) and Sat(ϕ f) are the set

of states satisfying ψ f and ϕ f , respectively. The computation

4323

of maximizing probabilities for the states in S can be
obtained as a unique solution of the following system:

Vφφφ
′
f
(s) =

1 if s ∈ Syes

φφφ
′
f

0 if s ∈ Sno
φφφ
′
f

maxa∈A(s){∑s′∈S P(s,a,s′)V
φφφ
′
f
(s′)} if s ∈ S?

φφφ
′
f

(5)
and the control policy at each state is equal to the action
that gives rise to this optimal solution, i.e., ∀s ∈ S, µ

φφφ
′
f
(s) =

argmaxa∈A(s){∑s′∈S P(s,a,s′)V
φφφ
′
f
(s′)}.

In general (i.e., for a non tree-structured MDPs containing
cycles), solving Eqn. (5) requires solving a linear program-
ming problem ([BK08], [LAB12]). For a tree-structured
MDPs the solution can be obtained in a simple fashion: from
each leaf state of the MDP, move backwards, by visiting
parent states until s0 is reached; at each state in S?

φφφ
′
f

perform
maximization from Eqn. (5). The fact that M contains no
cycles is sufficient to see that the procedure stated above
will result in maximizing probabilities.

The state formula φφφ f requires to reach a state in Sat(ψ f)
by going through states in Sat(ϕ f) with probability greater
than or equal to p f . Thus, ∀s ∈ S s.t. V

φφφ
′
f
(s) < p f we set

Vφφφ f
(s) = 0, and otherwise, i.e., ∀s ∈ S s.t. V

φφφ
′
f
(s) ≥ p f we

set Vφφφ f
(s) =V

φφφ
′
f
(s). Finally, ∀s∈ S, µφφφ f

(s) = µ
φφφ
′
f
(s) and the

set of initial states is Sφφφ f
= {s ∈ S|Vφφφ f

(s)> 0}.
Step 2: Solve φφφ f−1 := P≥p f−1 [ϕ f U (ψ f−1 ∧ φφφ f)], i.e.,

find the set of initial states Sφφφ f−1
from which φφφ f−1 is

satisfied with probability greater than or equal to p f−1.
To solve this problem, again, begin by solving φφφ

′′′
f−1 :=

Pmax=?[ϕ f−1U (ψ f−1∧φφφ f)]. Start by dividing S into three
subsets: Syes

φφφ
′
f−1

= Sat(ψ f−1)∩ Sφφφ f
, Sno

φφφ
′
f−1

= S \ (Sat(ϕ f−1)∪
Syes

φφφ
′
f−1

)) and S?
φφφ
′
f−1

= S \ (Syes
φφφ
′
f−1
∪ Sno

φφφ
′
f−1

). Note that, Syes
φφφ
′
f−1

is
the set of states satisfying ψ f−1 intersected with Sφφφ f

. Next,
perform the same procedure as in Step 1 for obtaining Vφφφ f−1

,
µφφφ f−1

and Sφφφ f−1
.

Step 3: Repeat Step 2 for φφφ f−2,φφφ f−3, . . . ,φφφ 1.
By the nature of the PCTL formulas, to ensure the ex-

ecution of all specified tasks in φφφ , we construct a history
dependent control policy µφφφ : Apply policy µφφφ1

until a state
in Syes

φφφ
′
1

is reached. Then, apply policy µφφφ2
until a state in

Syes
φφφ
′
2

is reached. · · · Finally, apply µφφφ f
until a state in Syes

φφφ
′
f

is reached. For the same reason we can only find the lower
and upper bounds of Vφφφ (s0). The lower and upper bounds are
Vφφφ1

(s0) ·V min
φφφ2
· . . . ·V min

φφφ f
and Vφφφ1

(s0) ·V max
φφφ2
· . . . ·V max

φφφ f
, where

V min
φφφ i

and V max
φφφ i

are the minimum and maximum probability
of satisfying φφφ i from Syes

φφφ
′
i−1

.
In [CB12] we show that a sequence of measured intervals

corresponds to a unique state of the MDP. The vehicle control
strategy maps the sequence to the state of the MDP and
returns the control input for the next stage corresponding to
the to the optimal action, under µφφφ , at that state.

B. Control policy for the updated PCTL formula
Next, assume that at the end of stage k, for some k =

0, . . . ,K−1, φφφ is updated into φφφ
+. As noted in the previous

subsection, given a sequence of measured intervals, we can
follow vehicle’s progress on M. We denote the current state
as sC ∈ S (if it is at the initial state, then sC = s0). We develop
an efficient algorithm for obtaining µ

φφφ
+ , and V

φφφ
+ , that reuses

µφφφ and Vφφφ , and exploits the structure of formulas given by
Eqn. (3) and the fact that M is a tree-structured MDP.

First, we formally define what it means for φφφ to be satisfied
up to i, 0 ≤ i ≤ f . Note that, if under the execution of µφφφ ,
Syes

φφφ
′
i

is reached, it is guaranteed that P≥p1 [ϕ1U (ψ1 ∧ . . .∧
P≥pi [ϕiU ψi])] part of φφφ is satisfied. Thus, φφφ is satisfied
up to i, where i = max j∈{0,..., f}{ j|Syes

φφφ
′
j

is reached}, Syes
φφφ
′
0
= s0.

Next, since ∀ j ∈ {1, . . . , f}, ϕ j and ψ are in CNF and DNF,
respectively, they can be expressed as ϕ j =ϕ1

j ∧ . . .∧ϕ
m j
j and

ψ j = ψ1
j ∨ . . .∨ψ

n j
j where m j,n j ∈Z+ and ∀m=1,...,m j ϕ

m
j is a

disjunction clause and ∀n=1,...,n j ψ
n
j is a conjunction clause.

Specification update rules: Given φφφ satisfied up to i,
0 ≤ i ≤ f , the updated formula φφφ

+ is obtained from φφφ by
removing P≥p1 [ϕ1U (ψ1∧ . . .∧P≥pi [ϕiU ψi])] from φφφ , and
then by updating ψ j, ϕ j, or p j for j ∈ {i, . . . , f}:
1) ψ

+
j = ψ1

j ∨ . . .∨ψ
n j+1
j ; or

2) ψ
+
j = ψ1

j ∨ . . .∨ψ
n j−1
j , if n j ≥ 1; or

3) ϕ
+
j = ϕ1

j ∧ . . .∧ϕ
m j−1
j , if m j ≥ 1; or

4) ϕ
+
j = ϕ1

j ∧ . . .∧ϕ
m j+1
j ; or

5) p+j ∈ [0,1] s.t. p+j < p j; or

6) p+j ∈ [0,1] s.t. p+j > p j; where ψ
n j+1
j and ϕ

m j−1
j are

conjunction and disjunction clauses from ΞΠ, respectively.
First, note that since M is a tree-structured MDP, µ

φφφ
+

needs to be defined only for the states reachable from current
state sC ∈ S. Thus, we construct a new tree-structured MDP
M+ ⊆M, for which sC is the initial state, by eliminating the
states that are not reachable form sC. For a tree-structured
MDP this is a straightforward process. By using the approach
presented in Sec. IV-A we can partially reuse µφφφ and Vφφφ

when solving the problem. Additionally, the following holds:
for updates 1, 3, and 5, ∀s ∈ S+, V

φφφ
+(s) ≥ Vφφφ (s), and for

updates 2, 4, and 6, ∀s ∈ S+, V
φφφ
+(s) ≤ Vφφφ (s), where S+ is

the set of states of M+. In this paper, due to space limitations,
we prove the statements above only for Update 1. For the
rest of the updates see the technical report [CB13].

Update 1: Since for k ∈ { j + 1, . . . , f}, φφφ
+
k = φφφ k, it

follows that µ
φφφ
+
k

= µφφφ k
, V

φφφ
+
k

= Vφφφ k
, and S

φφφ
+
k

= Sφφφ k

(this holds for all other updates as well). When solving
φφφ
+
j := P≥p j [ϕ jU ((ψ j ∨ ψ

n j+1
j) ∧ φφφ j+1)], i.e., in particu-

lar φφφ
+′
j := Pmax=?[ϕ jU ((ψ j ∨ ψ

n j+1
j) ∧ φφφ j+1)] note that:

Syes

φφφ
+′
j
= (Sat(ψ j)∩ Sφφφ j+1

)∪ (Sat(ψ
n j+1
j)∩ Sφφφ j+1

), Sno
φφφ
+′
j
= S \

(Sat(ϕ j) ∪ Syes

φφφ
+′
j
)) and S?

φφφ
+′
j

= S \ (Syes
φφφ
′
j
∪ Sno

φφφ
′
j
). By using

Eqn. (5) we obtain µ
φφφ
+′
j

and V
φφφ
+′
j

, and then µ
φφφ
+
j
, V

φφφ
+
j

and S
φφφ
+
j

as described in Sec. IV-A. From the fact that

Syes

φφφ
+′
j
⊇ Syes

φφφ j
′ it follows that ∀s ∈ S+, V

φφφ
+′
j
(s) ≥ Vφφφ j

′(s), and

thus S
φφφ
+
j
⊇ Sφφφ j

and V
φφφ
+
j
(s)≥Vφφφ j

(s). This property holds all
the way down until µ

φφφ
+
i+1

and V
φφφ
+
i+1

are obtained. Therefore,
∀s ∈ S+, V

φφφ
+(s) ≥ Vφφφ (s). For the reasons stated in the

4324

previous subsection µ
φφφ
+ has also a history dependent form

and we can find the lower and upper bounds of V
φφφ
+(sC).

V. CASE STUDY

We considered the system given by Eqn. (1) and we
used the following numerical values: 1/ρ = π/3, ∆t = 1.2,
K = 9, and εmax = 0.06 with n = 3, i.e., ∆ε = 0.04. Thus,
the maximum actuator noise was approximately 6% of the
maximum control input. Three cases are shown in Fig. 2.

Offline phase: Cases A and B correspond to the offline
phase. Initially, the motion specification was as given in
Example 1, and the corresponding PCTL formula was φ

(Eqn. 4). The lower bound on the probability of satisfying
φ on the corresponding MDP was 0.68. For case A we
assumed that the supervisor was satisfied with the satisfaction
probability and the vehicle was deployed under the obtained
vehicle control strategy. Case B corresponds to the case when
the user is not satisfied with a satisfaction probability of 0.68.
Then, the system generated a set of specification relaxations,
based on the specification update rules from Sec. IV-B, that
guaranteed an increase in the satisfaction probability. We
assumed that the supervisor agreed with the specification
which “allowed the vehicle to go through a test1 region
before entering a pick-up region” (corresponds to Update
3), with the corresponding satisfaction probability being 0.85
(Update 3 increases the satisfaction probability).

Online phase: Case C corresponds to the online phase.
The vehicle was deployed under the initial vehicle control
strategy from case A and at 5∆t the drop-off2 regions
became unavailable for the drop off, and thus the updated
specification “allowed the vehicle to drop off the load only
in the drop-off1 regions” (corresponds to Update 2). The
updated satisfaction probability, returned by the the control
synthesis part, was 0.63 (Update 2 reduces the satisfaction
probability). Assuming that the supervisor was satisfied with
the updated satisfaction probability the vehicle continued the
deployment, now under the updated vehicle control strategy.

The constructed MDP had approximately 45000 states.
The Matlab code used to construct the MDP ran for 8 min
and 52 sec. The control synthesis algorithm for case A (initial
PCTL control policy generation) ran for 23 sec. For cases B
and C (updated PCTL control policy generation) the control
synthesis algorithm ran for 11 and 6 seconds, respectively.
In cases B and C the running time improved by reusing
the initial solution from case A. There was an additional
improvement in case C since the vehicle was moving prior
to the update and the updated solution was obtained on the
reduced MDP.

REFERENCES

[BK08] C. Baier and J. P. Katoen. Principles of Model Checking. MIT
Press, 2008.

[BKV10] A. Bhatia, L.E. Kavraki, and M.Y. Vardi. Sampling-based
Motion Planning with Temporal Gaoals. In International Con-
ference on Robotics and Automation (ICRA) 2010, 2010.

[CB12] I. Cizelj and C. Belta. Probabilistically Safe Control of Noisy
Dubins Vehicles. In IEEE Intelligent Robots and Systems (IROS)
Conference, 2012, pages 2857 –2862, October 2012.

qinit

drop-off1

test1
test2

unsafe
drop-off2

pick-up

qinit

drop-off1

test1
test2

unsafe
drop-off2

pick-up

qinit

drop-off1

test1
test2

unsafe
drop-off2

pick-up

Fig. 2. 50 sample state (position) trajectories for cases A, B and C (to be
read top to bottom) obtained by simulating the original system under the
corresponding vehicle control strategies. Satisfying and violating trajectories
are shown in black and red, respectively.

[CB13] I. Cizelj and C. Belta. Negotiating the Probabilistic Satisfaction
of Temporal Logic Motion Specifications. Technical report,
2013. (available online at http://arxiv.org/abs/1307.3224).

[CGP99] E. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
The MIT Press, 1999.

[DLB12] X. C. Ding, M. Lazar, and C. Belta. Receding Horizon Temporal
Logic Control for Finite Deterministic Systems. In American
Control Conference (ACC) 2012, June 2012.

[Dub57] L. E. Dubins. On curves of minimal length with a constraint
on average curvature, and with prescribed initial and terminal
positions and tangents. American Journal of Mathematics,
79(3):497–516, 1957.

[Fai11] G. Fainekos. Revising Temporal Logic Specifications for
Motion Planning. In nternational Conference on Robotics and
Automation (ICRA) 2011, pages 40–45, 2011.

[KB08] M. Kloetzer and C. Belta. Dealing with Non-Determinism in
Symbolic Control. In Hybrid Systems: Computation and Control
(HSCC) 2008, pages 287–300, 2008.

[KF08] S. Karaman and E. Frazzoli. Vehicle Routing Problem with Met-
ric Temporal Logic Specifications. In Conference on Decision
and Control (CDC) 2008, pages 3953 –3958, 2008.

[KGFP07] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s
Waldo? Sensor-Based Temporal Logic Motion Planning. In
International Conference on Robotics and Automation (ICRA)
2007, pages 3116–3121, 2007.

[LAB12] M. Lahijanian, S. B. Andersson, and C. Belta. Temporal Logic
Motion Planning and Control With Probabilistic Satisfaction
Guarantees. IEEE Transactions on Robotics, 28(2), 2012.

[LaV06] S. M. LaValle. Planning Algorithms. Cambridge University
Press, Cambridge, U.K., 2006.

[WTM09] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding
Horizon Temporal Logic Planning for Dynamical Systems. In
Conference on Decision and Control (CDC) 2009, 2009.

4325

