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Abstract—Simple inverted pendulum models and their vari-
ants are often used to control humanoid robots in order to
simplify the control design process. These simple models have
significantly fewer degrees of freedom than the full robot
model. The design and choice of these simple models are based
on the designer’s intuition, and the reduced state mapping
and the control input mapping are manually chosen. This
paper presents an automatic model reduction procedure for
humanoid robots, which is task-specific. It also presents an
optimization framework that uses the auto-generated task-
specific reduced models to control humanoid robots. Successful
simulation results of balancing, fast arm swing, and hip rock
and roll motion tasks are demonstrated.

I. INTRODUCTION

Control of humanoid robots is a challenging task by

virtue of its instability and complexity with large number of

degrees of freedom (DOF). Traditionally, researchers have

used simplified models like the ones shown in Fig. 1 to

design controllers for humanoid robots. These simplified

models have significantly fewer DOF than the full robot

model, and are often linearized to apply techniques from

linear control theory. The linear inverted pendulum model

(LIPM) is the most common simplified model used in the

literature of humanoid robot control [1], where a lump

mass is connected to the ground with a rotational joint.

Several other variants such as the spring loaded inverted

pendulum (SLIP) model [2], cart-table model [3], reaction

mass pendulum (RMP) model [4], double inverted pendulum

(DIP) model [5] and linear biped model (LiBM) [6] have

been proposed in the literature for humanoid robot control.

One of the main concerns is that the choice and design

of the above mentioned simplified models were based on

the designer’s intuition. The LIPM model was proposed to

achieve ankle strategy for balance, while the DIP model

was proposed to achieve both ankle and hip strategies [7].

The SLIP model was proposed for hopping and running

tasks, while the RMP model was proposed to account for

the centroidal angular momentum of the system. The LiBM

model was proposed to explicity account for double-support

and single-support phases. In [8], Goswami derived and

compared the physical properties between planar RMP and

compass-gait models. Apart from this work, not much re-

search has been done to investigate how well these simplified

models match the dynamics of the original, high-dimensional

system. Moreover, in addition to the choice of the model,

the designer needs to pick two different mappings, one that

maps the state of the full model to the reduced state, and
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Fig. 1. Simplified planar models used for humanoid robot control:
(a) Linear inverted pendulum model (LIPM), (b) Spring-loaded inverted
pendulum (SLIP), (c) Double inverted pendulum (DIP), (d) Reaction mass
pendulum (RMP), and (e) Linear biped model (LiBM).

the other that maps the control inputs of the reduced model

to those of the full model. The control input mapping is

especially tricky since there are infinite possible mappings

from a low-dimensional space to a high-dimensional space.

Generally, criteria like kinetic energy equivalence or angular

momentum equivalence are used to pick these mappings.

The main objective of this paper is to replace the manual,

intuitive model simplification process with an automatic

model reduction procedure for humanoid robots. One such

approach was presented in [9], where the reduced model

was automatically computed with the objective of matching

the kinetic energy of the system, and the reduced DOF

corresponded to the smallest singular values of the inverse

of the mass/inertia matrix. However, unlike [9], in this

paper, we present a model reduction approach that finds the

smallest order statespace model, whose stabilizing controller

stabilizes the full humanoid model. Moreover, the model

reduction is task-specific because one intuitively understands

that a complicated humanoid robot task like manipulation is

higher dimensional than a simple balancing task.

This paper builds on existing model reduction techniques

from linear control theory like balanced truncation [10]

and fractional balanced reduction [11] to develop Minimum

Stable Model Reduction (MSR) algorithm that finds the

smallest reduced order system, whose stabilizing controller

stabilizes the original high-dimensional system. The MSR

algorithm is made task-specific (TMSR) by formulating

the original system with task-specific outputs. This paper

presents model reduction results on linear humanoid robot

models, which show that the reduced order increases with

increasing complexity of the task. Moreover, this paper also

presents an optimization framework that uses these reduced

order models to successfully control a 34 DOF nonlinear

humanoid robot model in simulation for balancing, fast arm

swing, and hip rock and roll motion tasks.
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II. BACKGROUND

This section introduces model reduction in a control-

theoretic sense and describes a few existing model reduction

techniques in linear control theory.

Consider a dynamic system with a state vector x ∈ R
n,

an input vector u ∈ R
m and an output vector y ∈ R

p. Its

state space equations are given by:

ẋ = Ax+Bu,

y = Cx, (1)

where A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n. Its output

transfer function is given by G(s) = C(sIn−A)−1B, where

In is a n× n identity matrix.

A reduced order system with fewer states xr ∈ R
r with

r < n but with the same inputs and outputs is given by:

ẋr = Arxr +Bru,

y = Crxr, (2)

where Ar ∈ R
r×r, Br ∈ R

r×m and Cr ∈ R
p×r. Its output

transfer function is given by Gr(s) = Cr(sIr − Ar)
−1Br,

where Ir is a r × r identity matrix.

The objective of model reduction is to find a reduced order

model such that ||G−Gr||∞ is minimized [10].

A. Balanced Truncation of Stable Systems

Algorithm 1 presents the square-root method for Balanced

Truncation (BT), an existing model reduction technique for

stable systems [10]. As its name indicates, it consists of

two steps: (i) balancing the system, and (ii) truncating the

balanced system. A stable system of the form shown in

Eq. 1 is said to be balanced if its controllability gramian

P ∈ R
n×n and observability gramian Q ∈ R

n×n obtained

from Step 2 of Algorithm 1 are equal and diagonal positive

definite matrices, i.e., P = Q = Σ > 0. This implies that

each balanced state is equally controllable and observable.

The balanced state vector is given by xb = Tbx, where

Tb ∈ R
n×n is obtained from Step 6 of Algorithm 1.

A measure of controllability and observability of each

state can be obtained from its Hankel singular value [12],

[13]. The Hankel singular values of a balanced system

with controllability and observability gramians Pb and Qb

is given by σHSV =
√

λ(PbQb), where λ(·) computes the

eigenvalues. The largest Hankel singular values correspond

to the most controllable and observable states, whereas the

smallest singular values correspond to the least controllable

and observable states. Therefore, in order to reduce the

system with n states in Eq. 1 to a system with r states in

Eq. 2, one can pick the r most controllable and observable

states from its balanced state vector xb. The reduced state

vector is given by xr = Trx, where Tr ∈ R
r×n is obtained

from Step 9 of Algorithm 1.

B. Fractional Balanced Reduction of Unstable Systems

The balanced truncation algorithm presented in Algo-

rithm 1 cannot be applied to unstable systems because

their controllability and observability gramians cannot be

Algorithm 1: Balanced Truncation (BT)

input : System {A,B,C}, Reduced Order r
output : Reduced System {Ar, Br, Cr},

Reduced State Transformation Tr

function: [Ar, Br, Cr, Tr, Tn] = BT(A,B,C, r)
1 begin
2 Solve Lyapunov equations to get controllability and

observability gramians P,Q
AP + PAT +BBT = 0
ATQ+QA+ CTC = 0

3 Find Cholesky factors LP and LQ

Lp = Up

√

Sp, where P = UpSpV
T
p

Lq = Uq

√

Sq , where Q = UqSqV
T
q

4 Get singular value decomposition of LT
q Lp

LT
q Lp = UbSbV

T
b

5 Get balanced transformation matrices

T1 = LqUbS
−

1

2

b

T2 = LpVbS
−

1

2

b

6 Get balanced state transformation

Tb = T−1

2
∈ R

n×n

7 Get reduced transformation matrices

T3 = T1(1 : n, 1 : r) ∈ R
n×r

T4 = T2(1 : n, 1 : r) ∈ R
n×r

8 Get reduced system

Ar = TT
3 AT4

Br = TT
3 B

Cr = CT4

9 Get reduced state transformation

Tr = Tb(1 : r, 1 : n) ∈ R
r×n

10 end

computed due to lack of unique solutions to their cor-

responding Lyapunov equations (Step 2). Since humanoid

robots are unstable, we present another existing algorithm

called Fractional Balanced Reduction (FBR) for unstable

systems [11] in Algorithm 2. The FBR algorithm stabilizes

the unstable system, balances and truncates the stabilized

system, and then retrieves the reduced unstable system.

A system with the statespace realization {A,B,C} shown

in Eq. 1 is stabilized using the change of input ū = Kx−u,,

where K = −BTN and N is the solution to the algebraic

Riccati equation shown in Step 2 of Algorithm 2. The

statespace equations for this stabilized system are given by:

ẋ = Āx+Bū,
[

y

u

]

=

[

C

K

]

x+

[

0
I

]

ū. (3)

The stable state space realization {Ā, B,

[

C

K

]

} in Eq. 3

is balanced and truncated to {Ār, Br,

[

Cr

Kr

]

} using Al-

gorithm 1. The reduced system {Ar, Br, Cr} of the original

unstable system {A,B,C} is obtained by undoing the effects

of the stabilizing controller K with Ar = Ār − BrKr, as

shown in Step 5 of Algorithm 2.
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Algorithm 2: Fractional Balanced Reduction (FBR)

input : System {A,B,C}, Reduced Order r
output : Reduced System {Ar, Br, Cr},

Reduced State Transformation Tr

function: [Ar, Br, Cr, Tr] = FBR(A,B,C, r)
1 begin
2 Solve algebraic Riccati equation

ATN +NA−NBBTN + CTC = 0

3 Get stabilized system {Ā, B̄, C̄}

Ā = A+BK, where K = −BTN
B̄ = B

C̄ =

[

C
K

]

4 Get balanced truncated system {Ār, B̄r, C̄r}

[Ār, B̄r, C̄r, Tr] = BT(Ā, B̄, C̄, r)

5 Retrieve the reduced system {Ar, Br, Cr}

Kr = C̄r(p+ 1 : p+m, 1 : r)
Ar = Ār − B̄rKr

Br = B̄r

Cr = C̄r(1 : p, 1 : r)

6 end

III. MINIMUM STABLE BALANCED REDUCTION

The FBR algorithm presented in Algorithm 2 reduces an

unstable system in Eq. 1 to a reduced system in Eq. 2 for

a given reduced order r. However, the FBR algorithm did

not present any approach to pick the reduced order r. This

section presents a new algorithm called the Minimum Stable

Balanced Reduction (MSR), shown in Algorithm 3, which

finds the minimum reduced order rmin such that the linear

quadratic regulator (LQR) that stabilizes the corresponding

reduced system also stabilizes the original full system.

The MSR algorithm is an iterative procedure that begins

with initializing r to the number of unstable poles of the

open-loop system {A,B,C}, which ensures that the unstable

subsytem is retained while reducing the model. In [9], the

unstable subsystem was not necessarily retained as the user

picked the reduced DOF. At each iteration of r, the system

{A,B,C} in Eq. 1 is reduced to {Ar, Br, Cr} in Eq. 2 using

the FBR algorithm in Algorithm 2 as shown in Step 4 of

Algorithm 3. The reduced state transformation Tr is used to

transform the symmetric LQR gain matrix on the full states

Q ∈ R
n×n to a symmetric LQR gain matrix on the reduced

states Qr ∈ R
r×r with Qr = TrQTT

r . This transformation

allows the user to pick Q for the original states of the system,

which is more intuitive than picking the same for the reduced

states. Moreover, this allows the model reduction process to

be automated since there is no need to pick Qr for each

reduced order r. The LQR gain matrix on the control inputs

R ∈ R
m×m chosen by the user is used as it is because the

control inputs remain the same for the reduced order model

as shown in Eq. 2. The stabilizing control law is given by u =
−Krxr, where the control gain matrix Kr = R−1BT

r S ∈
R

m×r, and S is obtained by solving the associated Riccati

equation in Step 5 of Algorithm 3.

Since the reduced state xr = Trx, the resulting control

law for the full order system shown in Eq. 1 is given by

Algorithm 3: Minimum Stable Balanced Reduction

(MSR)

input : System {A,B,C}, LQR Gains Q,R
output : Minimum Stable Reduced Order rmin,

Reduced System {Ar, Br, Cr},
Reduced State Transformation Tr

function: [rmin, Ar, Br, Cr, Tr] = MSR(A,B,C)
1 begin
2 Get the unstable open-loop poles and initialize r

punstab = {λi|λi ∈ λ(A) > 0}
r = size(punstab)

3 while punstab 6= ∅ and r ≤ n do
4 Get balanced truncated system {Ar, Br, Cr}

[Ar, Br, Cr, Tr] = FBR(A,B,C, r)

5 Get LQR control gain matrix Kr with Qr = TrQTT
r

and Rr = R by solving its associated Riccati
equation

AT
r S + SAr − SBrR

−1

r BT
r S +Qr = 0

Kr = R−1

r BT
r S

6 Get the unstable closed-loop poles punstab

punstab = {λi|λi ∈ λ(A−BKrTr) > 0}

7 r = r + 1
8 end
9 Get the minimum reduced system{Ar, Br, Cr}

rmin = r − 1
[Ar, Br, Cr, Tr] = FBR(A,B,C, rmin)

10 end

u = −KrTrx. The eigenvalues λ of the closed-loop state

transition matrix Acl =
(

A−BKrTr

)

determine the stability

of the closed-loop system, wherein positive eigenvalues form

the set of unstable poles punstab as shown in Step 6 of

Algorithm 3. If the closed-loop system is unstable, then the

reduced order r is incremented by one, and the whole process

repeats until a stable closed-loop system is reached. The

minimum stable reduced order rmin and the reduced order

realization {Ar, Br, Cr} are retrieved as shown in Step 9

of Algorithm 3. If the system {A,B,C} with n states is

controllable, then rmin ≤ n.

In this work, we are interested in model reduction for

humanoid robots, and intuitively, one understands that it

must be task-specific. For example, a balancing task for a

humanoid robot is lower dimensional than a complex manip-

ulation task. Hence, the balancing task can be achieved with

a reduced model whose order is smaller than that required

for achieving the manipulation task. Here, we present a task-

specific variant of the MSR algorithm called the Task-specific

Minimum Stable Balanced Reduction (TMSR).

The balanced truncation algorithms (Sec. II) used by the

MSR algorithm reduce the system while minimizing the

H∞ norm of the difference in the transfer functions of the

full and reduced order systems, i.e. ||G−Gr||∞. Here, the

transfer function deals with the effect of the inputs on the

outputs. It is important to note that the inputs and outputs

for the reduced system in Eq. 2 are the same as the ones

for the full system in Eq. 1. Roughly speaking, the balanced

truncation algorithms reduce the difference in energy transfer

from the inputs to the outputs. This implies that the output
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matrix C ∈ R
p×n that maps the states to the outputs also

plays an important role in model reduction. In order to

make model reduction task-specific, we propose to make

the output matrix C that influences the transfer function

task-specific. Therefore, the TMSR algorithm uses the MSR

algorithm shown in Algorithm 3, while picking task-specific

output matrices C in the state space realization of the system

{A,B,C} used for model reduction.

IV. MODEL REDUCTION FOR HUMANOID ROBOTS

This section discusses task-specific model reduction of

linear humanoid robot models using the MSR and TMSR

algorithms presented in Sec. III.

A. Humanoid Robot Model

This section presents a humanoid robot model in double-

support as shown in Fig. 2(a). The model has 34 DOF with 7

DOF for each of its legs, 6 DOF for its torso, 4 DOF for each

of its arms and 6 DOF for its root joint. The wrist and facial

DOF are ignored in this model. The root joint is unactuated,

whereas the remaining 28 DOF are actuated. In this work,

the humanoid model is constrained to not move its feet and

hence, there are six constraints for each foot. The linear

equations of motion of the system with the configuration

vector q ∈ R
34 can be written as:

Mq̈ +Dq̇ +Gq = FT τ + JT
c fc, (4)

where M ∈ R
34×34 is the mass/inertia matrix, D ∈ R

34×34

is the damping matrix, G ∈ R
34×34 is the stiffness matrix,

F ∈ R
28×34 is the input coupling matrix, τ ∈ R

28 is the

input vector, Jc ∈ R
12×34 is the contact Jacobian of both

feet and fc ∈ R
12 is the generalized vector of contact forces

for the feet. The contact constraints on the feet given by

Jcq̇ = 0 ∈ R
12 can be differentiated to get

Jcq̈ + J̇cq̇ = 0 ∈ R
12. (5)

The equations of motion in Eq. 4 can be re-written as:

q̈ = −M−1(Dq̇ +Gq − FT τ − JT
c fc). (6)

Solving for fc from Eq. 5 and Eq. 6, one gets

fc =
(

JcM
−1JT

c

)

−1[

JcM
−1(Dq̇+Gq−FT τ)−J̇cq̇

]

. (7)

Solving for q̈ from Eq. 6 and Eq. 7, one gets

q̈ = −N2Gq −
(

N2D +N1J̇c
)

q̇ +N2F
T τ, (8)

where N1 = M−1JT
c

(

JcM
−1JT

c

)

−1
and N2 =

(

I34 −
N1Jc

)

M−1. Here, I34 is a 34×34 identity matrix. The state

space matrices A and B of the resulting linear humanoid

model with feet constraints and state vector x = [qT , q̇T ] ∈
R

68 are given by:

A =

[

034×34 I34
−N2G −

(

N2D +N1J̇c
)

]

∈ R
68×68,

B =

[

034×28

N2F
T

]

∈ R
68×28, (9)
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Fig. 2. (a) Simulated 34 DOF humanoid robot; (b) Hankel singular values
of the minimal system with 44 states.

where 0a×b is a×b matrix with zeros as its elements and I34
is an 34× 34 identity matrix. The output matrix C ∈ R

p×68

is chosen based on the task-specific output vector y ∈ R
p.

It is important to note that the robot has 34 DOF and 12

constraints, which implies that its net DOF is 22. Therefore,

the minimal state vector xm ∈ R
44 is obtained by finding

a state transformation Um such that xm = Umx, where

Um ∈ R
44×68. The minimal state space realization is given

by {Am, Bm, Cm} = {UmAUT
m, UmB,CUT

m}. The minimal

realization of a state space system can be obtained using

Kalman decomposition [14]. In this work, we use minreal()

function from MATLAB to obtain the minimal realization.

B. Task-specific Model Reduction Results

As mentioned in Sec. III, the output matrix C can be

chosen to be task-specific. This section presents several task-

specific output matrices for the humanoid model in Eq. 9,

and it also presents their corresponding minimum reduced

orders rmin obtained from the TMSR variant of the MSR

algorithm presented in Algorithm 3. The task-specific output

matrices presented here are manually chosen, and approaches

to automate this selection will be explored in the future.

For an output matrix C = I68, the Hankel singular values

(σHSV ) of the minimal system with 44 states are shown in

Fig. 2(b). The minimal system has 14 unstable poles and 14

stable poles. The remaining 16 poles lie on the imaginary

axis with σHSV = ∞ and constitute the set of marginally

stable poles as shown in Fig. 2(b). A similar plot is obtained

for different choices of the output matrix C.

The minimum stable reduced orders rmin obtained from

the TMSR algorithm for four different tasks/motions with

increasing complexity are listed in Table I along with their

corresponding task-specific outputs. For a simple balancing

task, the outputs are chosen to be the position and velocity

of the center of mass (CoM) of the robot. Therefore, the

output matrix C is given by the Jacobian of the CoM

state vector xcom ∈ R
6 w.r.t. the states of the original

unconstrained system x ∈ R
68, and the minimal output

matrix Cm is obtained using minreal() in MATLAB. As

shown in Table I, for the balancing task, the system can

be reduced to a system with 14 states as compared to 44

states of the minimal system. As shown in Fig. 2(b), the

minimal system has 14 unstable poles, and interestingly, for

the balancing task, the TMSR algorithm reduced the system
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TABLE I

TASK-SPECIFIC MINIMUM STABLE REDUCED ORDERS

Model No. Task/Motion Task-specific Output Minimum Stable Reduced Order rmin

R1 Balance 6 CoM states 14

R2 Balance + Lower body motion 6 CoM states + 28 Lower body states 18

R3 Balance + Upper body motion 6 CoM states + 28 Upper body states 22

R4 Balance + Whole body motion 6 CoM states + All 68 states 28
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(d) Reduced model R4

Fig. 3. Normalized Hankel singular values of the stabilized minimal system before model reduction. The task-specific rmin are also marked.

to the minimum order possible as the unstable subsystem

should not be removed during model reduction.

However, as the tasks get more complicated, the minimum

stable order of the reduced system increases as expected. For

example, the task of balancing and moving the lower body

requires a minimum of 18 states, while the task of balancing

and moving the upper body (including arms) requires a

minimum of 22 states. The task of balancing and moving the

whole body requires a minimum of 28 states to represent its

reduced order model.

As described in Sec. III, the MSR algorithm presented

in Algorithm 3 uses the FBR algorithm, which performs

balanced truncation on the stabilized system as shown in

Step 3−4 in Algorithm 2. Figure 3 shows the normalized

Hankel singular values of the stabilized systems in descend-

ing order before their balanced truncation. It also shows

the task-specific minimum reduced order rmin for each task

obtained from the TMSR algorithm shown in Table I.

V. HUMANOID ROBOT CONTROL

This section presents the application of using task-specific

reduced order models for control of humanoid robots.

A. State Estimation for Reduced Order Models

For all results presented in this paper, an LQR controller

was used to stabilize the reduced order model. Since LQR

requires full state feedback, a state observer with gain matrix

Lr ∈ R
r×r was designed using pole-placement technique for

the reduced order model. The state space equations for the

reduced order model with the observer and its control law

are shown in Eq. 10:

˙̂xr = Arx̂r +Bru+ Lr(x
meas
r − x̂r),

u = −Krx̂r, (10)

where x̂r ∈ R
r is the reduced state estimate, xmeas

r =
TrUm(xd − xmeas) ∈ R

r is the reduced state measurement,

xmeas ∈ R
68 is the full state measurement of the robot,

xd ∈ R
68 is the desired state vector of the robot, Kr ∈ R

28×r

is the LQR control gain matrix, Tr ∈ R
r×44 is the reduced

state transformation matrix that transforms the minimal states

into the reduced states, and Um ∈ R
44×68 is the minimal

state transformation matrix that transforms the original states

into the minimal states of the constrained system.

B. Direct Control using Reduced Order Models

Since the reduced order models derived using the MSR

algorithm in Algorithm 3 have the same control inputs as

the original model as shown in Eq. 2, one can directly use

the LQR controller of the reduced order model to control

the full model. For the humanoid robot model presented in

Sec. IV-A, the control input τ ∈ R
28 provides joint torques

to the 28 actuated joints on the robot. Figure 4 presents the

results of successfully balancing a nonlinear simulation of

the humanoid robot using the control law in Eq. 10 for the

reduced model R4 in Table I with r = 28, which was derived

for a whole body motion task with all 68 robot states as

outputs. The robot was pushed with a forward force of 138 N

for 0.1 s, and as shown in Fig. 4, the robot successfully

recovered from it. Figure 5 shows the trajectories of the five

most relevant reduced states for this motion, with the first

reduced state xr1 being the most significant one completely

capturing the forward motion of the robot due to the push.

However, direct control of the nonlinear simulation of

the humanoid robot using the control law in Eq. 10 was

not successful while using the other reduced models in

Table I. This is due to a number of reasons. The reduced

models R1−R3 in Table I were obtained by using only

a subset of the robot states as outputs, and hence, the

t = 0.2 s t = 0.4 s t = 1 s t = 0.6 s 

Fig. 4. Direct control of the robot using the reduced order model R4 with
r = 28 when the robot was pushed with a force of 138 N for 0.1 s.
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Fig. 5. Trajectories of the five most relevant reduced states for the direct
control of the robot using the reduced order model R4 with r = 28 when
the robot was pushed with a force of 138 N for 0.1 s.

controllers designed to stabilize these models outweigh some

robot states over another, which results in poor tracking of

reference trajectories for the individual joints. Moreover, they

often produce excessive or insufficient contact forces in the

feet, and also generate non-zero contact acceleration of the

feet, which violates the constraints on the model presented in

Sec. IV-A. In order to overcome these issues, an optimization

framework is used to find the joint torques τ and contact

forces fc that satisfy the constraints and also achieve the

desired task.

C. Control Optimization

This section presents an optimization algorithm that finds

the joint torques τ and contact forces fc shown in Eq. 4,

which minimize the following cost function:

Z = Zu + Zq + Zc + Zτ + Zc, (11)

whose terms are described below.

The cost on the difference between the output of the LQR

controller u in Eq. 10 and the joint torques τ is given by:

Zu =
1

2
(u− τ)TWu(u− τ), (12)

where Wu is a constant weight matrix.

The term Zq is the cost associated with achieving desired

joint accelerations in order to track the reference joint

trajectories. The desired joint accelerations are given by:

q̈d = q̈ref +Kd(q̇ref − q̇) +Kp(qref − q), (13)

where Kp,Kd > 0 , and the cost Zq is given by:

Zq =
1

2
(q̈d − q̈)TWq(q̈d − q̈), (14)

where Wq is a constant weight matrix. From Eq. 4, Eq. 14

can be re-written as:

Zq =
1

2

[

τ

fc

]T

Aq

[

τ

fc

]

−

[

τ

fc

]T

bq + cq, (15)

where, Aq = aTq Wqaq , bq = aTq Wq(bq + q̈d), cq =
1

2
(bq − q̈d)

TWq(bq − q̈d), aq = M−1
[

FT , JT
c

]

and bq =
M−1(Cq̇ +Gq).

The cost associated with achieving zero contact accelera-

tion r̈c of the feet is given by:

Zc =
1

2
r̈Tc Wcr̈c, (16)

where r̈c = Jcq̈ + J̇cq̇ and Wc is a constant weight matrix.

Similar to Eq. 15, Eq. 16 can be re-written as:

Zc =
1

2

[

τ

fc

]T

Ac

[

τ

fc

]

−

[

τ

fc

]T

bc + cc, (17)

where, Ac = aTq J
T
c WcJcaq , bc = aTq J

T
c Wc(Jcbq − J̇cq̇),

cq = 1

2
(Jcbq + J̇cq̇)

TWc(Jcbq + J̇cq̇), aq = M−1
[

FT , JT
c

]

and bq = M−1(Cq̇ +Gq).
The costs associated with minimizing joint torques and

contact forces are given by:

Zτ =
1

2
τTWτ τ, (18)

Zc =
1

2
fT
c Wffc, (19)

where Wτ ,Wf are the constant weight matrices.

Using Eqs. 12−19, the cost function Z in Eq. 11 can be

re-written in a quadratic form as follows:

Z =
1

2

[

τ

fc

]T

A

[

τ

fc

]

−

[

τ

fc

]T

b+ c, (20)

where,

A = Aq +Ac +

[

Wu +Wτ 0
0 Wf

]

(21)

b = bq + bc +

[

Wuu

0

]

(22)

c = cq + cc + uTWuu (23)

This optimization problem has a simple analytical solution

given by:
[

τ

fc

]

∗

= A−1b. (24)

The optimization presented above does not directly en-

force the constraints on the contact forces or other hardware

limitations in joint velocities, accelerations and torques.

These constraints can be added as inequality constraints to

the above optimization. However, for a constrained opti-

mization problem, the solution is no longer a simple matrix

computation as shown in Eq. 24, and it is computation-

ally expensive. For all results presented in this paper, the

constraints were not added to the optimization, but their

corresponding weight matrices in the cost function were

adjusted to indirectly enforce the constraints. For example,

in order to satisfy the contact force constraints, large values

were chosen for the elements of the weight matrix Wf .

At any iteration of the optimization algorithm, the weight

matrices can also be automatically modified to eliminate

violation of the constraints.

D. Simulation Results

This section presents the simulation results of using the

reduced order models in Table I with the optimization frame-

work presented in Sec. V-C. For all the results presented

in this paper, the weights that form the cost function in

Eq. 11 were kept the same, and the only difference between

experiments was in the reduced order model used.
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t = 0.2 s t = 0.4 s t = 1 s t = 0.6 s 

Fig. 6. Balancing control of the robot using the optimization framework
and the reduced model R1 with r = 14 when the robot was pushed with a
force of 143 N for 0.1 s.
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Fig. 7. Trajectories of the five most relevant reduced states using the
optimization framework and the reduced order model R1 with r = 14

when the robot was pushed with a force of 143 N for 0.1 s.

1) Balancing: Using the optimization framework pre-

sented in Sec. V-C, all the reduced order models R1−R4

listed in Table I were able to successfully balance the hu-

manoid robot in simulation while subjected to disturbances.

Figure 6 shows snapshots of the robot successfully recover-

ing from a forward push of 143 N for 0.1 s using the reduced

model R1 in Table I with r = 14, which was derived for the

task of balancing with the center of mass (CoM) position

and velocity as its outputs. The resulting trajectories of the

five most relevant reduced states are shown in Fig. 7. Similar

results were obtained for the reduced models R2−R4.

2) Fast Arm Swing Motion: The task of achieving a

fast swinging arm motion is considered here. The reference

motion moves the arms from 0 rad to 1.25 rad (71.6◦) in 0.5 s

and back to 0 rad in 0.5 s. Figure 8 shows the snapshots of

using the reduced model R1 in Table I with r = 14 to achieve

this task. As it can be seen from Fig. 8, at time t = 0.8 s,

the robot loses heel contact with the floor, thereby violating

the constraints of the model. At time t = 1 s, the robot’s

heel lands on the floor generating a large contact force that

exceeds its limit. This shows that the model R1 with r = 14

t = 0.2 s t = 0.5 s t = 0.8 s t = 1 s t = 0.0 s 

Fig. 8. Failed tracking of the fast reference arm motion using the
optimization framework and the reduced order model R1 with r = 14.

t = 0.2 s t = 0.5 s t = 0.8 s t = 1 s t = 0.0 s 

Fig. 9. Successful tracking of the fast reference arm motion using the
optimization framework and the reduced order model R3 with r = 22.

 

 

xr13

xr16

xr3

xr1

xr2

R
ed

u
ce

d
S

ta
te

Time (s)
0 1 2

−2

−1

0

1

2

Fig. 10. Trajectories of the five most relevant reduced states while tracking
the fast reference arm motion using the optimization framework and the
reduced order model R3 with r = 22.

derived for just the balancing task fails to achieve the fast

arm motion. However, it is to be noted that the optimization

framework allows the reduced model R1 with r = 14 to

successfully achieve the same arm motions at slower speeds,

for example in 1.5 s rather than 1 s.

Figure 9 shows the snapshots of using the reduced model

R3 in Table I with r = 22 to achieve the same task. As

expected, the model R3 that was generated with the objective

of achieving upper body motions successfully achieves the

fast arm motion without losing heel contact with the floor

and also remains stable. Figure 10 shows the trajectories of

the five most relevant reduced states for this motion.

3) Hip Rock and Roll Motion: Figure 11 shows snapshots

of the humanoid robot successfully achieving a 4 s rock and

roll motion of the hip using the reduced model R2 in Table I

with r = 18, which was generated for the task of achieving

lower body motions. The five most relevant reduced state

trajectories for this motion are shown in Fig. 12. Since this

is a predominantly lower body motion, the model R2 derived

for such a task is successful, whereas the reduced models R1

and R3 fail to achieve the motion as shown in Fig. 13. In both

the cases, the robot loses feet contact and generates large

t = 2.0 s t = 3.0 s t = 1.0 s t = 4.0 s 

Fig. 11. Successful tracking of the desired hip rock and roll motion using
the optimization framework and the reduced order model R2 with r = 18.
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Fig. 12. Trajectories of the five most relevant reduced states while tracking
the hip rock and roll motion using the optimization framework and the
reduced order model R2 with r = 18.

contact forces, which eventually drive the system unstable.

It is important to note that even though the reduced model R3

derived for the task of achieving upper body motions has a

higher order (r = 22) than the reduced model R2 (r = 18),

it still fails to achieve the hip rock and roll motion. This

experiment emphasizes the effectiveness of the task-specific

model reduction algorithm presented in this paper.

The videos of all the simulation results presented in this

paper are available in the companion video titled “Automatic

task-specific model reduction for humanoid robots”.

VI. CONCLUSIONS AND DISCUSSIONS

This paper presented the minimum stable model reduction

(MSR) algorithm, an automatic model reduction algorithm

that finds the minimum linear reduced order model whose

stabilizing controller stabilizes the full linear system. It

also presented its task-specific variant (TMSR), where task-

specific output matrices changed the minimum stable reduced

order models that were obtained. This paper presented task-

specific model reduction results for a 34 DOF humanoid

robot model with feet constraints and demonstrated that the

order of the task-specific reduced system increased with

increase in complexity of the task. Moreover, an optimization

framework was presented that empowers the reduced models

to be used for control of humanoid robots. Simulation results

of a nonlinear robot model successfully achieving balancing,

fast arm swing, and hip rock and roll motion tasks using

their corresponding task-specific reduced models were also

demonstrated. The fast arm swing, and hip rock and roll

motion tasks also demonstrated that the reduced models

derived for other tasks failed in achieving these tasks even

though some were of higher order.

However, the approach presented in this paper has some

drawbacks as well. The reduced order models derived using

t = 0.85 s t = 0.8 s 

(a) Using model R1 with r = 14

t = 1.3 s t = 1.0 s 

(b) Using model R3 with r = 22

Fig. 13. Failed tracking of the desired hip rock and roll motion.

the MSR algorithm do not have any physical meaning and do

not represent simple mechanical systems like inverted pendu-

lum models. Moreover, since the model reduction happens in

state space, the expressions for energy or momentum cannot

be derived for the reduced models, and hence, no physical

comparison can be made with the full model. However, one

can understand the overall motion represented by a reduced

state by visualizing the singular vectors for that reduced state.

VII. FUTURE WORKS

The simulation results presented in this paper dealt only

with a humanoid robot in double support with constraints

on both feet. The MSR algorithm can also be used to

generate multiple models for tasks like walking, where the

model changes between double support and single support.

The number of reduced models required to successfully

achieve stable walking needs to be explored. In this paper,

the task-specific output matrices were provided by the user.

Automatic generation of these task-specific output matrices

from a different task formulation like the ones in [15] can

also be explored.
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