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Abstract— This paper addresses the problem of adequately
protecting flying robots from damage resulting from collisions
that may occur when exploring constrained and cluttered
environments. A method for designing protective structures
to meet the specific constraints of flying systems is presented
and applied to the protection of a small coaxial hovering
platform. Protective structures in the form of Euler springs
in a tetrahedral configuration are designed and optimised to
elastically absorb the energy of an impact while simultaneously
minimizing the forces acting on the robot’s stiff inner frame.
These protective structures are integrated into a 282 g hov-
ering platform and shown to consistently withstand dozens of
collisions undamaged.

I. INTRODUCTION

Flying robots have the unique advantage of being able
to provide human operators with an elevated viewpoint of
places otherwise inaccessible to people. They are especially
useful for the exploration of hard-to-reach places such as
damaged buildings, irradiated nuclear power plants and
underground mines that ground-based robots have trouble
navigating because of clutter on the ground. The presence
of a large amount of obstacles, however, along with lack of
positioning and low visibility, make obstacle avoidance diffi-
cult and collisions with obstacles inevitable. Flying systems
thus require protective structures if they are to survive in
such cluttered environments.

In this paper we address the challenge of protecting a
flying robot from the high impact energy of contact with
obstacles or the ground. Rotor-based hovering platforms
require a stiff inner frame, as their aerodynamics depend on
the geometric positions and angles between rotors, the centre
of gravity (COG) and/or control surfaces. Perhaps more
importantly, flight motors cannot be allowed to flex out of
plane in relation to the robots frame to prevent fast-spinning
rotors from contacting other parts of the platform. The main
requirement of protective structures on a flying robot is thus
to shield this frame and the sensitive components mounted
on it from damage resulting from multiple collisions.

Many current platforms use stiff protection mechanisms
attached to an equally stiff inner frame to absorb collision
energy through compression of the material [1], [2]. Though
simple to design, stiff protection transfers all the impact
energy of a collision to the platform’s frame. As the ab-
sorption distance is minimal, the force on the frame quickly
reaches high values. In the case of carbon fibre, the most
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commonly used material for the frame of current platforms,
impact damage is directly related to the impact force on
a structure [3]. A single collision can cause extensive de-
lamination, matrix shear cracking [4] and reduce the residual
strength of the material [5], making it more vulnerable to
subsequent collisions.

Impact force on the inner frame can be reduced by
increasing the distance in which collision energy is absorbed.
Some flying systems, such as the commercially-available
AR.Drone[6], use foam rings around their rotors. This so-
lution works well for low-energy collisions, but is too heavy
to be dimensioned for high-energy impacts on flying systems
due to its low specific stiffness. Another common protective
structure is the spherical cage, often made of carbon fibre
rods[7]. Such structures can absorb more energy for a given
weight than foam but suffer from two major disadvantages;
First, they are typically made of straight rods bent into a
circular shape, store significant energy in the structure that
cannot be used for collision energy absorption. Second, they
are difficult to mount around the inner frame without using
stiff connection points that can fail in a collision.

This paper aims at formalizing the design of protective
structures for absorbing collision energy by presenting a
method optimized for the weight constraints of flying robots.
The method is applied to the protection of a small coaxial
platform, yielding novel protective structures based on Euler
springs arranged in a tetrahedral configuration. A prototype
is built and a series of collision tests is performed to gauge
the protective structures’ performance. The paper is then
concluded with a discussion of the results and future outlook.

II. METHOD

An ideal protective structure should limit the maximum
force transmitted to the platform’s stiff inner frame during a
collision while minimizing its own weight. We propose the
following steps to design and dimension protective structures
adapted to flying platforms:

• Spring Type Selection and configuration: The type of
spring and its configuration on the platform should be
selected to increase absorption distance, minimize force
on the platform’s inner frame and protect from impacts
in the most likely directions.

• Material Selection: A material should be chosen that
has the required stiffness, yield strength and density to
absorb the required energy.

• Dimensioning: Individual elements should be opti-
mized to minimize weight.
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Fig. 1. (A) Some examples of the three common types of springs. Note
that a column must be loaded axially to act in its buckling mode, otherwise
in bending mode it acts as a Hookean spring. (B) A representative schematic
of relative force and (C) energy profiles for the three types of springs, scaled
for an equivalent amount of energy absorbed at maximum displacement.

A. Spring Type Selection and Configuration

A spring working in its elastic range absorbs energy U
over a distance xmax according to the formula:

U(xmax) =

∫ xmax

0

F (x) dx. (1)

where F (x) is the force provided by the spring at displace-
ment x. The total energy a spring can absorb is the area under
the curve of F (x) at the spring’s maximum deflection, or
the integration of Eq. 1. An ideal protective structure should
thus limit the maximum force by increasing the absorption
distance xmax and optimizing the the force profile F (x).

There are three common types of springs: traditional linear
or ’hookean’ springs, non-linear springs (generally made of
two or more different linear springs in series) and Euler-
mode buckling springs (Euler springs) (Fig. 1A). The force
and energy profiles of these springs are shown in Fig. 1B
and C. Euler springs are long columns that are loaded along
their axis to the point at which they buckle. Euler springs
have the lowest maximum force exerted on their attachment
point to a frame for an equivalent amount of energy and
displacement and are thus a strong candidate for protective
structure design.

Attaching a single Euler spring to the fuselage without
fixing the other end will result in the spring slipping on the
contact surface and bending (thus acting as a hookean spring)
instead of buckling (acting as an Euler spring) (Fig 1A). To
fix the end of the spring in place in three dimensions we pro-
pose using three Euler springs in a tetrahedral configuration
as shown in Fig. 2A. The springs are attached to the fuselage
and to each other using rotating joints to ensure that they are
only loaded axially. If we model a rotor-based platform as
a cylinder we can protect the platform from collisions in all
directions by using eight tetrahedrals placed symmetrically

around the platform.
The length of the individual spring elements is critical, as

it defines the direction of the force loading during impact.
If the elements are too short, an impact will bend them
inwards, no longer in the direction of the force (Fig. 2B)
and thus not absorbing energy through buckling. Conversely,
if the elements are too long an impact bends the elements
outwards (Fig. 2C). There is thus an optimized length of
spring element that keeps the impact force close to the
axial direction of the spring (Fig. 2D). In the case of
eight tetrahedrals used symmetrically around a platform this
formula can be derived through trigonometry (as shown in
Fig. 2E and F):

y =

√
8

3
x (2)

where y is the length of the spring and x is the radius of
the platform.

B. Material Selection

The material used for the spring should absorb the largest
amount of energy without breaking (or plastic deformation)
at the lowest weight. The three factors that must be consid-
ered are thus the material’s stiffness (higher stiffness absorbs
more energy) defined by its Young’s modulus E, tensile yield
strength µ (higher strength resists plastic deformation), and
density ρ (lower density yields lower weight). Materials can
be optimized for weight by dividing the first two factors by
their density, yielding Specific Stiffness and Specific Yield
Strength, respectively. Some important material properties
can be seen in Table I.

The material most adapted for use in flying robots is
carbon-fibre reinforced plastic (or simply carbon fibre), as
it has a specific stiffness more than 3x higher than the
stiffest metals. Pulltruded columns have slightly different
characteristics than woven and stacked carbon fibre plates,
and thus we tested some samples to extract their relevant
properties. Deflection tests were performed using a linear
stage and a load cell to measure the axial loading force
required to bend carbon fibre columns of varying length and
cross-sectional profiles in their buckling mode. The extracted
material properties are added to Table I. The measured spring
factor of a pulltruded rod in its linear mode (after buckling)
is k = 8.09.

C. Dimensioning

The goal of dimensioning is to select the lightest possible
springs to absorb the desired energy without failing. There
is generally a compromise to be made between the force
transferred to the robot’s frame, the weight of the spring and
the amount of energy that it can absorb before failure, as well
as secondary effects such as available materials, platform
dimensions and integration. After selecting a spring type and
configuration the first part of dimensioning is to determine
the force profile of the protective structure independent of the
second moment of inertia of the spring. The exact dimensions
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Fig. 2. (A) A proposed configuration of 8 tetrahedral structures consisting of three Euler springs for protecting a hovering platform. The length of the
Euler springs is important, as it determines the amount of force that is applied in the axis of the spring during compression. The effect of spring length is
illustrated in two dimensions in (B)-(D). The area between the red and blue force arrows show the range of force directions that must be absorbed by the
green bending spring. (B) A spring that is too short bends inward, whereas (C) a spring that is too long bends outward. (D) An optimal length results in
the force being directed near the axis of the spring throughout its compression. (E) The optimal length y can be determined in the two-dimensional case
based on the length of the base x using trigonometry. (F) The same trigonometric calculation can be extended to three dimensions.

Material Young’s Modulus
(GPa)

Tensile Yield
Strength (MPa)

Density
(g/cm3)

Specific Stiffness
(MNm/kg)

Specific Yield
Strength
(kNm/kg)

Rubber (small strain) 0.055 +/- 0.045 8 * 1.055 +/- 0.145 0.0521 7.5
Nylon 3.0 +/- 1 78 1.13 1.15 69
Brass 112.5 +/- 12.5 247 8.560 +/- 0.165 13.14 29
Aluminum 69 275 +/- 35 2.700 25.56 102
Stainless Steel 200 600 7.900 +/- 0.150 25.32 76
Titanium alloy 112.5 +/- 7.5 977 4.510 24.94 217
Glass-Fibre-Reinforced Plastic (GFRP) 31.65 +/- 14.45 1500 * 1.800 17.58 833
Aramid (e.g. Kevlar) 70.5 2757 * 1.440 48.96 1915
Carbon-Fibre-Reinforced Plastic (CFRP) 135 +/- 15 2000 * 1.570 85.99 1273
Diamond 1220 2800 3.530 345.61 793
Pulltruded Carbon Fiber Columns 113 +/- 15 2992 +/- 700 1.47 76 2035

TABLE I
MATERIAL PROPERTIES FOR SELECTED MATERIALS. MATERIALS MARKED WITH A (*) HAVE THE SAME YIELD (LIMIT OF ELASTIC DEFORMATION)
AND ULTIMATE (LIMIT OF FAILURE) STRENGTHS. VALUES FOR PULLTRUDED CARBON FIBRE COLUMNS ARE MEASURED IN THE LAB, THE SOURCE

OF OTHER MATERIAL DATA IS HTTP://WWW.MATWEB.COM/. THESE ARE JUST INDICATIVE FIGURES, AS THEY CAN VARY GREATLY DEPENDING ON

SAMPLES AND TESTING METHODS.

of the spring elements are then selected based on the required
energy to be absorbed, material properties and weight.

As we are using pulltruded carbon fibre rods whose length
is determined by the platforms dimensions according to Eq. 2
the problem is reduced to dimensioning the radius r of rod
to be used that absorbs the required energy without failure
while minimizing weight. The balance between amount of
energy absorbed, the force on the platforms frame and the
weight will depend on the constraints of the platform. A
particular implementation is demonstrated in the following
section.

III. PROOF-OF-CONCEPT

The protective structure design method above is applied
to the protection of a small flying robot similar to the one
previously published [8], [9]. The core of the platform is
defined by a coaxial motor with 10 cm-diameter rotors.
Allowing for protection around the rotors, the platforms stiff
internal frame takes a cylindrical shape with a radius of
12 cm. Using Eq. 2 the optimal length of the Euler springs
is aprox. 20 cm. To dimension the radius of rod required
we use Eqs. 6, 7, 11, 12, 16, derived in the appendix using
standard beam theory, to get a sense of the amount of energy
we can expect to absorb.
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Fig. 3. (A) Rod radius, (B) weight and (C) maximum force for a
20 cm carbon fibre rod as an euler spring. Shaded areas represent possible
combinations of compression ratio, radius and energy for which the rod will
not fail.

Figure 3 plots the radius, weight and force of a 20 cm
rod as a function of compression ratio (the ratio between
the lengths of the compressed and uncompressed spring).
As a general trend, maximizing the compression ratio will
lower both the force on the inner frame and the weight of
the rod. There is a fixed maximum radius however which
decreases with the compression ratio, since a thicker rod will
fail at a lower bend angle than a thinner one. As this robot is
designed to fly indoors (low altitude, slow speeds) it should
not encounter high-energy impacts and thus we optimize for
minimal weight and force rather than maximum energy. We
select a rod radius of 1 mm (dashed line in Fig. 3), which
will allow the platform to absorb 1.5 J at a compression ratio
of 0.34. With an estimated platform weight of 300 g (based
on the weight of previous systems), this is the energy of a
freefall from a height of 51 cm. It should be noted that this
is the energy that can be absorbed by a single rod. As there

are 24 rods surrounding the platform, in most cases there
will be several rods that will absorb the energy at once.

Figure 4 shows the completed flying platform including
protective structures attached to a rigid internal frame. The
frame houses flight motors, control surfaces and electronics
(Fig. 4A). The carbon-fibre Euler springs are inserted into
end pieces made of laser-sintered ABS plastic which are
subsequently attached to the frame (Fig. 4B) and to each
other (Fig. 4C) using nylon fishing line. The weight of the
protective structures including end pieces is 40 g, around
14% of the of the platform’s 282 g total weight.

IV. RESULTS

The platform with its protective structures was put
through a series of tests to evaluate its robustness to con-
tact. Impact force on the frame was measured using 3
orthogonally-positioned single-axis high-G accelerometers
(Freescale MMA3204, range of +/- 100 G, Fig. 4A) coupled
directly to the platforms frame. Depending on the direction of
the impact vector, the total acceleration that can be measured
ranges from 100-173 G or 980-1695 m/s2. With a platform
mass of 282 g this corresponds to a maximum measurable
force of 276-478 N.

A. Buckling Motion Validation

The goal of the first experiment is to validate that the
Euler springs are indeed buckling during a collision. The
platform is dropped from a height of 1 m, 5 times on its
base (the position most likely to occur during a hard landing)
and 5 times on a single tetrahedral protective structure, and
filmed at 1000 fps using a high-speed camera. All the videos
are subsequently analyzed, confirming that in each case one
or more Euler springs is buckling to absorb impact energy.
Figure 5A shows a timeseries of an impact on the platform’s
base in which four Euler springs, one from each tetrahedral,
are buckling concurrently. In Fig. 5B a single Euler spring
absorbs impact energy and subsequently releases it, causing
the platform to spin. The remaining energy is then absorbed
by two Euler springs of a different tetrahedral.

B. Impact Force Minimization

The goal of this experiment is to compare the force mini-
mization capability of the Euler-spring protective structures
to its stiff and foam-based counterparts. For this comparison
a styrofoam protective structure with the same weight as
the Euler spring structures is built for the platform and is
shown in Fig. 4D. The platform’s bare inner frame is used
as the stiff protective structure (Fig. 4E). The platform is
dropped 5 times from increasing heights with either the stiff,
the Euler spring or the styrofoam protective structures, first
on its base and then on a corner (vertex of a tetrahedral for
Euler spring structures, between the propeller-protecting ring
and two sides for stiff or styrofoam structures). The height
is increased until the high-G accelerometers saturate.

Figure 6A shows a box plot of the force measured on
the platform for each experiment whereas Fig. 6B shows the
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Fig. 4. (D) The hovering flying robot equipped with Euler-spring protection structures. (A) shows the on-board electronics, including high-G accelerometers
(top circuit board) mounted directly to the robot’s frame whereas (B) and (C) show the two endpoints of the Euler springs. The same core frame is outfitted
with (E) styrofoam and (F) stiff protection for force comparison experiments.

Fig. 5. Timeseries of drop tests on (A) the platforms base and (B) on a
single tetrahedral from a height of 75cm.

profile of the force through time for a drop height of 75 cm.
The following conclusions can be derived from these plots:

• Using only stiff protection of rotors results in high
impact forces even at a height of 10 cm.

• When falling on its base, the Euler spring mechanism
has higher initial forces than the foam mechanism. This
is due to the initial buckling force Fcrit from 4 contact
points that is reached before any energy is absorbed.
Once this force is reached, however, it does not increase
significantly even at 75 cm in accordance with the near-
flat force profile of Euler springs.

• Foam-based protection transfers significantly more
force to the platform’s frame at high drop heights.

• Force profiles show that Euler springs absorb energy
over a longer time period, thus decreasing the force on
the frame.

As a general conclusion Euler spring protection mecha-
nisms perform similarly to foam-based mechanisms at low
heights, but significantly decrease impact force on the robot’s
frame in high-energy impacts. These trends could be better
observed with higher drop heights but were not done for
two reasons: accelerometers with higher thresholds were not
available, and more importantly subjecting the stiff internal
frame to higher forces would risk breaking the frame, making
subsequent tests impossible.

C. Resilience

The robot is placed in the centre of a 3.5x6 m experimen-
tation room. A simple behaviour is programmed in the on-
board micro-controller which makes the platform take off,
stabilize at a hovering altitude of 1 m for 3 s, then move
in a random direction until it collides with a wall. Once a
collision is detected with the on-board accelerometers and
gyroscopes the motors are cut and the platform allowed to
fall to the ground.

The experiment is repeated 50 times to simulate colli-
sions from many directions with varying amounts of impact
energy. From the 50 trials, only 4 collisions resulted in
damage to the platform: 2x the soft rotors flexed and touched
each other and 2x the nylon strings connecting end pieces
failed. Using stiffer rotors and increasing the thickness of
the nylon string should limit these failure modes. This
experiment demonstrates the robustness of the protective
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Fig. 6. (A) boxplot of the maximum force measured on the platforms frame over 5 trials for drop tests from varying altitudes and using various protection
mechanisms. (B) Force profile over time averaged over 5 trials for a free fall from 75 cm. Shaded regions represent standard deviation. As only a limited
amount of data points can be sent to the ground station, and initial tests showed a flat force curve after 50 ms using foam protection, it was decided to
only record data from the first 50 ms to increase temporal resolution.

structures to repeated high-energy collisions. A sample of
the many collisions can be seen in the accompanying video.

V. CONCLUSIONS

This paper presents a novel protection structure design
using Euler springs optimized for flying robots that must
survive repeated high-energy impacts with their environment.
The structure is shown to greatly reduce the impact forces
transferred to a robot’s frame compared to existing solutions
using stiff or foam-based protection. The design is adapted
to a small hovering platform and validated through an
exhaustive amount of static drop tests and collision tests
during flight in an indoor environment.

The ability to absorb impact energy elastically allows
flying robots to access constrained and cluttered environ-
ments that were previously unattainable. It also opens the
door to new behaviors for exploration such as contact-based
navigation, already used by ground robots when low light or
smoke render vision or laser-based navigation impossible.

APPENDIX

According to standard beam theory [10], a column will
buckle when it reaches critical force Fcrit:

Fcrit =
π2EI

L2
(3)

where L is the column’s length, E is the Young’s modulus
of the material and I is the column’s area moment of inertia.
The force profile of an Euler buckling spring F (x) is:

F (x) = Fcrit +
EI

L2
k
x

L

=
EI

L2
(π2 + k

x

L
) (4)

where k is the spring factor and 0 < x < L. We
can normalize Eq. 4 for a given compression factor c by
substituting the following equation:

c =
x

L
(5)

(where 0 < c < 1) which results in:
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F (c) =
EI

L2
(π2 + kc) (6)

We can calculate the energy absorbed by a column by
substituting Eq. 6 into Eq. 1:

U = L

∫
F (c) dc

=
EIc

L
(π2 +

1

2
kc) (7)

Solving for I we can compute the second moment of
inertia I required to absorb this energy:

I =
UL

Ec

1

π2 + 1
2kc

(8)

For a cylindrical rod with radius r,

I =
πr4

4
(9)

Rearranging for r:

r =
4

√
4I

π
(10)

Substituting Eq. 8 into Eq. 10 and we can write in terms
of L, c and U :

r = 4

√
4UL

πEc

1

π2 + 1
2kc

(11)

The upper limit of allowable rod radius rmax depends on
the strain that the rod can take before breaking. For this
we calculate the maximum force at the desired compression
ratio:

rmax =
µI

Fmaxy
(12)

where Fmax is the force at which the column fails and y is
the displacement of the rod perpendicular to its axis at Fmax.
We can estimate y with good accuracy using the following
formula [11]:

y = 0.900L(
Fmax

Fcrit
− 1)

1
2 (13)

Substituting Eq. 13 into Eq. 12 and writing once again in
terms of L, c and U we have:

rmax =
µL

0.9E

π

(π2 + kc)
√
kc

(14)

In order to absorb the desired energy U without breaking
there must exist values of L and c for which r < rmax.

Finally, the weight of the rod can be computed using its
volume and density:

Wrod = ρπr2L (15)

The minimum weight Wmin at r in terms of L and c can
be derived by substituting Eq. 11 into Eq. 15:

Wmin = ρπr2L

= ρπ

√
4UL

πEc

1

π2 + 1
2kc

× 3

√
0.944E3U(π2 + kc)4(kc)2

µ4cπ5(π2 + 1
2kc)

(16)
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