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Abstract— Due to pose uncertainty, merely executing a
planned-to-be stable grasp usually results in an unstable grasp
in the physical world. In our previous work [1], we proposed a
tactile experience based grasping pipeline which utilizes tactile
feedback to adjust hand posture during the grasping task
of known objects and improves the performance of robotic
grasping under pose uncertainty. In this paper, we extend
our work to grasp novel objects by utilizing local geometric
similarity. To do this, we select a series of shape primitives
to parameterize potential local geometries which novel objects
may share in common. We then build a tactile experience
database that stores information of stable grasps on these local
geometries. Using this tactile experience database, our method
is able to guide a grasp adjustment process to grasp novel
objects around similar local geometries. Experiments indicate
that our approach improves the grasping performance on novel
objects with similar local geometries under pose uncertainty.

I. INTRODUCTION

Stable robotic grasping has been one of the most fun-
damental problems researchers have been working on in the
field of robotics. A widely used approach to robotic grasping
is to decompose a grasping process into two temporally sep-
arated stages: planning and execution. The planning stage is
usually done in simulation with the 3D information extracted
from a perception system. A stable grasp parameterized
by the hand posture and hand-object relative pose is then
synthesized. In the execution stage, the planned grasp is
sent to a path planner to generate a collision-free trajectory
and the robot moves along the newly generated trajectory to
the grasping pose. These methods usually use geometrical
models of the objects to be grasped in the planning stage.
However, since grasp planning is done in a simulation world
which is not an exact model of the actual workspace due
to imperfect perception and robot calibration, the executed
grasps can end up unstable and these methods are sensitive
to pose uncertainty.

To cope with pose uncertainty, Berenson et al. used the
Task Space Regions (TSR) framework to represent pose
uncertainty for planning grasp candidates that are most
possible to succeed [2]. Brook et al. analyzed uncertainty
in both object identity and object pose for planning the
best grasping pose [3]. Stulp et al. designed a framework
to generate robust motion primitives by sampling the actual
pose of the object from a distribution that represents the
state estimation uncertainty [4]. Similarly, Weisz and Allen
proposed a new quality metric to measure the robustness of a
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Fig. 1. Grasp adjustment using tactile experience, an example that
illustrates the progression of hand adjustment. Initially, the grasp (the left
column) barely touches one side of the bottle and the finger surface does
not align well of the surface of the bottle. After two hand adjustments, the
final grasp (the right column) has opposing contacts and the finger surface
aligns with the surface of the bottle.

grasp under object pose uncertainty [5]. Kim et al. considered
dynamic movements of the object being manipulated during
grasp planning to generate optimal grasp candidates [6].

Another group of researchers dealt with uncertainty by
considering grasping as a reactive process and designed
algorithms to adjust hand posture in an on-line fashion after
an initial grasp has been established. Morales et al. used
tactile data to cope with uncertainty for the execution of a
manipulation task [7]. Platt et al. proposed three variations
on null-space grasp control which combine multiple grasp
objectives to improve a grasp in unstructured environments
[8]. Hsiao et al. used tactile sensing data to estimate hand-
object relative pose for synthesizing the next hand trajectory
so that a specific grasp can be achieved [9]. Laaksonen et al.
proposed a framework to use on-line sensory information to
refine object pose and modify the grasp accordingly [10].

In our previous work [1], we developed a grasping pipeline
which uses tactile experience for grasping known objects
under pose uncertainty. An initial grasp is established using
a conventional planning-based grasping pipeline. To ensure
the stability of the executed grasp, we developed a grasp
adjustment process which analyzes the stability of the grasp
and makes necessary hand adjustments. Figure 1 gives one
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Fig. 2. Our grasping pipeline. A grasping pipeline with a regular planning-
based grasp execution procedure and a post-execution grasp adjustment
procedure including Estimate Grasp Stability and Hand Adjustment. A
typical planning-based grasping pipeline usually contains only the first two
components Perception and Grasp Planning and Execution. Two thresholds
t1, t2, 0 < t1 < t2 were used to evaluate the closeness between two grasps.
We will discuss them in Section VI-B.

example of hand adjustments on a Snapple bottle to illustrate
how hand adjustments help achieve stable grasps. The hand
starts at a grasp where the hand barely touches one side
of the Snapple bottle, thus failing to establish opposing
contacts. In addition, the palm is not aligned with the vertical
direction of the Snapple bottle, resulting in contact surfaces
with very limited area. Using a vision system at a distance,
this situation is difficult to detect since the pose offset is
subtle. However, with tactile sensing, the relative hand pose
difference is captured. After two steps of hand adjustments,
the grasp is adjusted such that the contacts are opposing each
other and the contact surface is increased.

In this paper, we extend our grasp adjustment method to
handle novel objects. Our idea is originated from the obser-
vation that objects of different global shapes share similar
local geometries. Thus, tactile experience from similar local
geometries can be used for grasping different objects which
have local geometries similar to the tactile experience.

II. OUR GRASPING PIPELINE

Figure 2 illustrates the components of our grasping
pipeline. Initially, a grasp is applied using modules Per-
ception and Grasp Planning and Execution, which form
a conventional planning-based grasping pipeline. Once the
initial grasp is established, the stability of the grasp is
estimated by the Estimate Grasp Stability module. If the

grasp is classified unstable, a hand adjustment will then be
synthesized and applied in the Hand Adjustment procedure.

In the procedure of Estimate Grasp Stability, tactile feed-
back and hand kinematic information are used to estimate
the stability of the grasp [11]. To achieve reasonable hand
adjustments, we compute a tactile experience database which
consists of a set of stable grasps and use these grasps as a
reference to synthesize hand adjustments. The tactile contacts
extracted using forward kinematics and tactile sensor read-
ings are used in querying the tactile experience database for
stable grasps with similar tactile contacts. If the stable grasps
with similar tactile contacts are successfully retrieved, hand
adjustment parameters are synthesized and sent to control the
hand to make local movements. If there is no similar tactile
experience in the database, the local surfaces of the object
at contact are reconstructed by moving the hand around to
collect tactile contacts on the surface and stable grasps are
planned based on the reconstructed local geometry.

A hand adjustment specifies the changes to the current
grasp. It consists of changes in hand location, orientation, and
the selected degrees of freedom (DOF) to control∗. We can
write it compactly as Adj =< p, o, s >, where p ∈ R3 is a 3-
D vector specifying the new hand position in the current hand
coordinate system, o ∈ S3 is the new hand orientation in the
current hand coordinate system represented as a quaternion,
and s ∈ R|Sdof | is a vector storing value changes for the set
of selected DOFs, Sdof , which we want to control.

III. TACTILE EXPERIENCE DATABASE

A tactile experience database consists of stable grasps and
their corresponding tactile contacts. It provides precomputed
knowledge about the tactile contacts a stable grasp should
contain. A grasp, G, in the tactile experience database can
be considered as G = {P,J , T , C,L} where P =< p, o >
, p ∈ R3, o ∈ S3 specifies the hand pose in the object
coordinate system, including the position and orientation of
the hand. The orientation is represented using quaternions.
J = {j1, j2, ..., jN}, ji ∈ R records the N joint angles of
the grasp. As an example, for a Barrett hand, we can choose
N = 7 and record the 7 joint values. T = {t1, t2, ..., tK , ti ∈
R} is the K tactile sensor readings. As an example, for a
Barrett hand, there are 24 tactile sensors on each fingertip and
the palm. Since it has three fingers and one palm, K = 96.
C = {c1, c2, ..., cM}, ci =< pi, oi >, pi ∈ R3, oi ∈ S3

is the set of tactile contacts, indicating the locations, pi,
and the orientations, oi of the M activated tactile sensors.
L = {Gli|Gli = {Adj,J , T , C}} is the local tactile experience
which stores related information for perturbed grasps within
the neighborhood of stable grasp G. Local experience can
be used to better locate a grasp within the neighborhood
of the corresponding stable grasp based on which the local
experience is generated. Adj stores the inverse of the per-
turbation from the stable grasp to a perturbed grasp. Using
this transformation Adj, we can adjust a perturbed grasp to
achieve the corresponding stable one.

∗Usually, a robot hand contains several DOFs, but we only want to control
a subset of these DOFs during a hand adjustment procedure.
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IV. HAND ADJUSTMENT

We now describe the hand adjustment procedure in Figure
2 and explain the steps to compute a hand adjustment.

A. Querying for Stable Grasps with Similar Tactile Contacts

The first step is to extract the tactile contacts from an
actual grasp. This can be done using forward kinematics of
the robot hand. Once the set of tactile contacts are obtained,
we query the tactile experience database for stable grasps
that share similar tactile contacts. To this end, we define a
distance function which measures the similarity between two
grasps G1 and G2. This distance function considers both the
tactile contact configuration and the hand posture between
two grasps. In our work, we only use the location of a contact
in the distance metric. The distance metric can be expressed
as

dist(G1,G2) = α||js1 − js2||+

1

2
·

N1∑
m=1

min
n

(||c1m − c2n||) +
1

2
·

N2∑
m=1

min
n

(||c2m − c1n||) (1)

where cim is the mth contact of the grasp i, Ni is the
number of contacts of grasp i, and jsi is the joint values
for the selected DOFs of the grasp i. α is a scaling factor
for the Euclidean distance between the joint angles of the
selected DOFs. The first part of the right side of the equation
measures the difference between the joint angles for the
selected DOFs. The last two parts measure the Euclidean
distance between the two sets of contacts in terms of their
positions. We also apply this function to measure the distance
between a local tactile experience entry Gli and a grasp G
using dist(Gli,G) where the values of G1 in Equation 1 come
from the grasp of Gli .

B. Hand Adjustment from Tactile Experience

All the k nearest neighbors are stable grasps and they
share similar tactile contacts with the actual grasp. In this
case, it is reasonable to assume that the local geometry
is similar where the contacts are established. Although the
actual grasp shares similar tactile contacts with stable grasps,
it is not close enough to be a stable one. However, it is
possible that this grasp is away from a stable grasp by a small
offset transformation. The goal of this step is to synthesize
this offset transformation and generate a hand adjustment to
optimize the grasp towards a stable one.

Algorithm 1 outlines the search for a hand adjustment
command in Figure 2 using tactile experience. The idea in
this algorithm is to use the tactile experience to locate the
actual grasp around each of the k nearest neighbors (stable
grasps) and synthesize a hand adjustment based on the offset
transformations from them. The first step of this algorithm is
to look into the tactile experience database and locate the top
k stable grasps that share similar tactile feedback (Line 1).
Since the actual grasp shares similar tactile feedback as these
k stable grasps, the actual grasp is probable to be within a
small neighborhood of some of these stable grasps. From

Algorithm 1: Compute a hand adjustment (see [1] for
more details)
Input: A robotic grasp Gx, and a tactile experience

database
Output: A hand adjustment Adj =< p, o, s >

1 Locate k nearest neighbors to Gx, List∗ = {G1, ...Gk}
according to dist(Gi,Gx)

2 reference dist = [ ], experience database = [ ]
3 foreach Gi ∈ List∗ do
4 Obtain local tactile experience of Gi, local exp
5 Rank local exp based on dist(Glj ,Gx) where

Glj ∈ local exp
6 experience database.append(local exp)

7 reference dist.append(
∑j≤5

j=1 dist(Glj ,Gx)) where
Glj ∈ local exp

8 end
9 min ind = argmin

ind
(reference dist[ind])

10 experience = experience database[min ind]
11 Adj∗ =WeightedTransformation(Gx, {Glj |Glj ∈
experience, 1 ≤ j ≤ 5})

12 Return Adj∗

Line 3 to 8, we look into the neighborhood of each of the k
stable grasps and try to evaluate how well the actual grasp
can be located within the neighborhood of each stable grasp
using the distance function as in Equation 1. The refined
search within the neighborhood of each stable grasp provides
detailed relative information of the actual grasp with respect
to the stable grasp. In Line 9 to 10, we decide the stable grasp
within whose neighborhood we can best locate the actual
grasp. Then the weighted transformations of the perturbed
grasps within this neighborhood is calculated in Line 11
and is returned as the hand adjustment. For more details,
interested readers please refer to our previous work in [1].

C. Hand Adjustment from Local Geometry Reconstruction

When the actual grasp is far away from any stable grasps
in the tactile experience database, there will be no similar
tactile experience found in the database. In this situation, a
local geometry exploration will take place to reconstruct the
local geometry around each of the contacts between the hand
and the object. Sample points on the surface of the object
are extracted from activated tactile sensors while the hand
is moving within the neighborhood of the initial grasping
pose. It is assumed that a local geometry is smooth and can
be represented using a quadratic function as follows

z = α20x
2 + α11xy + α02y

2 + α10x+ α01y + α00 (2)

Fitting the point cloud to the quadratic function above is an
optimization process. We use levmar, an open source imple-
mentation of Levenberg-Marquardt nonlinear least squares
algorithms in C/C++, to find the optimal parameters of the
function [12]. With a set of optimal parameters, we can
approximate the local geometry and synthesize a mesh for
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Fig. 3. Grasping using grasps planned on reconstructed local geometry.
Figure 3(a) is a snapshot of executing the grasp planned using the GraspIt!
simulator [14] on the local geometry shown in Figure 3(b). In Figure 3(b),
the reconstructed local geometry is shown in gray with original data points
extracted from tactile sensing data shown in black. Figure 3(c) shows the
planned grasp, where the transparent bottle model is solely for visualization.

each contact. Once we have reconstructed a mesh model of
the local geometries, we use the Eigengrasp planner [13] to
search around the local geometry and plan stable grasps on
the local geometry. Figure 3 shows an example of a Barrett
hand executing a grasp after it has reconstructed the local
geometry of a Snapple bottle and planned a stable grasp
using the reconstructed local geometry.

D. Apply Hand Adjustment

Once a hand adjustment command Adj∗ =< p, o, s >
is found, the following hand adjustment is accomplished in
three steps. First, the hand opens its fingers so that it lets the
object go and backs up to have some safe margin between
the palm and the object. Second, the selected DOFs change
to the values specified by s. The hand moves to a location
5 centimeters (subject to change for different hands) away
from the goal position with the goal orientation o. Third, the
hand moves in guarded mode towards the goal position. The
hand will either reach the goal position or stop if it contacts
anything before it reaches the goal.

V. A TACTILE EXPERIENCE DATABASE FOR NOVEL
OBJECTS

The tactile experience database stores stable grasps as tac-
tile experience. The tactile experience is used to infer hand-
object relative pose and make necessary hand adjustments.
At the core of our work, the local geometry at contact is
the focus and there is no assumption made about the global
shape of an object. Thus, our methods are global-shape-
independent. Considering the fact that different objects with
different global shapes may share similar local geometries,
if we can obtain a tactile experience database built on a set
of local geometries that are shared by different objects, our
methods can be extended to grasp novel objects on their
similar local geometries.

For example, the white paint bottle and the wineglass in
Figure 5 have different global shapes but they share similar
cylindrical local geometry. In this sense, if we have a stable
grasp on such a cylindrical geometry in our tactile experience
database, we can use our method to guide a grasp adjustment
procedure on objects with such cylindrical local geometries.

In order to utilize the similarity of local geometries across
objects with different global shapes, we need to have a
reasonably good parameterization of local geometries. To
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Fig. 4. Shape primitives used to generate a tactile experience database for
grasping novel objects.

this end, we chose a series of shape primitives and use
them to build our tactile experience database. Figure 4 shows
examples of the four types of the shape primitives we used
to generate our tactile experience database: boxes, cylinders,
ellipsoids, and spheres. For each type of shape primitives, we
collected different object models with different dimensions
as illustrated in the second column. For each of the object
models, we also define stable grasps. Examples of stable
grasps we defined on these shape primitives are illustrated
in the third column of Figure 4. These stable grasps are used
in our tactile experience database as stable grasp experience,
which guides a grasp adjustment process on similar local ge-
ometries. In Section VI-B, we will discuss how we generate
our tactile experience database using these shape primitives.

VI. EXPERIMENTS

A. Experimental Setup

In our experiment, a Barrett hand is used as the robot hand.
The selected DOFs s in a hand adjustment Adj =< p, o, s >
controlled the spread angle of the Barrett hand. We chose
five commonly seen objects as our test objects shown in
Figure 5: a box, a paint bottle, a wine glass, a mug, and
a canteen. We assumed a table-top grasping scenario where
the objects rest on a flat surface. In this situation, the pose
error can be parameterized by < x, y, θ >, where x and y
are the two orthogonal directions defining the table plane
and θ represents the rotation around the normal to the table
plane. In our experiments, we intentionally generated a list of
pose error with an approximately uniform distribution over
x ∈ [−30, 30] in millimeter, y ∈ [−30, 30] in millimeter, and
θ ∈ [−20, 20] in degree. By injecting different pose errors
into a stable grasping pose, we could perturb the stable grasp
from its ideal grasping pose and generate grasping scenarios
with different pose uncertainty.

B. Building A Tactile Experience Database

To build our tactile experience database, we first defined
a stable grasp for each shape primitive in Figure 4 using
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Fig. 5. Novel objects used in the experiments: a box, a paint bottle, a
wineglass, a mug, and a canteen.

Stable Grasp 
Examples of Precomputed Tactile Experience 

Pose Error Perturbed Grasp Tactile Experience (Contact List) 

<15,15,10> 

{19.225, 34.5239, 88.0005}, {19.225, 32.186, 92.399}, 
{-30.775, 42.5214, 89.9098}, {-25.6, 42.5214, 89.9098}, 

{-20.4, 42.5214, 89.9098}, {-25.6, 40.6573, 94.5291}, 
{-20.4, 40.6573, 94.5291}, {0.6, -71.7234, 78.6886}, 
{-4.6, -71.7234, 78.6886}, {0.6, -70.7011, 83.5638}, 

{-4.6, -70.7011, 83.5638} 

<-20,-10,10> 

{19.225, 64.368, 79.3297}, {24.4, 64.368, 79.3297}, 
{19.225, 62.0501, 84.9535}, {24.4, 62.0501, 84.9535}, 

{-20.4, 64.1653, 77.7957}, {-20.4, 61.1092, 82.959}, 
{-20.4, 58.9136, 88.6317}, {5.775, -43.6189, 90.3828}, 
{5.775, -41.8205, 95.028}, {5.775, -42.1305, 99.4401} 

<15,15,10> 
{19.225, 13.1849, 89.2469}, {19.225, 12.1789, 92.1843}, 
{-30.775, 21.9145, 93.3284}, {-30.775, 21.2446, 96.3603} 

<-20,-10,10> 

 
 

{19.225, 38.4799, 94.06}, {19.225, 38.6096, 98.481}, 
{-30.775, 47.2648, 84.1043}, {-25.6, 47.2648, 84.1043}, 
{-30.775, 46.7495, 87.1661}, {-25.6, 46.7495, 87.1661}, 
{5.775, -22.5802, 93.8677}, {5.775, -21.9356, 96.905} 

 
 

Fig. 6. Examples of stable grasps and precomputed local tactile experience.
Each stable grasp in the tactile experience database is stored with a complete
set of parameters that can be used to reconstruct the grasp, including the
joint values and hand pose with respect to the object. The local tactile
experience for nearby perturbed grasps is precomputed based on a list of
precomputed pose error for the object, which is described in Section VI-A.

the GraspIt! simulator [14]. For each of the stable grasps
stored in the tactile experience database, we precomputed
the tactile feedback at grasping poses perturbed from each
of the stable grasps due to pose error. To do this, we first
put the hand at the ideal grasping pose. Then, we uniformly
sampled the space of pose uncertainty S = {< x, y, θ >
|x ∈ [−30, 30], y ∈ [−30, 30], θ ∈ [−20, 20]} and used each
of the sampling pose error < x, y, θ > to perturb the object
and generate the tactile feedback at each of the perturbed
grasping pose. In our work, the sampling is 5 millimeters in
dimension-x and dimension-y and 5 degrees in dimension-
θ. For the spread angle, we sampled 5 degrees above and
below the ideal spread angle for the grasp. Thus, this
precomputation generated 4572 sampling perturbed grasping
poses for each stable grasp. This precomputation took place
off-line and the database was stored for later use. Figure
6 gives us two examples of stable grasps on two different
objects and four exemplar local tactile experience records
generated from the corresponding pose error. These stable
grasps along with the tactile feedback from the perturbed
grasping poses were stored to form our tactile experience
database.

In terms of the parameter in the distance function, Equa-
tion 1, we empirically chose the value α = 100 so that
0.01 radian difference in joint angles is equivalent to 1 mm

in Euclidean distance. We also experimentally chose two
thresholds for the decision diamonds in the Hand Adjustment
procedure of Figure 2. If the distance metric of an actual
grasp to one of the nearest neighbors in the database is less
than t1 = 10.0, we decide this grasp is close enough to
experience. If the distance metric of an actual grasp to any
one of the nearest neighbors is greater than t2 = 30.0, we
decide the actual grasp is too far from experience and no
similar experience is found.

C. Grasping Novel Objects on Similar Local Geometries

The objects we selected as shown in Figure 5 are novel in
terms of the fact that their global geometries are different
from the objects used to generate our tactile experience
database. However, these objects share similar local geome-
tries with the objects in our tactile experience database. For
example, the body of the wineglass is similar to both an
ellipsoid and a cylinder. Thus, when grasping the similar
local geometry, we can expect similar tactile feedback from
the tactile sensors. To generate a list of initial grasping poses
for experiment, we first predefined a stable grasp on each
object around the similar local geometry. We then injected
10 pose errors to each of these stable grasps. Since no models
of these novel objects were obtained for pose estimation
through vision, we put each object at a predefined known
location and hard-coded the pose of each object. It is worth
noting that although we manually chose the initial grasping
pose based on geometric similarity, this process can be
automated by an algorithm which extracts similar parts of
objects from reconstructed the point cloud of a scene and
generates an initial grasping pose on the part, e.g., [15].

Starting at an initial grasp with an injected pose error, our
grasp adjustment method began to adjust the hand. When
the robot had exited the pipeline of Figure 2 via state Stable
Grasp Achieved of Figure 2, it would lift up the object. After
the lift up action, a “shake test” took place by rotating the
last joint of the robotic arm within a range of ±60 degrees.
The scoring criteria for a grasping test were as follows: if the
object falls on the table after lift up or the shake test, score
0; if the object moves in hand during the motion of finger
close, lift up, or the shake test but stays in hand in the end,
score 0.5; if the object stays stable in hand throughout the
entire grasping process, score 1. The intuition behind this set
of criteria was that the object should remain stable during
finger close, lift up, and a shake test to maximally preserve
the static status of the object.

Table I provides detailed information concerning the per-
formance of our grasping pipeline. As a comparison, we
also ran a conventional grasping pipeline starting at each of
these 10 initial poses but without the post-execution grasp
adjustment procedure. Figure 7 summarizes the comparison
between our grasping pipeline and a conventional grasping
pipeline without a post-execution grasp adjustment proce-
dure. It is shown that our grasp adjustment procedure in-
creases the grasping performance compared to a conventional
grasping pipeline where no grasp adjustment is exploited.
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TABLE I
DETAILS OF GRASPING NOVEL OBJECTS WITH A TACTILE EXPERIENCE

DATABASE

Object # of grasps Avg. # adj. Lift-up Score

Box 10 2.0 9 0.9

Paint bottle 10 1.3 10 1.0

Wineglass 10 1.2 10 1.0

Mug 10 1.0 10 0.95

Canteen 10 1.2 9 0.8

0

0.2

0.4

0.6

0.8

1

box paint bottle wineglass mug canteen

w/ grasp adjustment w/o grasp adjustment

Fig. 7. Performance on grasping novel objects w/ and w/o our post-
execution grasp adjustment procedure. Bars in blue show the scores of
grasping using our method and bars in red show the scores of grasping
without the grasp adjustment procedure.

VII. DISCUSSION

To extend our previous work to novel objects, we selected
shape primitives to sample potential similar local geometries
where stable grasps can be established and used their tactile
experience to guide a grasping process. Although the grasps
sampled on shape primitives can be used on a wide range
objects, it is still important to seek for other alternative
approaches to the parameterization of local geometry and
construct our tactile experience database. One option would
be utilizing the Columbia Grasp Database (CGDB) [16],
which contains over 200,000 stable grasps on about 8,000
object models using several different robot hand models,
including a Barrett hand, a PR2 gripper, and a human hand
model. Statistically, the stable grasps in the CGDB should
sample a wider range of local geometries. We are currently
working on constructing a tactile experience database using
stable grasps from the CGDB and evaluating the performance
of using this tactile experience database to grasp novel
objects under pose uncertainty.

In this paper, we manually chose the initial grasping
pose for each test object based on geometric similarity. As
part of our future work, we will be designing algorithms
which synthesize grasp candidates based on reconstructed
local geometries. With such a grasp generator, our grasping
pipeline could be further automated.

We are also looking at different sensors to integrate into
our method. Currently, we have used tactile sensors to
indicate active contact. However, one practical issue of using
tactile sensors is that they may not be sensitive enough to
prevent objects from being knocked down due to contact
forces. The introduction of unexpected disturbance to object
pose will bring difficulty into a grasp adjustment process.
We think proximity sensors would alleviate this issue since

potential touch can be predicted before contacts are estab-
lished.

VIII. CONCLUSION

In this paper, we focus on developing a grasp adjustment
process for grasping novel objects with similar local geome-
try. Our goal is to improve grasping performance starting
with an unstable grasping pose due to pose uncertainty.
This paper is based on our previous work where we used
precomputed tactile experience to guide a grasp adjustment
process on known objects [1]. To extend our method to
novel objects, we selected a series of shape primitives to
parameterize similar local geometries that could be shared by
different objects and built a new tactile experience database.
Using this tactile experience database, we were able to
synthesize effective hand adjustments which improve the
grasping performance of novel objects under pose uncer-
tainty.
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