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Abstract— Despite the focus that multi-robot patrolling has
received recently, there is a manifest lack of practical real-world
implementations of such systems. Beyond that, the existing ones
have been mainly focused on centralized policies to coordinate
the team of agents. The present work addresses realistic patrol
in indoor environments with teams of arbitrary number of
autonomous robots performing a distributed, scalable and fault-
tolerant strategy for multi-robot coordination in patrolling
missions. Agents decide their actions locally and adapt to the
system’s needs using distributed communication. The work is
validated through experiments in a large indoor real-world
environment with a team of autonomous mobile robots.

I. INTRODUCTION

Over the past couple of decades, research in multi-robot

systems (MRS) has witnessed progress as never before. More

particularly, robots have increasingly been used in military

and security applications, taking advantage of space distribu-

tion, parallelism, task decomposition and even redundancy.

In this context, there have been several advances in multi-

robot coverage and patrolling.

In the coverage problem, the environment is usually mod-

eled as a grid-like map requiring the team of robots to sweep

all cells of the environment. Whereas in the area patrolling

problem, it is common to abstract the environment through

a topological, graph-like map and robots are expected to

have improved sensing abilities, meaning that they need to

visit regularly all important places in the environment (i.e.,

vertices of the graph), without necessarily going everywhere.

This work addresses MRS in cooperative patrolling mis-

sions in realistic scenarios. Being monotonous and repetitive,

these missions may also be dangerous (e.g., patrolling in haz-

ardous environments). Therefore, using MRS in this context

can be advantageous to secure human lives in areas of appli-

cation like mine clearing, rescue operations or surveillance,

enabling human operators to be occupied in nobler tasks like

monitoring the system from a safe location.

In the next two sections, a literature review is conducted;

the Multi-Robot Patrolling Problem (MRPP) is defined, the

performance metric is presented and the contributions of

the paper are described. The following section describes the

patrolling strategy for teams of robots adopted in this paper.
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Sections 5 and 6, present the experimental scenario, results

and discussion of the facets of the problem. Finally, the

article ends with conclusions and future work.

II. RELATED WORK

Research on the patrolling problem has focused on three

different fronts: adversarial patrol, perimeter patrol and area

patrol. In adversarial patrol, the team of robots assumes

the existence of an intruder and the aim is to coordinate

itself to quickly capture the opponent. On the other hand,

perimeter and area patrol are concerned with monitoring,

collecting information, searching for objects or detecting

anomalies, while at the same time, guaranteeing frequent

visits to strategic places in the environment. In perimeter

patrol, the agents move in the boundaries of the environment,

whilst in area patrol, agents conduct their tasks throughout

the environment [1]. Henceforth, the focus is on the latter.

Several contributions to the MRPP at a theoretical

level have already been presented [2], [3]. It has been

shown that the problem is NP-Hard. Nevertheless, based

on topological representations of the environment and using

global/centralized information, it is acknowledged in the

literature that optimal patrolling can be obtained for a single

robot by computing a TSP cycle1, in the patrol graph. In the

multi-robot case, computing optimal partitions of the graph

and having each robot following TSP cycles inside each

region usually lead to superior performance when compared

to having all robots follow the same global TSP cycle in the

graph, equally distributed in time and space. Yet, TSP cycles

are not trivial to compute in sparse topologies (as most real

world environments), not even existing in most cases.

Beyond these contributions, some authors have proposed

distinct strategies for multi-robot coordination in patrolling

missions based on a variety of concepts. Simple pioneer

architectures using agents guided to locations that have not

been visited for a while were firstly introduced in [4]. Other

models have been explored subsequently, e.g., based on task

allocation [5], auction-based coordination [6] or Markov

decision processes [7].

Despite the diversity of methods proposed, there is an evi-

dent lack of implementation using physical MRS. Only spo-

radic studies have gone beyond simulations. Any simulator

uses simplifying approximations to some extent, which may

perhaps jeopardize the validity of the outcome. Furthermore,

the MRPP is mainly a practical problem and it is essential

to validate convincing real world solutions.

1TSP stands for the well-known Traveling Salesman Problem (an NP-hard
problem).
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In the past, Cabrita et al. [8] successfully employed a team

of Roomba robots, which navigated through indoor corri-

dors, aiming at monitoring the environment by collecting

samples of alcohol concentration and temperature. To this

end, the Multilevel Subgraph Patrolling (MSP) algorithm,

which partitions the environment in regions and assigns a

region to each robot [9], was adopted. Similarly, Iocchi

et al. [10] tested both cyclic and partitioning strategies,

addressing coordinated robot behavior, and validated their

experiments with realistic simulations and through Erratic

platforms in an indoor environment. Finally, Pasqualetti et

al. [11] focused on constructing tours using graph-theoretic

techniques, instructing the robots to travel according to an

Equal-Time-Spacing trajectory. Experiments were conducted

in an indoor lab scenario also using Erratic mobile robots.

These approaches have in common the fact that the

patrolling routes for each robot were computed a priori

using global information and passed on to the robots. In

this work, robots have the capability to decide online their

own patrol route according to the state of the system at

the moment, without requiring a central planner. Thus, a

distributed approach for coordination is verified in a large

real-world indoor facility using a team of patrolling robots.

III. PRELIMINARIES

A. Problem Definition and Performance Metric

As seen before, it is common to represent the area to patrol

by an undirected connected graph G = (V,E) with vi ∈ V
vertices and ei, j ∈ E edges. Therefore, G corresponds to the

topological map for the patrolling mission, which is obtained

from a metric representation, assumed to be known a priori,

by means of a graph extraction algorithm [12].

Having a graph representation, vertices correspond to

important places or landmarks and edges represent the con-

nectivity between those locations. Hence, the MRPP can

be reduced to coordinate robots in order to visit frequently

all vertices of the graph, ensuring the absence of atypical

situations, with respect to a predefined optimization criterion.

Diverse criteria have been previously proposed to assess

the effectiveness of multi-robot patrolling strategies. Typi-

cally, these are based on the idleness of the vertices, the

frequency of visits or the distance traveled by agents [10].

In this work, the first is considered, because it measures how

long it has been since the last visit from any agent in the

team to a specific location, being intuitive to analyze and

brought into confrontation with the possibility of attacks

to the system. It is assumed that in the beginning of the

experiments, all vertices vi ∈ V have an idleness value of

zero, i.e., Ivi
(0) = 0.

B. Contributions

This work describes the implementation of a system for

multi-robot patrol in realistic scenarios, aiming to fill a gap

in the present state-of-the art by validating a distributed

approach, where fully autonomous agents decide locally their

patrol routes according to the state of the system. This is done

using a strategy recently proposed [13] and briefly described

in the next section, which is inspired on a Bayesian-based

formalism. It is shown that agents can coordinate effectively,

using distributed communication and different teamsizes.

Additionally, it is also demonstrated that the approach is

robust to robot failures.

IV. STATE-EXCHANGE BAYESIAN STRATEGY

In a previous study of the authors [13], it was shown that

methods based on Bayesian inspiration can effectively solve

the MRPP. These methods can deal with uncertainty and

actions are selected according to the state of the system at

the time, resulting in adaptive and distributed cooperative

patrolling. More particularly, the State-Exchange Bayesian

Strategy (SEBS) prevents robots from interfering with other

teammates’ actions while, at the same time, aims to maxi-

mize a local gain function, which guarantees that all posi-

tions in the environment are visited regularly by all agents.

Stage, a recognized simulator by the robotics community,

together with ROS [14], which is used to program individual

robots, were adopted in [13] to compare the performance of

diverse state-of-the art multi-robot patrol techniques. SEBS

outperformed the remaining methods. As a consequence, it

is currently chosen as the preferred strategy for coordination

of a team of mobile robots, in a patrolling mission in the

real world.

SEBS is reviewed in this section. Note that agents decide

asynchronously which place to move next when they reach

their current location. To that end, a fundamental random

variable, which simply represents the act of moving (or not)

to a neighbor vertex is defined as:

move = {true, f alse}. (1)

The variables which influence each robot’s individual

decision are presented in the next sections with special focus

on the selection of proper statistical distributions to model

the data, in order to ensure the quality of the results. After-

wards, it is shown how the local decision-making process is

automated, applying Bayes Rule.

A. Gain

When reaching a vertex of the navigation graph, each robot

is faced with a decision stage, where it must decide the

direction it should travel next. Therefore, the Gain GA of

moving from the current vertex (v0) to a neighbor vertex

(vA) is proportional to the difference of the idleness values

when moving to vA at a constant speed (c):

GA(t) = c ·

(
IvA

(t)−IvA
(t +∆t)

|eval |

)
, (2)

where t is the current instant, t +∆t is the arrival time in

vA and ∆t = |e0A|/c. Note that IvA
(t +∆t) = 0 when the robot

reaches vA, therefore GA does not take negative values.

In most cases, |eval | takes on the value of |e0A|, which is

the distance between the two vertices, given by the weight

of the edge that connects v0 to vA. However, constraint (3)

is imposed in order to dimension |eval |, avoiding occasional
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Fig. 2. Topological map of the “ISR-Floor0” Environment. Fig. 3. Robots used in the experiments.

TABLE I

EXPERIMENTS WITH 1 TO 3 ROBOTS (ALL VALUES IN SECONDS)

Teamsize R IG max(IV ) ĨG σ τ

1

336.676 412.207 370.994 78.769 1648.828

332.745 407.897 366.677 77.892 1631.590

331.615 406.387 365.345 77.626 1625.550

2

168.921 309.455 137.267 64.210 1237.821

180.761 296.085 180.293 56.064 1184.341

170.267 328.300 146.890 62.603 1313.201

3

128.875 273.670 116.269 54.893 1094.682

116.248 216.020 95.150 44.356 864.081

112.954 200.030 101.923 36.066 800.121

Experiments in a large indoor environment demonstrate

the potential of the patrolling strategy proposed as a solution

for real-world multi-robot surveillance. To that end, one must

overcome noisy sensor readings, localization issues and even

robot failures, which are usually ignored or not precisely

modeled in simulation experiments. Therefore, a team of

three Pioneer-3DX robots, equipped with an Hokuyo laser

in the front and a laptop on top was used, as seen in Fig.

3. Each laptop runs the ROS’s navigation stack using the

Adaptive Monte Carlo (AMCL) algorithm for localization,

and assuring that all robots navigate safely by heading

towards their goals. Robots avoid collisions with walls and

other robots, reaching speeds of up to 1 m/s.

For communication, a distributed publish/subscribe mech-

anism has been used, due to its built-in integration in

ROS. Moreover, each robot runs its own ROS master node

(roscore) and multimaster communication is provided using

the wifi comm2 package. This means that there is no central

point of failure in the system. Also, given that robots only

share their current and future immediate goals, the bandwidth

requirements are negligible even with large teams.

In the beginning of each test, the graph of the environment

is loaded by every robot. A ROS node (i.e., a ROS applica-

tion) is responsible for advertising the start of the mission

and collect results during the experiments3. These results are

examined in the next section.

VI. RESULTS AND DISCUSSION

In this section, the results of the multi-robot patrolling

strategy employed in the ISR corridors are analyzed. Firstly

2Available at http://www.ros.org/wiki/wifi_comm
3The code is available at http://www.ros.org/wiki/patrol

experiments with one, two and three robots were conducted.

Each experiment was repeated 3 times. Afterwards, in order

to further demonstrate the scalability of the approach, virtual

robots were added to the team, and 3 trials with 6 agents

(3+3) and 9 agents (3+6) were also conducted. Finally, to

prove its robustness, experiments which included failures in

the robots at different time instants are analyzed.

Not only is the average graph idleness along time, IG ,

examined as a global performance metric [1], but also the

median ĨG , standard deviation σ , and the maximum average

idleness of all vertices, max(IV). Each experiment finishes

after 4 complete patrolling cycles, i.e., every vi ∈V is visited

at least 4 times. It is shown that this stopping condition is

adequate, as the IG converges in all experiments, when no

faults occur. Additionally, a value of |emin|= 7.5m was used

in all experiments.

During the course of experiments, the estimated sum of

distances traveled by the physical robots was 23 Kms.

A. Initial Experiments

Table I summarizes the first set of experiments using one

to three robots. It can be seen that the IG values as well as

the total mission time τ decreases with teamsize, as expected.

In all cases the median is fairly close to the average value,

meaning that most data is divided around the mean.

A particularly interesting result is shown by the max(IV),
which is low for the case of 1 robot. This happens because

of the existence of a main loop in the environment, which

results in fairly uniform visits to all vertices of the graph.

In the cases of 2 and 3 robots, the distance to the average

value increases due to robots occasionally meeting in the

environment and coordinating themselves. This often results

in changes to their heading direction and consequently the

frequencies of visits are not as balanced. This can be

confirmed by the standard deviation, which is around 23%

using 1 robot and 35% and 37% for a teamsize of 2 and 3

robots respectively. In addition, the IG value in the end of

the experiment with one robot is lower than ĨG , meaning that

the distribution is negatively skewed, whereas in the case of

2 and 3 robots, it is positively skewed4.

Figure 4 shows the evolution of the idleness in three

different experiments with 1 to 3 robots. It is shown that IG

4A video demonstrating a partial experiment with 3 robots is available
at: http://isr.uc.pt/˜davidbsportugal/videos/IROS2013
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