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Abstract— Despite the focus that multi-robot patrolling has
received recently, there is a manifest lack of practical real-world
implementations of such systems. Beyond that, the existing ones
have been mainly focused on centralized policies to coordinate
the team of agents. The present work addresses realistic patrol
in indoor environments with teams of arbitrary number of
autonomous robots performing a distributed, scalable and fault-
tolerant strategy for multi-robot coordination in patrolling
missions. Agents decide their actions locally and adapt to the
system’s needs using distributed communication. The work is
validated through experiments in a large indoor real-world
environment with a team of autonomous mobile robots.

I. INTRODUCTION

Over the past couple of decades, research in multi-robot
systems (MRS) has witnessed progress as never before. More
particularly, robots have increasingly been used in military
and security applications, taking advantage of space distribu-
tion, parallelism, task decomposition and even redundancy.
In this context, there have been several advances in multi-
robot coverage and patrolling.

In the coverage problem, the environment is usually mod-
eled as a grid-like map requiring the team of robots to sweep
all cells of the environment. Whereas in the area patrolling
problem, it is common to abstract the environment through
a topological, graph-like map and robots are expected to
have improved sensing abilities, meaning that they need to
visit regularly all important places in the environment (i.e.,
vertices of the graph), without necessarily going everywhere.

This work addresses MRS in cooperative patrolling mis-
sions in realistic scenarios. Being monotonous and repetitive,
these missions may also be dangerous (e.g., patrolling in haz-
ardous environments). Therefore, using MRS in this context
can be advantageous to secure human lives in areas of appli-
cation like mine clearing, rescue operations or surveillance,
enabling human operators to be occupied in nobler tasks like
monitoring the system from a safe location.

In the next two sections, a literature review is conducted;
the Multi-Robot Patrolling Problem (MRPP) is defined, the
performance metric is presented and the contributions of
the paper are described. The following section describes the
patrolling strategy for teams of robots adopted in this paper.
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Sections 5 and 6, present the experimental scenario, results
and discussion of the facets of the problem. Finally, the
article ends with conclusions and future work.

II. RELATED WORK

Research on the patrolling problem has focused on three
different fronts: adversarial patrol, perimeter patrol and area
patrol. In adversarial patrol, the team of robots assumes
the existence of an intruder and the aim is to coordinate
itself to quickly capture the opponent. On the other hand,
perimeter and area patrol are concerned with monitoring,
collecting information, searching for objects or detecting
anomalies, while at the same time, guaranteeing frequent
visits to strategic places in the environment. In perimeter
patrol, the agents move in the boundaries of the environment,
whilst in area patrol, agents conduct their tasks throughout
the environment [1]. Henceforth, the focus is on the latter.

Several contributions to the MRPP at a theoretical
level have already been presented [2], [3]. It has been
shown that the problem is NP-Hard. Nevertheless, based
on topological representations of the environment and using
global/centralized information, it is acknowledged in the
literature that optimal patrolling can be obtained for a single
robot by computing a TSP cycle!, in the patrol graph. In the
multi-robot case, computing optimal partitions of the graph
and having each robot following TSP cycles inside each
region usually lead to superior performance when compared
to having all robots follow the same global TSP cycle in the
graph, equally distributed in time and space. Yet, TSP cycles
are not trivial to compute in sparse topologies (as most real
world environments), not even existing in most cases.

Beyond these contributions, some authors have proposed
distinct strategies for multi-robot coordination in patrolling
missions based on a variety of concepts. Simple pioneer
architectures using agents guided to locations that have not
been visited for a while were firstly introduced in [4]. Other
models have been explored subsequently, e.g., based on task
allocation [5], auction-based coordination [6] or Markov
decision processes [7].

Despite the diversity of methods proposed, there is an evi-
dent lack of implementation using physical MRS. Only spo-
radic studies have gone beyond simulations. Any simulator
uses simplifying approximations to some extent, which may
perhaps jeopardize the validity of the outcome. Furthermore,
the MRPP is mainly a practical problem and it is essential
to validate convincing real world solutions.

TSP stands for the well-known Traveling Salesman Problem (an NP-hard
problem).
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In the past, Cabrita ef al. [8] successfully employed a team
of Roomba robots, which navigated through indoor corri-
dors, aiming at monitoring the environment by collecting
samples of alcohol concentration and temperature. To this
end, the Multilevel Subgraph Patrolling (MSP) algorithm,
which partitions the environment in regions and assigns a
region to each robot [9], was adopted. Similarly, Iocchi
et al. [10] tested both cyclic and partitioning strategies,
addressing coordinated robot behavior, and validated their
experiments with realistic simulations and through Erratic
platforms in an indoor environment. Finally, Pasqualetti et
al. [11] focused on constructing tours using graph-theoretic
techniques, instructing the robots to travel according to an
Equal-Time-Spacing trajectory. Experiments were conducted
in an indoor lab scenario also using Erratic mobile robots.

These approaches have in common the fact that the
patrolling routes for each robot were computed a priori
using global information and passed on to the robots. In
this work, robots have the capability to decide online their
own patrol route according to the state of the system at
the moment, without requiring a central planner. Thus, a
distributed approach for coordination is verified in a large
real-world indoor facility using a team of patrolling robots.

ITI. PRELIMINARIES
A. Problem Definition and Performance Metric

As seen before, it is common to represent the area to patrol
by an undirected connected graph G = (V,€) with v; € V
vertices and e; ; € £ edges. Therefore, G corresponds to the
topological map for the patrolling mission, which is obtained
from a metric representation, assumed to be known a priori,
by means of a graph extraction algorithm [12].

Having a graph representation, vertices correspond to
important places or landmarks and edges represent the con-
nectivity between those locations. Hence, the MRPP can
be reduced to coordinate robots in order to visit frequently
all vertices of the graph, ensuring the absence of atypical
situations, with respect to a predefined optimization criterion.

Diverse criteria have been previously proposed to assess
the effectiveness of multi-robot patrolling strategies. Typi-
cally, these are based on the idleness of the vertices, the
frequency of visits or the distance traveled by agents [10].
In this work, the first is considered, because it measures how
long it has been since the last visit from any agent in the
team to a specific location, being intuitive to analyze and
brought into confrontation with the possibility of attacks
to the system. It is assumed that in the beginning of the
experiments, all vertices v; € V have an idleness value of
zero, ie., Z,(0) =0.

B. Contributions

This work describes the implementation of a system for
multi-robot patrol in realistic scenarios, aiming to fill a gap
in the present state-of-the art by validating a distributed
approach, where fully autonomous agents decide locally their
patrol routes according to the state of the system. This is done
using a strategy recently proposed [13] and briefly described

in the next section, which is inspired on a Bayesian-based
formalism. It is shown that agents can coordinate effectively,
using distributed communication and different teamsizes.
Additionally, it is also demonstrated that the approach is
robust to robot failures.

IV. STATE-EXCHANGE BAYESIAN STRATEGY

In a previous study of the authors [13], it was shown that
methods based on Bayesian inspiration can effectively solve
the MRPP. These methods can deal with uncertainty and
actions are selected according to the state of the system at
the time, resulting in adaptive and distributed cooperative
patrolling. More particularly, the State-Exchange Bayesian
Strategy (SEBS) prevents robots from interfering with other
teammates’ actions while, at the same time, aims to maxi-
mize a local gain function, which guarantees that all posi-
tions in the environment are visited regularly by all agents.
Stage, a recognized simulator by the robotics community,
together with ROS [14], which is used to program individual
robots, were adopted in [13] to compare the performance of
diverse state-of-the art multi-robot patrol techniques. SEBS
outperformed the remaining methods. As a consequence, it
is currently chosen as the preferred strategy for coordination
of a team of mobile robots, in a patrolling mission in the
real world.

SEBS is reviewed in this section. Note that agents decide
asynchronously which place to move next when they reach
their current location. To that end, a fundamental random
variable, which simply represents the act of moving (or not)
to a neighbor vertex is defined as:

move = {true, false}. ()

The variables which influence each robot’s individual
decision are presented in the next sections with special focus
on the selection of proper statistical distributions to model
the data, in order to ensure the quality of the results. After-
wards, it is shown how the local decision-making process is
automated, applying Bayes Rule.

A. Gain

When reaching a vertex of the navigation graph, each robot
is faced with a decision stage, where it must decide the
direction it should travel next. Therefore, the Gain G4 of
moving from the current vertex (vp) to a neighbor vertex
(v4) is proportional to the difference of the idleness values
when moving to v4 at a constant speed (c):

I,,() -1, <t+At>)

|eval |

2

GA(t):c-<

where t is the current instant, ¢ + Ar is the arrival time in
va and Ar = leoal/c. Note that 7, (r+ Ar) = 0 when the robot
reaches v4, therefore G4 does not take negative values.

In most cases, |e,q| takes on the value of |egs|, which is
the distance between the two vertices, given by the weight
of the edge that connects vy to v4. However, constraint (3)
is imposed in order to dimension |e,|, avoiding occasional
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a) Distribution function of Gain.
b) Distribution function of State.

Fig. 1.

situations where robots may get trapped in local optima (i.e.,
repeatedly visiting vertices that are very close to each other):

{|eml~,,|, if max{eoA, ...,6‘0[3} > 2min{eoA, ...,6‘0[3}
|eval| = A |60A| < |emin|
lega|, otherwise.

3)

Logically, higher values of gain rapidly have more in-
fluence in the robot’s decision. Therefore, the distribution
function F(g) of G; is defined as a monotonically increasing

function, following the exponential model shown on Fig. 1:

F(g)=ac’; a>0, “)
Which is equivalent to:
In (Y1)
Fl(e)=1L- I
() =L-exp ( W g> , 5)
with:
LM>0 and g<M. (6)

L and M are constants that control the distribution func-
tion. More specifically, L is the y-intercept, which controls
the probability values for lower gains and M is the gain sat-
uration, beyond which the probability values are maximum;
F(g> M) = 1. These constants are simply defined as a value
close to 0 for L, e.g., 0.1 was used in the experiments; and
M is calculated through (2) using an upper bound of Z,,.

B. State

In collective operations with a common objective, coor-
dination between agents plays a fundamental role in the
success of the mission. Particularly in this context, it is highly
undesirable that agents move to the same positions. Hence,
vertex state S; is defined as a discrete variable that represents
the number of robots that intend to visit a given vertex v;
involved in the decision process of robot #, which is currently
located in vertex vg:

S;eNgN[O,R—1]; R>1. )

As before, it is necessary to define a statistical distribu-
tion to model the vertex state. The greater the number of
teammates in the vicinity of a robot, it becomes increasingly
unlikely for the robot to move in that direction. To describe
this behavior, the following discrete probability distribution,
which uses a geometric sequence of ratio /2 has been defined:

1

I5i(8)Rse0 = P(Si = $)R 500 = ERER (8)

as shown in Fig. 1. This geometric sequence is used to
guarantee that the total probability for all S; equals 1:

R—1
Y fs(s)=1, ©)
s=0

Eq. (8) assumes that the number of robots R is unknown
and can be arbitrarily high. However, since the robots com-
municate among themselves, it is more realistic to consider
R as known and with finite values. Therefore, the following
approximation to (8) is assumed:

2R7(s+1)

Fs,(s) = P(Si = 8) = —g—

R>1.
k_] o 7

10

C. Robot Decision

Each decision to move from a vertex vg to v4 is considered
independent and agents have the ability to choose the action
which has the greatest expectation of utility, weighted by the
effects of all possible actions.

To this end, robots locally update the instantaneous idle-
ness time values online, by communicating to other robots
when they reach another vertex of the navigation graph, in
a distributed way. This enables the calculation of the Gain
of moving from the current vertex to any of its neighbors.
Likewise, by receiving other robots’ intentions, agents can
calculate vertex state.

Having the likelihood distribution models P(G;|move) and
P(S;|move) defined respectively by F(g) and f(s); and as-
suming the prior knowledge as uniform, P{move), where all
decisions are equiprobable; agents calculate the probability
of moving to a specific vertex i given its gain (; and the
vertex state S;, applying Bayes rule:

P(move)P(G;|move)P(S;|move)

P(G)P(S;) ’
where the denominator term is regarded as a normalization
factor, being often omitted for simplification purposes. The

move to the neighbor vertex with the maximum a posteriori
(MAP) probability is the one chosen by the agent:

P(move|G;,S;) = (11)

moveyap = argmax P(move|G;, S;)
move

V. SETTING UP THE EXPERIMENTS

12)

Experiments were conducted in a large indoor scenario,
namely the floor 0 of the Institute of System and Robotics
(ISR), in the University of Coimbra. Fig. 2 shows the
extracted topological map on top of the 67.85 x 26.15 meters
environment and a few snapshots of the corridors of the ISR.

The topology obtained is a non-complete, connected and
sparse graph, as most real world environments, with a low
algebraic connectivity: 0.025, given by the Fiedler Value A;
- the smallest non-zero eigenvalue of the graph’s Normalized
Laplacian matrix [1].
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Fig. 2. Topological map of the “ISR-Floor0” Environment.

TABLE I
EXPERIMENTS WITH 1 TO 3 ROBOTS (ALL VALUES IN SECONDS)

Teamsize R Zs max(Zy) Zg o T

336.676 412.207 370.994 | 78.769 1648.828

1 332.745 407.897 366.677 77.892 1631.590
331.615 406.387 365.345 77.626 1625.550
168.921 309.455 137.267 64.210 1237.821

2 180.761 296.085 180.293 56.064 1184.341
170.267 328.300 146.890 | 62.603 1313.201
128.875 273.670 116.269 54.893 1094.682

3 116.248 216.020 95.150 44.356 864.081
112.954 200.030 101.923 36.066 800.121

Experiments in a large indoor environment demonstrate
the potential of the patrolling strategy proposed as a solution
for real-world multi-robot surveillance. To that end, one must
overcome noisy sensor readings, localization issues and even
robot failures, which are usually ignored or not precisely
modeled in simulation experiments. Therefore, a team of
three Pioneer-3DX robots, equipped with an Hokuyo laser
in the front and a laptop on top was used, as seen in Fig.
3. Each laptop runs the ROS’s navigation stack using the
Adaptive Monte Carlo (AMCL) algorithm for localization,
and assuring that all robots navigate safely by heading
towards their goals. Robots avoid collisions with walls and
other robots, reaching speeds of up to 1 m/s.

For communication, a distributed publish/subscribe mech-
anism has been used, due to its built-in integration in
ROS. Moreover, each robot runs its own ROS master node
(roscore) and multimaster communication is provided using
the wifi_comm?® package. This means that there is no central
point of failure in the system. Also, given that robots only
share their current and future immediate goals, the bandwidth
requirements are negligible even with large teams.

In the beginning of each test, the graph of the environment
is loaded by every robot. A ROS node (i.e., a ROS applica-
tion) is responsible for advertising the start of the mission
and collect results during the experiments>. These results are
examined in the next section.

V1. RESULTS AND DISCUSSION
In this section, the results of the multi-robot patrolling
strategy employed in the ISR corridors are analyzed. Firstly

2 Available at http://www.ros.org/wiki/wifi_comm
3The code is available at http: //www.ros.org/wiki/patrol

Fig. 3.

Robots used in the experiments.

experiments with one, two and three robots were conducted.
Each experiment was repeated 3 times. Afterwards, in order
to further demonstrate the scalability of the approach, virtual
robots were added to the team, and 3 trials with 6 agents
(3+3) and 9 agents (3+6) were also conducted. Finally, to
prove its robustness, experiments which included failures in
the robots at different time instants are analyzed.

Not only is the average graph idleness along time, Zg,
examined as a global performance metric [1], but also the
median Zg, standard deviation o, and the maximum average
idleness of all vertices, max(Zy,). Each experiment finishes
after 4 complete patrolling cycles, i.e., every v; € V is visited
at least 4 times. It is shown that this stopping condition is
adequate, as the Zg converges in all experiments, when no
faults occur. Additionally, a value of |en| = 7.5m was used
in all experiments.

During the course of experiments, the estimated sum of
distances traveled by the physical robots was 23 Kms.

A. Initial Experiments

Table I summarizes the first set of experiments using one
to three robots. It can be seen that the Zg values as well as
the total mission time T decreases with teamsize, as expected.
In all cases the median is fairly close to the average value,
meaning that most data is divided around the mean.

A particularly interesting result is shown by the max(Zy),
which is low for the case of 1 robot. This happens because
of the existence of a main loop in the environment, which
results in fairly uniform visits to all vertices of the graph.
In the cases of 2 and 3 robots, the distance to the average
value increases due to robots occasionally meeting in the
environment and coordinating themselves. This often results
in changes to their heading direction and consequently the
frequencies of visits are not as balanced. This can be
confirmed by the standard deviation, which is around 23%
using 1 robot and 35% and 37% for a teamsize of 2 and 3
robots respectively. In addition, the Zg value in the end of
the experiment with one robot is lower than Zg, meaning that
the distribution is negatively skewed, whereas in the case of
2 and 3 robots, it is positively skewed®.

Figure 4 shows the evolution of the idleness in three
different experiments with 1 to 3 robots. It is shown that Tg

“A video demonstrating a partial experiment with 3 robots is available
at: http://isr.uc.pt/~davidbsportugal/videos/IR0S2013
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Fig. 4. Evolution of the idleness along time: a) with 1 robot, b) with 2

TABLE II
EXPERIMENTS WITH 6 AND 9 ROBOTS (ALL VALUES IN SECONDS)

Teamsize R T max(Zy) Ig [} T
71.097 152.625 65.483 | 27.130 | 610.500
6 (343) 72.165 140.725 67.043 | 24418 | 562.900
77.332 150.145 72938 | 27.350 | 600.580
48.623 102.305 47.395 16.499 | 409.220
9 (3+6) 50.239 90.580 54.157 16.083 | 362.320
51.687 105.12 52271 19.622 | 420.480

converges in all cases, meaning that it is no longer affected
by the initial conditions, seeing as all vertices start with a
null value of idleness.

B. Scalability

In the previous subsection, the number of robots R is
limited to the physical robots available. Nevertheless, the
distributed patrolling method used supports an arbitrary high
teamsize.

In order to test the approach with greater teamsize and
evaluate its scalability, virtual agents, running in the stage
simulator, were added to the team, resulting in a mixed team
of real and simulated robots. Three trials were conducted
with a total of 6 agents composed by 3 physical robots
and 3 simulated ones; and three more trials were performed
with a teamsize of 9, composed by 3 physical robots and 6
simulated ones. Similarly to [10], the software layer is used
unchanged both on real robots and in simulation, since each
agent is running ROS.

Results in Table II show that the overall values of Zs,
max(Zy), Zg, ¢ and T are within the expected, following
the trend shown in the cases of two and three robots.

In order to assess the scalability of the approach, Balch’s
speedup measure v(f) [15], a classical scalability metric, was
calculated:

Y1)/

(i) 13)

v(i)
W(i) is the performance for i robots, given by Zg. Fig. 6
presents the speedup chart using different teamsizes. De-
spite improvement of performance with teamsize as seen
previously, this chart shows that the contribution of adding
robots progressively decreases, therefore the system enters in
sublinear performance (v(i) < 1), due to the more frequent
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Fig. 6. Interference and Speedup against Teamsize.

existence of spatial limitations, which, in turn, increases
the interference between robots. Interference is measured
as the frequency of different agents sharing nearby areas
and affecting each others’ decisions. This increasing trend
of the interference with teamsize is common to all MRPP
approaches, as shown in a benchmark comparison in [13].
However, SEBS presents a smoother slope when compared
to other approaches, because it takes into account teammates’
intentions.

C. Fault-Tolerance

One of the main advantages of providing the patrol robots
with means for deciding their moves in the environment is the
absence of a centralized coordinator, which would represent
a critical point of failure. A distributed autonomous robotic
system, such as the herein presented, enables redundancy,
remaining functional if some of the agents fail.

To demonstrate the robustness of the approach, three
experiments using the Pioneer 3-DX robots available were
planned. In these experiments a robot is shutdown at different
instants of time, aiming at studying the effect of the faults in
the overall performance, as well as how the system evolves.

In the first experiment a robot is shutdown after 200
seconds from the beginning of the experiment. Similarly,
in the second and third experiment, a robot is shutdown
after 400 and 600 seconds respectively. The other robots
assume that a teammate has failed when no message has
been received from it in a period of 2 minutes.

Generally, it can be seen in Table III that the results
obtained in the first experiment resemble those obtained with
two robots, as most of the experiment is spent with only
two agents, due to the failure occurring in the beginning.
On the other side, the results shown in the second and third
experiment are closer to those obtained using three robots,
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TABLE III
EXPERIMENTS WITH 3 ROBOTS WITH FAILURE OF A ROBOT IN
DIFFERENT INSTANTS OF TIME (ALL VALUES IN SECONDS)

Failure Time T max(Zy,) Ig [} T
200 s 160.975 330.225 144.846 | 62.825 1320.901
400 s 140.128 232.290 134.177 | 45.934 929.161
600 s 135.209 235.700 139.797 | 41.262 942.801

even though the performance is slightly inferior, as expected.
In these experiments, especially in the third case, most of the
mission takes place with three agents and the failure occurs
towards the end, which is reached after 4 patrolling cycles.
As a consequence, Fig. S5c shows that there was not enough
time, after occurring the failure, for the values to converge
to the two robots situation.

Analyzing now the influence of the failures in the evo-
lution of the results, one can verify that in all tkg/ee cases,
when the failure occurs, the values of Zg and Zg tend to
increase after a while, which is particularly visible in Fig.
5a and Fig. 5b. These results prove the robustness of the
system, enabling graceful degradation, as long as one robot
remains operational.

VII. CONCLUSIONS AND FUTURE WORK

In this work, the implementation of a distributed multi-
robot system for patrolling an indoor infra-structure is pre-
sented. Making use of a simple Bayesian-based formalism,
autonomous robots decide their patrol routes according to
the state of the system at a given time.

Previous results had shown the superior performance of
the approach when compared with other MRPP strategies.
In this work, the results obtained have demonstrated that
the approach is able to scale to a high number of robots,
being robust to failures and having the ability to adapt to
constraints, since the decision-making is done online with
the information that each agent has collected about the
system. Experiments were conducted using physical robots
and mixed teams of both virtual and real agents, in a real-
world environment, proving the effectiveness of the approach
and the potential to use it in the real world.

In the future, the patrolling strategy could be extended
in order to deal with breaks in the communication between
robots. In addition, it would be interesting to study the
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Evolution of the idleness along time in experiments with robot failures. a) Failure at 200s. b) Failure at 400s. ¢) Failure at 600s.

influence of unforeseen dynamic obstacles in the real world,
e.g., people moving in the corridors. Finally, we intend to
implement an estimation method to dimension a team of
robots in a patrolling mission according to the environment
topology and temporal constraints.
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