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Abstract— Loss of haptic sensation in a master-slave system
is one of the open problems in robotic surgery, and recognition
of surgical situations through haptic sensation is a challenge.
In this paper we propose an autonomous risk-detection system
for a master-slave surgical robotic system in order to estimate
a property of an object (i.e., contact impedance) using a force
sensor mounted on a surgical robotic instrument. The system
autonomously detects the risk based on the estimated contact
impedance and accordingly activates the motion at the slave
unit as well as the force feedback at the master unit. We
implemented the proposed method in a teleoperated master-
slave system to detect the perforation risk of a membranous
object. The performance of the system was evaluated through
experiments. The classification accuracy for perforation risk
was about 98.5 % in fourfold cross-validation. The experiments
verified that the risk detection system accurately detected the
perforation risk and improved the safety of the master-slave
system.

I. INTRODUCTION

Robotic surgery has attained great success in recent years.
The number of clinical reports on robotic surgery has been
increasing, and the application range of robotic surgery has
been extended in the last decade [1].

Some of the most successful robotic surgical systems are
master-slave systems such as the da Vinci Surgical System
(Intuitive Surgical Inc., CA, USA) [2]. The master-slave
configuration can enhance the maneuverability of robotic
surgical instruments that are long and thin, but the surgeon
cannot have a direct haptic sense in master-slave robotic
surgery. To provide haptic information and enhance the
robotic operability, force feedback systems have been de-
veloped for robotic surgery [3], [4], [5]. Most of these
systems employ constant force feedback gains, regardless of
the surgical situation. Although these systems have shown
the efficacy of force feedback, the haptic information avail-
able in robotic surgery is unnatural and unsatisfactory for
recognition of surgical situations online. As we discussed
in our previous papers [6], [7], a force feedback system
will enhance haptic sensation and improve the safety of a
surgical operation by adaptively controlling force feedback
gains according to the surgical situation.
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In another line of research, haptic exploration systems for
robotic surgery have been investigated by many researchers
[8], [9], [10]. Such systems could convey a great deal of
useful information to surgeons during surgical operation,
such as that obtained by palpation. However, these previous
studies mainly focused on estimating the property of objects.
Therefore, a way to exploit the benefit of haptic exploration
needs to be investigated.

In this paper, we propose to use the estimated property
of objects to recognize the surgical situation and combine
it with automatic robotic control to improve the safety of
surgical operations. Specifically, we developed a system
that not only detects the risk of perforating a membranous
object by learning from preoperative demonstrations but also
autonomously activates motion at a slave unit and force
feedback at a master unit. The system estimates the contact
state between an object and a surgical instrument to detect the
risk of perforation. Activation of the force feedback serves
to alert the perforation risk, and when the detected risk is
high, the system autonomously stops the execution of motion
signals received from the master unit.

In surgical operations, palpations are often performed to
identify the diseased part of an organ, a task which is
sometimes difficult. For instance, palpation to identify the
locations of arteries beneath opaque tissue or those of lung
cancer is necessary in the scenarios of robotic minimally
invasive surgery [11], [12]. However, palpation could lead
to perforation of organs in the event of human errors or
operational mistakes. The system developed here can be used
to improve the safety of such surgical procedures.

The rest of this paper is structured as follows: The next
section presents an overview of the proposed method and
the details of the proposed algorithm. Section III describes
experiments conducted to evaluate the developed system. The
last section concludes this study and outlines of the future
work.

II. METHOD
A. Overview of the Proposed Method

An overview of the proposed system is shown in Fig. 1.
The force detected at the tip of a robotic surgical instrument
is used to estimate the contact impedance of the membranous
object handled by the instrument. In preoperative preparation,
the system learns the risk of perforation from demonstrations.
The online system estimates a property of an object, specif-
ically the contact impedance of the object, and detects the
perforation risk using the learned model. The robotic system
autonomously activates the motion at the slave unit and the
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Fig. 1. A diagram of the proposed control system.

force feedback at the master unit, according to the estimated
risks.

In the preoperative preparation, we employ a
demonstration-based learning. We assume that the object
handled with the robotic surgical instrument is known
and the model for estimating the contact impedance of the
object is available in advance. During the demonstrations, an
operator pushes and perforates the membranous object. The
contact force, the motion of the surgical instrument, and the
pushing depth are recorded. The developed system detects
the perforation risk using a support vector machine (SVM).
To obtain the input vectors of the SVM, the measured
contact force is smoothed with a Kalman smoother and the
contact impedance at each sampling time is estimated using
recursive least squares (RLS). The motion of the robotic
surgical instrument, the estimated contact impedance, and
the measured contact force are used as feature vectors for
training the SVM. Each feature vector is given a label
corresponding to perforation risk based on the perforating
force estimated in each demonstration.

During an intraoperative procedure, the contact force is es-
timated by the Kalman smoother, and the contact impedance
of the object is estimated by RLS in the same manner as
during the preoperative procedure. Using those estimated
parameters, the perforation risk is detected by the SVM in
real time. According to the outputs of the SVM, the robotic
system automatically activates the motion at the slave site
and the force feedback at the master site. This control system
framework is applicable to any other master-slave system
with force sensing capabilities.

We implemented the proposed method in a master-slave
system for teleoperated surgery [7], [13], [14]. The system

Fig. 2. The slave unit with three robotic arms.

(a) (b)

Fig. 3. The master unit. (a) Master manipulators. (b) Master manipulator
with three motors to exert 3 DOF force feedback.

consists of a master unit and a slave unit (see Fig. 3). The
slave robot has three robotic arms on which two robotic
surgical instruments and one laparoscope are attached. On
each robotic surgical instrument, a force sensor is mounted
(see Fig. 4). The force sensor is composed of strain gauges.
The measurement range and the accuracy of the force sensor
are 0-15 N and 0.2 N, respectively. The master manipulator
is capable of applying 20 N at the tip of the robotic surgical
instrument.

B. Estimation of Contact Force Using Kalman Smoother

We used the Kalman smoother to filter noises and estimate
the actual contact force. The process model is expressed as
follows:[

fk+1

ḟk+1

]
= A

[
fk
ḟk

]
+B

 ∆xk
∆ẋk
∆ẍk

+ wk (1)

where A =

[
1 1
0 1

]
, B =

[
k̄ c̄ 0
0 k̄ c̄

]
, wk ∼ N(0, Q),

fk is the contact force; xk, the pushing depth; and Q, the
covariance matrix of the process noise. Note that k̄ and c̄
are estimated coefficients for elasticity and viscosity, respec-
tively. In (1), the motion of the robotic surgical instrument
is expressed as a control input. Observation of the contact
force is modeled as follows:

fm,k = H

[
fk
ḟk

]
+ vk (2)

where fm,k is the force measured at the kth measurement,
H = [1, 0], fk is the actual contact force at the kth step,
vk ∼ N(0, R) represents the measurement noise, and R is
the covariance of the measurement noise. In the Kalman
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Fig. 4. The robotic surgical instrument: (a)An overview and (b) the force
sensor.

smoother, the process noise and measurement noise are
assumed to follow a Gaussian distribution. The details of
the Kalman smoother are found in the literature [15].

C. Estimation of Contact Impedance

Many studies related to estimation of the contact
impedance of the organs and tissues are found in [16], [8],
[9], [10], [17]. Although these studies employed nonlinear
models to estimate the mechanical properties of the soft tis-
sue, we used a linear model to express the contact impedance
of the object as follows:

∆f = k∆x+ c∆ẋ (3)

The reason that we used the linearized model is that co-
efficients can indicate the deformation of the object. The
coefficients vary according to the deformation of the object.
Therefore, by learning the changes in the coefficients, the
deformation of the object can be estimated.

The RLS method is often used for estimating mechanical
properties [16], [8], [9], [10], [17]. We also employed RLS
to estimate the contact impedance of the object. In RLS, the
following equations are computed recursively:

Kn =
Pn−1un

λ+ uTnPn−1un

Wn = Wn−1 +Kn

(
dn − uTnWn−1

)
Pn =

1

λ

(
I −Knu

T
n

)
Pn−1 (4)

where u is the input vector and d is the desired value. In
(4), Pn is initialized as P0 = I . In the proposed method,
the input vector was set as u = [∆x,∆ẋ]T and the desired
value was set as d = ∆f̂ , where x is the pushing depth, and
f̂ is the contact force estimated by the Kalman smoother.
A forgetting factor λ of less than 1 puts greater weights on
the newer measurements. For this system, the value λ = 0.9
performed well.

D. Perforation Risk Detection

Many researchers have reported on surgical task recog-
nition [18], [19], [20], [21]. Lalys, et al. developed a sys-
tem with surgical task recognition using video microscopy
images [18]. They employed dynamic time warping and a
hidden Markov model (HMM) to analyze the sequence of
video images. Padoy et al. developed a system for online
surgical task recognition in an operating room monitoring

[19]. The HMM is often used for surgical task recognition
due to its suitablity for modeling time-series data. However,
the using an HMM is not suitable for learning nonlinear
decision boundary.

Therefore, we employ an SVM for perforation risk de-
tection [22]. We classify the perforation risk using data at
every time step. The nonlinear decision boundaries can be
learned using the SVM with a kernel trick [23]. We use
the C-SVM to tolerate inseparable training data sets. The
learning process of the C-SVM can be summarized as the
following optimization problem:

min

{
1

2
w + Ck

l∑
i=1

ξi

}
(5)

subject to

yi (w · xi − b) ≥ 1− ξi
ξ ≥ 0 (6)

where xi is a feature vector that represents the state of the
system and yi is the risk level associated with state xi. ξi are
called slack variables, which penalize misclassified points.
In (5), we used the class values of [C0, C1, C2] = [1, 1.2, 2]
where Ci is a class weight associated with the perforation
risk i. By assigning the larger class weights to higher risks,
we make the classification accuracy of higher risks become
more important. We employ a radial basis function (RBF) as
a kernel function. The RBF is defined as follows:

k (xi, xj) = exp
(
−γ ‖xi − xj‖2

)
(7)

This kernel trick enables the setting of nonlinear decision
boundaries for the perforation risk detector. The details of C-
SVM can be found in [22]. We use the coefficients estimated
by RLS as the SVM inputs. To avoid risks due to large
forces and high-speed motion, we use the feature vector
xi = [f̂ ,∆f̂ , v, a, k̂, ĉ] where f̂ is the contact force estimated
by the Kalman smoother, v and a are the linear velocity and
acceleration of the surgical instrument and the k̂ and ĉ are
the contact impedance coefficients estimated by RLS.

We label each feature vectors with a risk level based on
the force fp measured at perforation of each demonstration.
The risk level r is thus set as follows.

f̂ < α1fp ⇒ r = 0

α1fp ≤ f̂ ≤ α2fp ⇒ r = 1

α2fp ≤ f̂ ⇒ r = 2

where f̂ is the contact force estimated by the Kalman
smoother. The values of α1 and α2 determine the margin of
safety. For the preliminary experiment, we used the values
[α1, α2] = [0.2, 0.4]. The values need adjustment for each
application.

E. Adaptive Control of the Master Manipulator

Based on the outputs of the SVM, the robotic system
autonomously activates the master-slave motion and the force
feedback as follows:
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Fig. 5. The setup for the preliminary experiment. The motion of the robotic
surgical instrument was constrained to the axial direction as shown by the
red arrow.

RISK LEVEL 0
master-slave motion −→ ON
force feedback −→ OFF

RISK LEVEL 1
master-slave motion −→ ON
force feedback −→ ON

RISK LEVEL 2
master-slave motion −→ OFF
force feedback −→ OFF

When no risk is detected by the system(RISK LEVEL 0),
no force feedback is provided. At RISK LEVEL 1, the force
feedback is provided to inform the operator of the increased
risk of perforation. At RISK LEVEL 2, the slave system
autonomously disables the execution of the motion signal
received from the master system. An autonomous switching
system is implemented in the slave unit to provide robust-
ness against possible communication problems between the
master and slave units.

III. EXPERIMENTS

A. Experimental Setup

We performed a preliminary experiment to evaluate the
performance of the proposed method. The experimental setup
was designed to simulate the scenario of the palpation of
membranous objects by using a robotic surgical system (see
Fig. 5). A plastic film with nonlinear contact impedance was
used as the membranous object. The film was made from
polyvinyl chloride, and its thickness was 8 µm. The operator
moved the master manipulator and perforated the plastic film
several times with the robotic surgical instrument. The force
and motion of the surgical instrument were recorded (see Fig.
6). Only the axial motion of the robotic surgical instrument
was used in the experiment. However, the proposed method
can be applied to other master-slave systems with multiple
degrees of freedom by changing the SVM inputs.

B. Training Data for the Classifier

An example of the data used for SVM training is shown
in Fig. 7. At the instant of perforation, the measured force
decreased remarkably.

Fig. 6. Perforation of a thin film. An operator perforated the thin plastic
film, and the force and motions of the robotic surgical instrument were
recorded.

Fig. 7. Examples of the data recorded for training the risk detector. At
t = 780 ms, the perforation of the film was observed.

An example of the performance of the Kalman smoother is
shown in Fig. 8. The Kalman smoother successfully filtered
out the noise, and the processing speed was sufficient for
online processing.

An example of the processed datasets is shown in Fig.
9. The contact impedance of the film was successfully
estimated. At the instant of perforation, the estimated contact
impedance diverged, since the estimated contact force sud-
denly decreased. Therefore, while training the perforation
risk detector, we used only the data before perforation.

C. Cross-Validation of Perforation Risk Detector

In order to validate the performance of the perforation risk
detector, we performed a fourfold cross-validation. We per-
formed the perforation experiment eight times and simulated
the performance of the perforation risk detector. The results
are listed in Table I.

As shown in Table I, the accuracy of classification was
nearly 100 % for Risk Levels 0 and 2. However, the accuracy
of classification for Risk Level 1 was about 35 %. This
classification accuracy represents a trade-off between Risk
Levels 1 and 2. In this study, the classification accuracy for
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Fig. 8. Performance of the Kalman smoother. The blue solid line represents
the raw measurement data of force and the red dash-dot line represents the
output of the Kalman smoother.

Fig. 9. Example of processed data. In all of the plots, X axis represents
time [ms]. At t = 520ms, perforation of the film was observed.

Risk Level 2 was more important than that for Risk Level 1.

D. Haptic Exploration Experiment

1) Experimental procedure: In order to demonstrate that
the proposed method improves the safety of the master-
slave system, we performed an experiment. The subjects
were asked to compare the stiffness of two plastic films
by touching these with the robotic surgical instrument. In
actual surgical operations, surgeons often check the stiffness
of the organ by touching it with surgical instruments (so-
called haptic exploration), as Tamamoto et al. reported in
[8]. Five engineering students participated in the experiment.

TABLE I
RESULTS OF CROSS VALIDATION.

No. Risk level 0 Risk level 1 Risk level 2
1 99.9% (10466/10467) 42.9% (12/28) 100% (96/96)
2 99.9% (7631/7646) 25.9 % (14/54) 100% (82/82)
3 99.9% (10045/10049) 25.0% (15/60) 94.19% (227/241)
4 99.9% (11592/11593) 45.7% (16/35) 100% (98/98)

Ave. 99.9% 34.9% 98.5 %

TABLE II
RESULTS OF USER EXPERIMENT.

System Number of perforation
Conventional force feedback system 4/5

The proposed system 1/5

Fig. 10. Recorded data in the experiment using the developed system.

The stiffnesses of the two plastic films in this experiment
were the same, but we did not inform the subjects of this
fact. The subjects performed the experiment both with the
conventional force feedback system and with the developed
system. When the developed system was used, the force
feedback and motion were activated on the basis of the
estimated perforation risk. In contrast, when the conventional
force feedback system was used, the force feedback was
always provided. In this experiment the laparoscopic image
was delayed by 200 ms to simulate communication problems
between the master and slave units.

2) Results of the experiment: The results are listed in
Table II. When using the conventional force feedback system,
four out of five subjects accidentally perforated the plastic
film during haptic exploration. However, only one subject
perforated the plastic film during the operation with the
proposed system. An example of the data recorded during
the experiment using the developed system is shown in Fig.
10.

In this experiment, all subjects repeatedly pushed the
plastic films with the robotic surgical instrument and checked
its deformation while feeling the force feedback to the master
manipulator. In the process of comparing the stiffness of
the films, subjects paid much more attention to the stiffness
and much less attention to perforation risk. Even though
the subjects did not pay much attention to perforation risk,
only one subject perforated a film in the experiment with the
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developed system. As shown in Fig. 10, the developed system
detected the perforation risk and autonomously terminated
the motion once Risk Level 2 was reached. Therefore, we
concluded that the developed system would improve the
safety of master-slave teleoperated surgery.

IV. CONCLUSION AND FUTURE WORK

The system estimates the contact between an object and
a surgical instrument to detect the perforation risk. Using
the autonomous risk-detection system, the robotic system
autonomously activates the motion at the slave unit and
the force feedback at the master unit. We implemented the
proposed method in a master-slave teleoperated system to
detect the perforation risk of a membranous object. The
performance of the system was evaluated through exper-
iments. The experiments verified that the risk detection
system accurately detected the perforation risk and improved
the safety of the master-slave system.

The current work is done under the assumptions that
the object is known, its model for estimating the contact
impedance is available, and the contact impedance can be
learned by preoperative demonstrations. Therefore, we intend
to work on the online identification of objects that do not
require preoperative demonstrations and the learning process.
In addition, to combine the current method with unsupervised
learning of risk detection is potential work.
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