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Abstract— In this paper we propose a method to generate
a large scale and accurate dense 3D semantic map of street
scenes. A dense 3D semantic model of the environment can
significantly improve a number of robotic applications such
as autonomous driving, navigation or localisation. Instead of
using offline trained classifiers for semantic segmentation, our
approach employs a data-driven, nonparametric method to
parse scenes which easily scale to a large environment and
generalise to different scenes.

We use stereo image pairs collected from cameras mounted
on a moving car to produce dense depth maps which are
combined into a global 3D reconstruction using camera poses
from stereo visual odometry. Simultaneously, 2D automatic
semantic segmentation using a nonparametric scene parsing
method is fused into the 3D model. Furthermore, the resultant
3D semantic model is improved with the consideration of
moving objects in the scene. We demonstrate our method on the
publicly available KITTI dataset and evaluate the performance
against manually generated ground truth.

I. INTRODUCTION

Recently, there has been an increased interest in devel-

oping intelligent autonomous systems for a wide range of

applications such as autonomous driving, robot navigation

or environment exploration. To enable autonomous system

operation in large scale and dynamic environments, these

systems need the ability to understand the environment

geometrically and semantically.

Considerable effort has been focussed towards geomet-

rically modelling the environment with a map consisting

of sparse or dense point cloud for accurate localisation

[1]–[4]. However, none of these approaches consider the

semantic aspects of the environment which can provide

helpful information for the geometric model, e.g., buildings,

cars and pedestrians should be on top of a road and under

the sky. Moreover, pedestrians and cars are likely to be

moving objects which are not suitable for generating a static

navigation map compared to buildings or trees. Semantic

scene parsing (i.e., label each pixel in a image into a semantic

class) has been actively researched by the computer vision

community [5]–[8], but mainly focused on 2D images. There

is relatively little work on combining semantic and geometric

representations of the environment.

Douillard et al. proposed a sparse semantic map repre-

sentation of the environment using a laser and camera [9].

However, such a sparse semantic map has difficulty obtain-

ing the boundary between objects, resulting in inaccurate

classification. Instead of using multiple sensors, we aim for

a vision only system to alleviate the cost and complexity.
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Fig. 1: 3D semantic model. This figure shows some sample outputs
of our method (best viewed in color). (A) 3D semantic map overlaid
on Google Earth map; (B) Left view of a stereo image pair; (C)
2D semantic segmentation results; (D) 3D semantic model.

[10] presented a method for 3D semantic map generation,

but in that work they assume the environment is static. In

addition, they apply a parametric method for semantic image

segmentation which requires offline training that needs to

be updated whenever the environment changes. The method

presented here employs a data-driven nonparametric seman-

tic segmentation without an offline training procedure which

can easily scale to a large scale environment.

In this paper, we propose a method of joint 3D reconstruc-

tion with nonparametric semantic segmentation to model the

environment as a 3D semantic occupancy map. Additionally,

moving objects are taken into account using estimated cam-

era poses from stereo visual odometry (§III-D). Finally, the

proposed method is qualitatively and quantitatively evaluated

on the KITTI dataset [11]. Some intermediate and final

outputs of our method are shown in Fig. 1. Our main

contributions can be summarised as follows:

• We apply a data-driven nonparametric method for se-

mantic image segmentation which does not require any

offline training procedure. Therefore our method can

easily scale to a large dataset.

• We represent the 3D semantic map as an octree structure

which introduces efficiency in terms of time and space.

• We take moving objects in the scene into account using

estimated camera poses to improve the 3D semantic

map.

• The production of a semantic segmentation ground

truth is time consuming. We make our hand labelled

ground truth of different street scene sequences publicly

available1.

The rest of this paper is organised as follows. The follow-

1https://wiki.qut.edu.au/display/cyphy/Hu+He
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ing section addresses related work. Section III describes the

whole framework of the proposed method in details. Quali-

tative and quantitative experimental evaluation are discussed

in Section IV. Finally, Section V draws the conclusion and

states future work.

II. RELATED WORK

Recently, there exists a large amount of work from the

computer vision community focused on nonparametric, data-

driven modelling for scene inference which does not require

offline training procedures [12], [13]. These nonparametric

methods need a pre-built database that contains raw data

and labelled data, and then parse the input images using

a recognition-by-matching method. Specifically, the visual

objects in an input image are matched with the images in a

database using appearance similarity (e.g., SIFT flow [14]).

As the matched images in the database are annotated, the

labels of the images in the database can be transferred to the

input image if the match is semantically meaningful (i.e.,

building corresponds to building, tree corresponds to tree).

Furthermore, these initial labels are fused into Markov Ran-

dom Fields (MRFs) or Conditional Random Fields (CRFs) to

improve the labelling for each pixel or superpixel (i.e., pixel

sets with homogeneous attributes). In this paper, we extend

the above 2D nonparametric semantic segmentation to a 3D

space.

The most related literature to our work are [10], [15],

[16]. [15] employs 3D data from a laser or RGB-D sensor to

create a 3D probabilistic occupancy map for the environment

without semantic labelling. In [16], nonparametric models

are applied to image and video parsing. However, they do

not extend their method to the 3D space which is key for

most robotic applications. Very recently, Sengupta et al. [10]

proposed a 3D semantic model of street scenes. However,

they employ parametric models for 2D image semantic

segmentation which requires both offline training and large

amount of training time especially for a large training dataset.

Additionally, they apply high-order CRFs for semantic label

inference. We argue that a simple potential term, modelled

by sufficiently expressive observations, is comparable with

the strong prior potential term (i.e., high-order potential) in

random fields. Therefore we apply second-order MRFs with

a simple term for semantic inference. Furthermore, we also

take into account moving objects in the scene and evaluate

our method over multiple KITTI datasets.

III. 3D SEMANTIC MODEL FOR SCENE

UNDERSTANDING

In this section we introduce our proposed method for 3D

semantic occupancy map creation. As shown in Fig. 2, our

approach has three parallel stages: estimate the semantic

label of each pixel in the left view of each stereo image pair;

camera pose for each stereo image pair; and dense depth

map for each left view of stereo image pairs. Then a 3D

occupancy map is constructed based on the reconstructed

point clouds and a semantic label from a previous 2D

nonparametric image segmentation is obtained. Finally, the

Database'
Retrieval'

candidates'

Stereo'

sequences'

Stereo'visual'

odometry'
Camera'poses'

Dense%depth%maps%
Dense%3D%

reconstruc1on%

Seman8c'

parsing'

3D%seman1c%

model%

Query% Global%features%

Nearest%neighbors%

Labels%transfer%

P̂

D̂

L̂

X̂

Nonparametric%image%segmenta1on%

Fig. 2: System overview. Given rectified stereo image pairs, seman-
tic labels (L̂) are inferred by nonparametric segmentation method.
Camera poses (P̂) are estimated using stereo visual odometry. Dense
3D reconstruction (X̂) is computed using dense depth maps (D̂) and
camera poses. Based on these information, the final 3D semantic
model can be obtained.

3D semantic model is updated based on camera trajectory

estimated from stereo visual odometry, taking into account

moving objects along the trajectory. In the following, we

explain each stage in detail.

A. Nonparametric 2D Semantic Segmentation

As in [17], the pixels in an image and their corresponding

semantic labels are represented by a MRF which is defined

on a graph G=<V,E> consisting of N nodes (i.e., |V|=N),

where each node vi ∈V represents the latent random variable

associated with the pixel i in the image and each edge ei j ∈ E

represents the relationship of two neighbouring nodes, i.e.,

vi and v j in the graph.

The segmentation problem for an image can be considered

as a labelling problem in which every pixel should be

assigned a unique label l. In this paper, l = {Building, Car,

Sky, Tree, Sidewalk, Road, Bicyclist, Pedestrian, Vegetation-

Misc}. Therefore, the solution L = (l1, · · · , li, · · · , lN) can be

achieved by maximising p(L) given by a Gibbs distribution

of the following form:

p(L) =
1

Z
exp(−∑E(L)) (1)

where Z is a normalisation constant.

Now the maximisation of p(L) is equivalent to the min-

imisation of an energy function E(L). Following Bayes rule,

we can formulate the energy function E(L) as follows:

E(L) = ∑
i∈V

ψi(li)+λ ∑
(i, j)∈E

ψi j(li, l j) (2)

where ψi(li) is the unary potential (i.e., likelihood energy)

encoding the cost when the label of the pixel i is li,

and ψi j(li, l j) is the pairwise potential (i.e., prior energy)

representing the cost when the label for adjacent pixels i

and j are li and l j, respectively. λ indicates the relative

importance of the likelihood energy versus the prior energy.

We use λ = 1 in our experiments.

Unary potential: Referring to the TextonBoost algorithm

[8] which combines classifiers with different feature rep-

resentations to model the unary potential term in (2), we
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also apply a multi-feature representation to model this en-

ergy term. However, we employ a nonparametric method

to transfer the likelihood probability of labelled images in

the database to the query image rather than use pre-trained

classifiers described in [8]. More specifically, we build up

a database which contains raw images and corresponding

manually labeled ground truth. Like in [16], we use gist [18],

color histogram and a visual words dictionary [19] as global

features to represent each image in the database. And then we

apply the mean shift algorithm to generate oversegmentation

on each image in the database (each segment denotes a

super pixel). Local features like SIFT, location in image

coordinates, size of the super pixel in pixels, color of

each super pixel are extracted and concatenated to represent

each super pixel [16]. Each of the images in the database

have been labelled, giving each super pixel a corresponding

semantic label. Regarding a query image, global features

for the entire image and local features for the generated

super pixels are extracted. Then images from the database

are ranked based on the similarity of global features to the

query image. We choose the 30 top-ranked images from the

database as the nearest neighbours for modelling likelihood

probability of each super pixel in the query image to be each

semantic label as follows:

ψi(li) = ψi(lspi
) =−log ∏

sp∈I

wi p(sp|l) (3)

where spi represents the super pixel containing pixel i

in the query image, sp denotes super pixels from nearest

neighbours I, and l ∈ L is the semantic label. wi is the

normalised distance between super pixels in the query image

and nearest neighbours from database. For more details on

the nonparametric method, the reader is encouraged to refer

to [12], [16].

Pairwise potentials: The 8-neighbourhood smoothness

prior term φi j modelling the probabilities of label co-

occurrence (i.e., encouraging the adjacent pixels take the

same label). We model this term using a contrast sensitive

Potts Model [20].

ψi j(li, l j) = |li − l j|exp(−
||Ci −C j||

2

2σ2
) (4)

where Ci denotes the RGB value of a pixel i and ||Ci −C j||
2

is the Euclidean norm of the intensity difference. σ is the

average intensity difference between neighbouring pixels in

the image, which can be estimated as pixel noise introduced

by the camera. This smoothness term favours the object

boundary where neighbouring pixels have large contrast.

This MRF can be solved using the standard graph cut

algorithm [17], [20].

B. Stereo Visual Odometry

As camera pose estimation is not the primary focus of this

work, we apply the modified stereo visual odometry system

described in [21]. The input data are rectified stereo image

pairs from calibrated cameras. Stereo matching turns into a

1D search (i.e., horizontal correspondence) which is quite

−50 0 50 100 150 200 250 300 350

−150

−100

−50

0

50

100

150

X(m)

Y
(m
)

Fig. 3: Camera trajectory computed by stereo visual odometry is
registered manually to the Google Map.

efficient. With respect to the feature matching over time,

conventional camera resectioning [22] is applied to estimate

camera poses over time with a fixed calibration assumption.

In order to reject the incorrect matching (i.e., outliers) due

to lack of texture or image noise, we ensure the visibility

of a detected feature exists for at least three consecutive

frames over time for the stereo pair. Additionally, features

from dynamic objects are discarded using epipolar geometric

constraints. One example result of camera pose estimation is

shown in Fig. 3. As the dataset (KITTI Odometry sequence

15) does not have ground truth, we illustrate the camera

trajectory overlaid on Google map image qualitatively.

C. Dense 3D Reconstruction

For dense 3D reconstruction, we firstly generate dense

depth maps for each stereo pair. Specifically, we apply

the efficient stereo matching algorithm proposed in [23] to

compute a disparity map between stereo images, and then

filter out extreme disparity values using a median filter with a

3×3 patch window for an image of resolution 1241×376. As

the stereo camera is calibrated, we use (5) to compute dense

point clouds for each pixel with a valid disparity expressed

in the left camera coordinate.

Xi = (xi − cx)B/di (5a)

Yi = (yi − cy)B/di (5b)

Zi = f B/di (5c)

where (Xi,Yi,Zi) is the 3D point expressed in the left camera

frame corresponding to the pixel i with valid disparity di at

(xi,yi) in image space. B and f denote baseline and focal

length, while (cx,cy) represents the principal point in image

space derived from stereo calibration.

Secondly, a camera viewing volume (i.e., viewing frus-

tum) is clipped into a [0.5m 20m] depth range and then

transferred into global coordinates (origin is usually chosen

as the pose of the initial camera). The 3D volume is divided

into voxels with 0.2m resolution using an octree [15]. Each

minimum voxel denotes the leaf node in the octree and is

derived from parent nodes (see Fig. 4). Then we compute

the average centre of 3D points from the same voxel to
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represent the location of that voxel in global coordinates. The

semantic labels for these inside 3D points can be obtained

using estimated camera poses (§III-B) and 2D semantic

segmentations (§III-A). Finally, the semantic label for that

voxel is taken from the most frequent semantic label of the

inside 3D points. Note that the leaf nodes can be pruned if all

eight leaf nodes take the same semantic labels, their parent

node will take that semantic label and represent them. The

advantage of this representation is to decrease the data size

requirements and also increase the processing efficiency.
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Fig. 4: 3D semantic model is organised as an octree. Different node
in the tree has different metric resolution. We take the resolution of
leaf nodes as 0.2m in this paper. A different color of 3D points in
each voxel denotes the different semantic label. The voxel semantic
label is determined based on the maximum of the semantic label
histogram of inside 3D points. The empty voxel represents the
free space while the shaded voxel denotes the occupied voxel (best
viewed in color).

Finally, we update the volume using the camera pose

from stereo visual odometry. In order to increase memory

efficiency, we write the volume behind the cameras to disk

to deal with a larger dataset. With respect to the occupancy

estimation, we label the voxel as occupied if that voxel

contains more than 5 reconstructed 3D points and as free

space otherwise. Note that the above method assumes the

environment is static. Moving objects might introduce dupli-

cate points for the same object in the 3D reconstruction (see

Fig. 6(a)). A simple moving object filter will be described

in Section III-D to address this issue.

D. 3D Semantic Model

In this section we introduce the way we generate our final

3D semantic model. Once the semantic segmentation for each

image is obtained, we use the camera projection matrix to

project the color of the semantic label to the reconstructed

3D points. As previously mentioned, each occupied voxel

would contain multiple 3D points with different semantic

labels (see Fig. 4). We compute the label histogram in each

occupied voxel and choose the most frequent label as the

voxel semantic label.
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Fig. 5: Demonstration of our moving objects filter (best viewed
in color). Blue dots represent the incorrect reconstruction due to
moving objects along the camera trajectory. Blue dots will be
filtered out and red dots will be kept.

(a) Semantic point cloud w/o filter (b) Semantic point cloud with filter

(c) Semantic volume w/o filter (d) Semantic volume with filter

Fig. 6: Qualitative comparison between 3D semantic model without
and with a moving objects filter (best viewed in color). Regions of
interest are highlighted by dash ellipses.

Due to moving objects and textureless areas (e.g., sky)

in the scene, the 3D model might contain incorrect re-

constructions. As shown in Fig. 6(a) and 6(c), moving

objects are duplicated in the 3D model and parts of the sky

are reconstructed. As we know the semantic label for the

occupied voxel in the 3D model, we can correct the occupied

voxel with a sky label as free space (see Fig. 6(d)).

With respect to the error introduced by moving objects, we

employ a simple yet effective method to filter the 3D map.

Once we obtain the 3D semantic map and camera trajectory,

we argue that the region where the car can drive through

should be free 3D space. Therefore, the region covered by
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the camera trajectory is traversable. In Fig. 5, we know the

width (wcar) of the car on which the stereo rig is mounted.

In addition, there are free regions (ws) between the car and

other obstacles for safety purposes. Any occupied voxels

within this bounding box defined by wcar are removed if

their semantic labels are not road. As expected, it causes

a significant number of holes in the 3D model, however,

we know they are likely to be road. We use the geometric

information from the remaining voxels (most of them should

be road) within the bounding box defined by wcar +ws to

generate new road voxels to fill the holes. In particular,

we adjust the ws ∈[0.3m 0.5m] (reasonable safe distance

between cars) to achieve the smallest standard deviation

along z-axis (i.e., altitude above the sea level). The resultant

3D semantic map is shown in Fig. 6(b) and 6(d).

(a) Sample images and ground truth in our database

(b) Semantic image segmentation

Fig. 7: 7(a) Left: raw images; Right: ground truth. Note that the
object with the same class has different appearance in our database
highlighted in red dash ellipse; 7(b) Top: input images; Middle:
semantic segmentation results; Bottom: corresponding ground truth.
(best viewed in color)

IV. EXPERIMENTAL EVALUATION

In this section, we describe the dataset used and a qualita-

tive and quantitative evaluation of our system. Additionally,

we compare our results with that reported in [10].

A. Datasets

We evaluate our method on two publicly available KITTI

datasets: 2011 09 26 drive 0104 and Odometry sequence

15. Both datasets contain rectified stereo pairs with associ-

ated 3D ground truth data obtained by a Velodyne HDL-64E

laser scanner which is calibrated with respect to the stereo

camera. These datasets involved common objects such as

pedestrian, bicyclist, car, tree or building in urban, residen-

tial and campus like environment. 2011 09 26 drive 0104

consists of 312 image pairs at 1242×375 pixel resolution

over a driving distance of about 252m. We manually label

5 images for this dataset. Odometry sequence 15 contains

1901 stereo pairs with a resolution of 1241×376 covering

a track of around 1.5km, and we generate 7 ground truth

images for this dataset. We label the scene into 9 semantic

classes, i.e., Building, Car, Sky, Tree, Sidewalk, Road, Bicy-

clist, Pedestrian, VegetationMisc. In addition, we manually

annotated another 39 images from other KITTI datasets for

our database setup. Note that the 12 ground truth images

from 2011 09 26 drive 0104 and Odometry sequence 15

datasets were used for testing. These datasets are quite

challenging, and even objects of the same class in the scene

have significantly different appearance (see Fig. 7(a)).

In our current implementation, 3D reconstructions can

run up to 4∼5Hz, and 2D semantic segmentation of query

image takes around 30s. However, most processing time is

consumed by feature extraction and matching which can be

parallelised using a GPU implementation.

B. Qualitative Results

Fig. 7 shows 2D semantic segmentation results from the

nonparametric image parsing model. The top row is the

sample images from the dataset. The middle row shows

the results from the nonparametric model. By comparing

with ground truth shown in the bottom row, we can achieve

quite plausible semantic segmentation results, especially for

classes such as Building, Road or Tree. We also notice

that Tree and VegetationMisc are partially mislabeled due to

similar appearance and location. Additionally, shadow causes

the VegetationMisc label to bleed into the Sidewalk label

(see left column). These effects attribute to the quantitative

results in Table I. Qualitative correspondences highlighted

by white arrows between the 2D images and 3D semantic

model are shown in Fig. 8(a). A large 3D semantic map has

been created using Odometry sequence 15 and overlaid on

the corresponding Google Earth map as illustrated in Fig. 8.

This 3D semantic map is more than two times larger than

that addressed in [10]. More qualitative results are shown in

a supplementary video with this paper.

C. Quantitative Results

For quantitative evaluation, we firstly evaluate the geo-

metric accuracy of our 3D model using the Velodyne based

ground truth and then the semantic accuracy using our

manually labelled ground truth.

Geometric accuracy evaluation: By following [24], we us-

ing laser measures from Velodyne to evaluate the 3D model.

Specifically, we project the 3D model and the corresponding

ground truth 3D laser data back into a 2D image space. Using

the inverse form of (5), i.e., computing disparity based on

3D points and camera information, we can generate disparity

maps for our 3D model and 3D laser data. For each ground

3701



(a) Closeup view of the 3D semantic model

(b) Large scale 3D semantic map

Fig. 8: 8(a): White arrows show the correspondent objects between
3D semantic model and 2D images; 8(b): A 3D semantic map with
a 1.5km track overlaid on Google Earth map manually.

truth, we compute the ratio between the number of pixels

that satisfy |di −d
g
i | ≥ δ and the number of valid projection

of laser 3D data, where d
g
i is the ground truth disparity

computed from laser 3D data corresponding to the disparity

di generated from our 3D model. The error tolerance δ
ranges from 1 to 8 pixels. Then the ratios are averaged over

all the ground truth data (see Fig. 9). Particularly, the average

incorrect pixel ratio is around 10% (i.e., 90% accuracy) given

an error tolerance of 5 pixels.

Semantic accuracy evaluation: We use the evaluation

measures defined in [5], [10] to compute per-class Recall

(R), Average Recall (AR), Global Recall (GR) and per-

class Intersection vs Union (IU) for 2D semantic image

segmentation, the 3D model without a filter and the 3D

model with a filter. GR evaluates the overall ratio of correct

labelling, and AG denotes the average recall score of the

per-class measures. We use the selected camera poses to

project our 3D semantic model (i.e., without a filter and

with a filter) back to image views which have manually

labelled ground truth (see Fig. 10). Note that we set the

depth range of the camera viewing frustum as [0.5m 20m].

Thus, any structures beyond this range are ignored during

our evaluation.

As shown in Table I, the frequent and dominant classes

in street scenes like Road, Building or Car achieve reason-
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Fig. 9: Dense 3D reconstruction evaluation. δ is the error tolerance.

Fig. 10: 3D semantic model evaluation (best viewed in color).
(A) the input image; (B) corresponding projected view from 3D
semantic model without a filter; (C) ground truth; (D) corresponding
projected view from 3D semantic model with a filter.

ably high accuracy in the 2D semantic image segmentation

and 3D semantic model. There are few images containing

Pedestrian and Bicyclist labels in our current database (only

39 images), therefore the accuracy for these classes is quite

low compared with the other classes. Due to the error in

camera pose estimation and 3D reconstruction, 2D semantic

image segmentation always outperforms the 3D semantic

model. We can also see that our 3D semantic model with

a filter obtains better performance than that without a filter.

As expected, most improvements occur in the Road class on

which the filter takes effect. Additionally, we compare our

results with that in [10]. They consider Tree and Vegetation as

the same class, and evaluate their results by ignoring several

classes due to insufficient training data. In order to make a

fair comparison, we compute the average score (marked by

†) using the common classes between our experiment and

[10]. Note that we also compute the average score for all

the classes parsed by our model. The performance of some

classes (e.g., Building, Car, Road) is comparable with [10].

While our performance on classes like Tree, VegetationMisc

or Sidewalk (named as Pavement in [10]) is inferior, they

use a more sophisticated graphical model (i.e., high order

CRFs) and offline training with the images from the same

sequence. However, we consider Tree and Vegetation as

different classes (the inter-class similarity introduces more

error to our model). Additionally, the images in our database

are from different sequences rather than the test sequence.

V. CONCLUSIONS AND FUTURE WORK

We have presented a method for 3D street scene un-

derstanding using nonparametric semantic segmentation and

dense 3D reconstruction. We also take into account moving

objects in the scene to improve the 3D semantic occupancy

map. The evaluation on several challenging KITTI street
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Recall

Image segmentation 93.54 97.2 96.82 97.16 29.58 79.88 0.0 94.65 29.04 91.85 68.65 92.77
Image segmentation [10] 97.0 - 93.9 98.3 - 91.3 - - - 81.68 - 88.4

Semantic model w/o filter 80.19 0.0 81.31 81.69 0.0 30.25 0.0 48.3 0.9 68.36 35.85 78.48
Semantic model with filter 80.19 0.0 81.31 88.46 0.0 30.25 0.0 48.3 0.9 70.05 36.6 79.64

Semantic model [10] 96.1 - 88.5 97.8 - 86.5 - - - 77.15 - 85

Intersection vs Union

Image segmentation 90.63 80.15 91.22 93.85 29.58 71.54 0.0 87.67 23.52 86.81 63.13
Image segmentation [10] 86.1 - 78.0 94.3 - 73.4 - - - 71.65 -

Semantic model w/o filter 71.36 0.0 68.61 75.87 0.0 27.43 0.0 10.57 0.9 60.82 28.3
Semantic model with filter 72.93 0.0 69.37 80.98 0.0 27.43 0.0 10.57 0.9 62.68 29.13

Semantic model [10] 83.8 - 63.5 96.3 - 68.4 - - - 65.7 -

TABLE I: Quantitative results on the KITTI dataset. 3D semantic with a filter outperforms that without a filter. (†) indicates the score is
computed using the common classes between our experiment and [10].

scene datasets shows the promise of our method for 3D scene

understanding.

In future work, we plan to investigate the employment

of motion features for improving dynamic scene parsing. In

addition, we are also interested in exploring the interplay

between 2D and 3D information. Finally, we would like

to incorporate the 3D semantic map into SLAM framework

towards a semantic SLAM method.
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