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Abstract— Recently, researchers showed growing interest in
utilizing UHF Radio-Frequency Identification (RFID) technol-
ogy for localizing tagged items with mobile robots in industrial
scenarios. In this paper we present a novel three-dimensional
(3D) probability sensor model of RFID antennas in the context
of mapping passive RFID tags with mobile robots. The proposed
3D sensor model characterizes both detection rates and received
signal strength (RSS). Compared to 2D-sensor model based
approaches, the 3D model gains a higher mapping accuracy for
2D position estimation. Specially, with this sensor model, we are
able to localize the tags in 3D by integrating the measurements
from a pair of RFID antennas mounted at different heights
of the robot. Furthermore, by integrating negative informa-
tion (i.e., non-detections), the 3D mapping accuracy can be
improved. Additionally, we utilize KLD-sampling to reduce the
number of particles for our specific application, so that our
algorithm can be performed online. Indoor experiments with a
Scitos G5 robot demonstrate the effectiveness of our approach.
We also provide the datasets of this work for download.

I. INTRODUCTION

In recent years, robot-assisted applications in commercial

surroundings such as supermarkets, warehouses, and logistic

centers have attracted more and more attention. For these

environments, there is an increasing use of UHF RFID

tags for labeling products, assets, or equipment. If a robot

is equipped with an RFID reader in such environments,

automated inventory becomes possible. Compared to the

traditional inventory process, the products can not only be

itemized but also be localized by a sequence of RFID

readings [1], [2], [3] provided by the mobile agent.

However, mapping of RFID tags is quite challenging: The

propagation of radio waves is hard to model due to many

influencing environmental effects (e.g., reflection, diffraction,

or absorption). Nevertheless, measurements (e.g., readability

or RSS values) reported by the reader highly depend on the

relative position of the tag to the antenna.

Therefore, we propose a 3D RFID sensor model for map-

ping RFID tags. Unlike the existing 2D sensor models, our

3D sensor model characterizes the detection behavior of the

RFID antenna with respect to the 3D positions of RFID tags.

As visualized in Fig. 1, we can observe that measurements

(the detection counts and mean RSS values) from RFID

readers, not only depend on the relative xy displacement but

also rely on the height of the tag w.r.t. the antenna coordinate

frame. The contribution of this paper is threefold: First,

by applying our 3D sensor model, 2D position estimation
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(d) Mean RSS at 0.8m

Fig. 1. Visualization of the detection counts (left) and mean RSS values
(right) of an RFID antenna w.r.t. the position of RFID tags at full reader
transmission power.

can be improved, as compared to our previous 2D sensor

model. Since the position of the antennas is fixed in our

application, by using only one antenna, we are not able to

determine the height of RFID tags unambiguously due to

the symmetrical radiation property of antennas. Therefore,

as a second contribution, we show how the ambiguity can

be resolved and the mapping error can be reduced by a pair

of RFID antennas installed at different heights of the robot.

Third, we show that the 3D position estimation can be further

improved by incorporating non-detections for our specific

stereo antenna configuration. Moreover, we employ KLD-

sampling to reduce the number of particles. This enables

our algorithm to perform the mapping task in real-time.

The rest of this paper is structured as follows: After an

overview of the related work in Sect. II, we introduce the

Bayesian approach to localize RFID tags with sensor models

in Sect. III. Then, we describe the details of our sensor

model in Sect. IV, and Sect. V explains how to use KLD-

sampling to adapt the particle set. In Sect. VI, we describe

how to apply non-detections to improve mapping accuracy.

Finally, we present our experimental results in Sect. VII, and

conclude this paper in Sect. VIII.

II. RELATED WORK

A variety of approaches concerning the mapping of RFID

tags in the context of mobile robots are proposed in literature.

Hähnel et al. [1] were the first to utilize a sensor model to

determine the location of RFID tags with a mobile robot,
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whose position is estimated by the laser-based FastSLAM.

Vorst et al. [4] showed that sensor models can be learned

in a semi-autonomous way during normal navigation of the

robot. Joho et al. [2] incorporated RSS values as well as tag

detection rates into their sensor models to improve mapping

accuracy of RFID tags.

Several researchers have proposed to fuse other sensors,

like laser range finders, or visual sensors with RFID mea-

surements, to improve the mapping accuracy. Germa et al.

[5] combined RFID measurements with visual information to

track people with a mobile robot in a crowded environment.

Rohweder et al. [6] utilized the spatial structure of the

environment to further reduce the estimation error of passive

RFID tags. Deyle et al. [7] generated a 2D image which

characterizes the spatial distribution of RSS for an RFID-

tagged object by rotating mobile antennas. By aligning this

RSS image with a color image and 3D laser data, they are

able to localize objects in 3D space.

III. MAPPING RFID TAGS

In this paper, the positions of the transponders are es-

timated by a Bayesian inference similar to [1], [2], [4].

Formally, we denote the number of RFID tags around the

environment by L. m1:t = {m1,· · · ,mt} represents the

stream of measurements gathered by the mobile robot at

positions x1:t = {x1,· · · , xt} until time t. Here mt consists

of the measurement queried by the RFID antennas at time t:

mt = {m(1)
t ,· · · ,m(A)

t }, where A is the number of antennas

attached to the RFID reader. The measurement m
(a)
t is

expressed as a sequence m
(a)
t = {m(a)

t,1 ,· · · ,m
(a)
t,L}, where

m
(a)
t,j represents the measurement of tag j observed from

antenna a at time step t. In addition, let δ
(a)
t denote the

position of the tag w.r.t. antenna a’s coordinate system at

time t: δ
(a)
t = (x, y, z). We can compute δ

(a)
t by simply

transforming the robot coordinates with a fixed transforma-

tion matrix C
r
a, since the position of the antennas is fixed

on the robot, as shown in Fig. 2(a) and 2(b).

To estimate the location lj of tag j, we need to know

the posterior probability p(lj |m1:t, x1:t). In our case, we

consider the position of the tag in three dimensions, thus

lj = (xj , yj , zj). According to the Bayesian theory and the

Markov assumption, p(lj |m1:t, x1:t) can be rewritten as:

p(lj |m1:t, x1:t) = η1...t

t∏

i=1

p(mi|lj , xi)p(lj) (1)

= η1...t

t∏

i=1

A∏

a=1

p(m
(a)
i,j |lj , xi)p(lj) (2)

= η1...t

t∏

i=1

A∏

a=1

p(m
(a)
i,j |δ

(a)
t )p(lj) (3)

The formulas above allow us to iteratively estimate the

position of a tag by applying the sensor model based on

observed measurements. The most important part in Eq. (3)

is p(m
(a)
i,j |δ

(a)
t ), which is called sensor model. It characterizes

the likelihood of measurements mi of a specific tag j at a

relative position to the antenna δ
(a)
t . The formulas above are
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(b) Antenna setup

Fig. 2. (a) The mobile robot used for our experiments and the annotation
of the bottom antenna’s coordinate system (marked with pink). xy-plane
is parallel to the ground plane, z-axis is perpendicular to xy-plane. (b)
Antenna setup of our Scitos G5 robot. Vertical (left) and side view (right).

derived under the following assumptions (cf. [1], [3]): the

current observation mt is independent of previous observa-

tions m1:t−1; the observation of one tag is independent of

other tags in the environment; only the relative displacement

between tag and antenna is relevant to our sensor model.

Certainly, these assumptions are too strict in practice.

The readability and RSS of a tag are influenced by the

neighboring tags [8]. Furthermore, location-specific factors,

such as the materials the tags are attached to, obstacles in the

environment, orientation between tag and antenna or other

radio devices in the environment, have high influence on the

behavior of the RFID reader. Thus, many authors applied

location-fingerprinting techniques to improve the localiza-

tion accuracy of mobile agents [9], [10]. These approaches

estimate the position of a mobile agent from a set of pre-

collected observations. They showed a slight improvement

to model-based approaches [9]. However, the concern of

this paper is mapping of RFID tags, which requires an

explicit sensor model and it is almost impossible to take

all environmental factors into account.

The position of each RFID tag is estimated by an individ-

ual particle filter. Each particle filter consists of N samples

of position hypotheses: x
(i) = (x(i), y(i), z(i))1≤i≤N w.r.t.

the world coordinate frame and associated weights w(i). The

position of the tag is computed by a weighted mean among

all particles. The particles are initialized uniformly around

the area of the antenna position, at which the tag is first

detected. Specifically, x and y coordinates are restricted by

the maximum range of the RFID reader and z coordinates

are limited by the maximum height of the tags (e.g., 3 m).

Theoretically, Eq. 3 allows us to estimate the 3D po-

sitions of RFID tags by integrating several detections at

different 3D positions. It is worth pointing out that we are

not able to unambiguously determine the height of RFID

tag if our mobile agent only moves in the xy plane and

carries only one antenna or several antennas mounted at the

same height. As shown in Fig. 3, the posterior probability

density representation over the height of RFID tag obeys a

bimodal distribution due to the symmetrical characteristics

of the antenna. However, by integrating the measurements

from a second antenna, this ambiguity can be resolved, as

shown in Fig. 3(c). Particularly, we employ a pair of RFID

antennas, which we call stereo antenna configuration in this

paper, since the antenna poses only differ in the z-coordinate

spanning a distance b (called baseline), as shown in Fig. 2.

1590



�� �� �� �� ������
����

����
����

�
	

	��





��

�

���

�

� ��
� ��

particles above xy plane of top antenna
particles below xy plane of top antenna

projections of particles at xy and yz plane

(a) After 20th update with only top antenna.
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(b) After 30th update with only top antenna.
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xy plane of top antenna
xy plane of bottom antenna

(c) After 30th update with our stereo setup.

Fig. 3. Visualization of 3D Mapping using only top antenna or stereo antenna system. The size of the circles represents the weight of the particles.
Particles with too small weights are neglected in our visualization. (a) After processing 20 detections with only top antenna, there is high uncertainty about
the position of the tag: the estimation of z is quite ambiguous, but xy estimation is quite well, as can be seen from the projections of the particles. (b)
After 30th update, it is more clear to see that the particle filter converges to two regions that are symmetrical to the xy plane of the top antenna. (c) By
integrating measurements from a pair of antennas, after 30 measurements, the particles converge to one region and the ambiguity is resolved.

In our implementation, the positions and weights of par-

ticles are expressed as double values and kept in memory

without compression. In the case of 2D sensor models, we

use N = 1000 particles, which takes approx. 1 ms for each

measurement update (cf. Sect. VII-D), to achieve a good

mapping accuracy. Therefore the algorithm can be run in

real time. Approx. 45.7 MB of memory are required to

localize 2000 RFID tags in a store on-line. However, 3D

position estimation requires a higher number of particles,

due to the additional dimension. We utilize a particle filter

with 10000 samples to get a good position estimation. Hence,

time complexity and memory consumption increase due to

the increased number of particles. To reduce the running time

of our mapping module, we utilize KLD-sampling to adapt

the number of particles, as detailed in Sect. V.

Since we assume the tags to be static (i.e., tags do not

change their positions while the robot traverses the environ-

ment), we neither utilize motion information to predict the

movement of the particles nor execute resampling for our

particles. This strategy is also deployed by Hähnel et al. [1],

and Rohweder et al. [6]. For a comparison and discussion of

particle filter related resampling/pertubation approaches, we

refer to Joho et al. [2] and the dissertation of Vorst [3].

IV. SENSOR MODEL

The sensor model p(m|(x, y, z)) describes the likelihood

of observing a tag at a relative position to the antenna. In our

situation, each measurement m = (d, s) reports two pieces

of information: a binary value d which indicates that the tag

is detected, and the associated signal strength s. The sensor

model can be extended as [2]:

p(m|(x, y, z)) = p(s|d, (x, y, z))
︸ ︷︷ ︸

RSS likelihood

p(d|(x, y, z))
︸ ︷︷ ︸

detection probability

(4)

Thus, the likelihood of an observation can be modeled as

the fusion of two independent probabilities: the probability

of receiving the signal strength s at position (x, y, z), and the

likelihood of detecting the tag at this position. The latter one

alone is called tag detection probability, and the respective

model is called detection rate model.

We utilize a sensor model that incorporates RSS values

into detection rates, which was introduced by Joho et al.

[2] to improve the mapping accuracy of RFID tags. In this

paper, we refer to this sensor model as combined model.

Sensor models are usually represented as discretized grid

cells. Joho et al. [2] assumed that the RSS values inside grid

cells obey a gaussian distribution with a mean µ(x,y,z) and

a standard deviation σ(x,y,z). Based on this assumption, the

likelihood of observing the given RSS in that grid cell can

be calculated by:

p(s|d, (x, y, z)) = 1√
2πσ(x,y,z)

exp(− (s− µ(x,y,z))
2

2σ2
(x,y,z)

) (5)

We use the semi-autonomous approach proposed by Vorst

et al. [4] to learn our sensor model in this paper. The

RFID measurements are recorded as well as the poses of the

robot while the robot is manually controlled to traverse the

environment during an exploration phase. After this stage,

an off-line training step is performed to learn the sensor

model: At each RFID detection pose, the robot transforms the

global positions of the reference tags to the antenna’s local

coordinate frame and counts the non-detections n−
x,y,z and

the detections n+
x,y,z in each grid cell (x, y, z). The detection

probability p(d|(x, y, z)) is computed by:

p(d|(x, y, z)) =
n+
x,y,z

n−
x,y,z + n+

x,y,z

(6)

V. ADAPTING THE NUMBER OF PARTICLES

Fox [11] first used KLD-sampling to adapt the particle

size for robot localization. KLD-sampling is able to choose

the number of particles dynamically w.r.t. the current state of

approximation. At each update step, it determines the number

of particles that is required for a good approximation, so that

we have a probability of 1−δ to make sure the error between

the posterior and our estimation is limited by ε. The desired

number of particles nχ is determined by:

nχ =
1

2ε
χ2
k−1,1−δ (7)

here χ2
k−1,1−δ is the 1 − δ quantile of the Chi-Square

distribution with k − 1 degrees of freedom. Details about

the computation of χ2
k−1,1−δ can be found in [11], [12].

We use a specialized version of the KLD-algorithm. In

our application the tags are assumed to be static, and we

therefore neglect resampling and prediction. As a result of

this, the importance weights of the particles in the predictive

distribution are not uniform after the application of updates.

Therefore, after sampling a particle from the predictive
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belief, we keep track of the already chosen samples to not

integrate them multiple times into the adapted distribution,

which otherwise would lead to a corruption of the posterior.

For that reason, the number of sampled particles nχ differs

from the actual number of particles kχ that are selected for

the adapted distribution, since duplicate particles are skipped.

To keep diversity in our distribution, we introduce another

parameter kχmin as a minimum threshold for the desired

number of particles. As a result, we get a static Monte-Carlo

based representation of our target domain, where particle

numbers adapt to the current state of the estimation.

VI. UTILIZING NEGATIVE INFORMATION

Negative information has been successfully applied for

object tracking [13] and localization [14] of mobile robots.

In this paper, we treat non-detections as negative information

for our stereo antenna configuration to improve 3D mapping

accuracy. Detections and non-detections are regarded as

mutually exclusive events in this paper, therefore the non-

detection model p(m−|(x, y, z)) is computed as:

p(m−|(x, y, z)) = 1− p(d|(x, y, z)) (8)

Non-detections give you an evidence that the tag is absent

in a certain area, which may be useful to infer the potential

location of the tag. However, it is difficult to balance detec-

tions and non-detections in practice. This is because, on the

one hand, the particles often converge to a region with low

detection likelihood due to false negatives of non-detections,

which is shown by Vorst [3]; on the other hand, incor-

porating non-detections requires more computational time.

To compensate for that, we only consider non-detections

when the specific tag is detected by at least one antenna in

our stereo antenna setup. Particularly, if antenna a+ detects

the tag while a− does not, we additionally apply the non-

detection sensor model for antenna a−. The idea of this is

straightforward. Applying negative information may devalue

the particles with high likelihood due to false negatives, but

by integrating the non-detection model only in case of a

detection, we minimize the false-negative count.

VII. EXPERIMENTAL RESULTS

A. Setup

In this paper, a Scitos G5 mobile robot from Metralabs,

as shown in Fig. 2(a), served as the experimental platform.

The robot is installed with a laser range finder (SICK S300)

with 240◦ field of view, and a UHF RFID reader (Impinj

Speedway R1000). The reader is able to provide RSS values

(-35 dbm to -80 dbm) and has a maximum read range of up

to 8 meters. The experiments were conducted in an indoor

environment with an area of approx. 60m2. Around 65 UHF

RFID tags (Alien Technology Squiggle) were attached to

the furniture and the walls of the lab at different heights,

ranging from 0.2 to 2.5 meters. The positions of all tags

were measured manually beforehand to provide ground truth

for our experiments.

We manually steered the robot at different trajectories

through the lab with a maximum velocity of 0.2m/s. The

robot traveled around 1.5 km with a duration of approx.

TABLE I

2D MAPPING ERRORS (IN CENTIMETERS) UNDER INFLUENCE OF

DIFFERENT SENSOR MODELS AND VARIOUS SETUPS OF ANTENNAS.

antenna
config.

model
dim.

detection rate model combined model
mean± std.dev. median mean± std.dev median

Bottom
2D 39.0± 20.8 38.0 35.7± 24.4 29.8
3D 39.1± 21.8 38.0 33.1± 20.8 32.7

Top
2D 38.2± 18.6 37.1 40.1± 22.5 37.1
3D 36.2± 17.2 37.1 35.3± 17.2 34.7

Both
2D 32.6± 13.9 35.5 26.2± 16.1 23.7
3D 38.4± 18.6 38.0 23.4± 15.6 19.9

three hours, and seven log files were recorded at the same

time with a wide baseline stereo antenna configuration

(b = 1.1m). Each log file consists of at least 2000 RFID

measurement and the associated true position of the robot,

which is estimated by a laser-based Monte Carlo localization

algorithm [15]. Totally, approx. 438762 RFID detections

were recorded for the wide baseline configuration. The mean

mapping accuracy was averaged by validating one tag using

the sensor model learned from the rest of the tags. In

addition, we recorded three log files for a middle baseline

configuration (b = 0.7m), and another three for a small

baseline configuration (b = 0.3m) to compare the impact of

various baselines on mapping accuracy. The three different

configurations of baseline width were obtained by fixing

the bottom antenna and only moving the top antenna, as

visualized in Fig. 2(b).

B. Evaluation of 2D mapping accuracy

The performance and accuracy of 2D mapping using

different sensor models was evaluated by a first series of

experiments. We used a particle number of 1000 for 2D

sensor models. These particles were spread uniformly in the

xy plane with a fixed height z, e.g., z = 1.0m. For 3D sensor

models, we equally distributed 13000 particles at various

heights ranging from 0.0 to 2.4 meters with an interval of

0.2m. Thus, the experimental results under various sensor

models are considered to be comparable, since the xy density

of particles for the 3D sensor model is identical to the

2D sensor model. We neither performed KLD-sampling nor

incorporated negative information in the experiments. The

results are listed in Tab. I, in which we combined different

sensor models and antenna configurations. Obviously, using

both antennas achieves better results than only one antenna

for both 2D and 3D sensor models. We also observed that

for all experiments conducted with the combined model, the

3D sensor model clearly improves mapping accuracy. For

example, with only the top antenna in use, the mean mapping

error is reduced from 0.401m to 0.353m by applying the

3D sensor model. This gives us an improvement of 12.0%
compared to the 2D sensor model.

As a comparison we evaluated the approach presented by

Joho et al. [2]. In case of a single antenna, the mean mapping

error (i.e., 0.357m for bottom antenna only) is higher than

the error (0.29m) obtained by Joho. The reason is, that in our

work the tags are distributed at different heights, while the

tags are located roughly at the same height in Joho’ s work.

However, with a pair of antennas and the 3D sensor model,
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Fig. 4. Performance evaluation under different parameters. (a) Mapping error with and without negative information; (b) Mean and std. dev. of abs.
mapping error versus mean computation time of each detection event under different numbers of particles; (c) Mapping error under various baselines.

we achieve a mean error of 0.234m for 2D localization,

which is equivalent or even slightly better than Joho’s results.

C. Influence of negative information

The influence of negative information on mapping accu-

racy was investigated in the next experiments. The algorithm

was tested using a fixed number of particles (N = 13000)

without KLD-sampling. As can be seen from Fig. 4(a), which

visualizes the mapping results with and without integrating

negative information, utilizing negative information improves

the mapping accuracy. For example, the mean height error

is reduced from 0.38m to 0.28m, which is an improvement

of approx. 26.3%. This is due to the fact that we can exploit

the stereo setup of our antennas by incorporating negative

information: If both antennas detect a tag, we can infer that

the tag is probably between the two antennas; otherwise,

if only the top antenna detects the tag, it is likely that the

tag’s location is in the region closer to the top antenna, as

described in Sect. VI.

D. Evaluation of 3D position estimation

As a third series of experiments, we varied the number

of particles N to evaluate the performance of 3D position

estimation, as depicted in Fig. 4(b). We incorporated negative

information in these experiments but did not perform KLD-

sampling. Our algorithm was tested on an Intel Core i5-

2410M @ 2.3 GHz CPU, with 4 GB RAM. As can be

seen from Fig. 4(b), we obtain nearly the same mapping

results for N ≥ 13000, but at the same time the computation

time increases drastically. With N = 96000, we obtain

a mean abs. 3D mapping error of 0.40m. As expected

and shown in Fig. 4(b), the mapping errors increase for

smaller N . Additionally, we noticed that the error in height

estimation is usually larger than the error in the xy-plane

in all experiments. For example, with N = 13000, the mean

height error is approx. 0.28m, which is much larger than the

mean error of x or y: 0.23√
2
≈ 0.16m. This can be explained

as follows: x and y positions of the tags are estimated

through various measurements collected by the mobile robot

that moves in the xy plane, while z is only determined by

the difference of two RFID antennas. Thus the deviation of

measurements in xy direction is much higher than in the z
direction. As a result, we do not get a good z-estimation

due to the lack of distinct detection samples in the z-axis.

Another drawback is the required computation time: we need

approx. 52ms (for N = 48000) to process one tag detection,

thus it is impossible to run the algorithm in real time for

densely tagged environments, where the robot may receive

hundreds of RFID readings per second. However, as shown in

Sect. VII-F, by applying KLD-sampling to adapt the number

of particles, we are able to run our algorithm online meeting

the real-time requirements.

E. Influence of the baseline of the stereo antenna system

In the next series of experiments, we examined the

mapping accuracy under various baselines of our stereo

antenna configuration. We did not perform KLD-sampling,

but negative information was utilized in these experiments.

Due to the physical and technical limitations of our robot,

we are not able to set the baseline of the antennas wider

than 1.1m. As can be seen in Fig. 4(c), wider baselines

result in better mapping results. With small baselines, the

mapping error is notably worse. For example, the height

mapping error with the smallest baseline (0.3m) is nearly

twice as high as compared to the widest baseline (1.1m)

error. This is because our stereo antenna setup degrades to

a single antenna for small baselines, since the difference in

the measurements is dominated by the characteristic noise

from RF-propagation. In contrast, if the baseline is chosen

too wide, there is no overlap between the two RF-fields, and

the arrangement degrades to a simple antenna-array with two

distinct (single) antennas. Since the possible height on the

robot is limited, the second case is of no concern to us under

the given configuration (i.e., full transmission power level).

F. KLD-sampling performance evaluation

To examine the performance of KLD-sampling, a last

series of experiments was conducted for varying values of ε
and kχmin. This technique is also recommended by Fox [11].

We used a bin size of 0.5m × 0.5m × 0.5m and fixed δ
and nχmax to 0.01 and 300000 respectively. Furthermore,

we initialized the particle filters with N = 13000 and

integrated negative information for all experiments. For our

experiment, the number of particles is reduced below kχmin

(e.g., 1000) after several updates (e.g, five or ten) of the

measurements. Fig. 5 illustrates the 3D mapping accuracy
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Fig. 5. 3D Mapping error under various combination of kχmin and ε.

under various ε and kχmin. Smaller ε yield better results,

while larger ε lead to worse mapping accuracy. Moreover,

it is obvious that larger kχmin lead to better results for all

ε values. But in practice, we need to consider the trade-

off between time complexity and accuracy. Mapping with

a larger kχmin results in a good position approximation.

On the contrary, utilizing too many particles requires much

more computation time. For example, the difference of mean

3D mapping errors between kχmin = 1000 and kχmin =
5000 for ε ≦ 0.01 is less than two centimeters, which is

relatively low as compared to the previous mean absolute

mapping error of approx. 0.4m, while the time consumption

is doubled at the same time. Hence, it is reasonable for us

to choose kχmin = 1000 rather than kχmin = 5000 for

ε ≦ 0.01 considering the balance between efficiency and

accuracy. In addition, for kχmin = 1000 and ε ≦ 0.01,

KLD-sampling only uses approx. 7% particles of the fixed

sampling approach, but yields nearly the same good mapping

accuracy.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel 3D sensor model which

considers both detection likelihood and RSS values for local-

izing UHF RFID tags with a mobile agent. The contribution

of this paper is as follows: First, we demonstrated that 2D

position estimation can be improved by applying a 3D sensor

model. Second, we showed that this sensor model can be

used to determine the 3D position of RFID tags by mounting

two antennas at different heights. Third, we utilized negative

information to further improve mapping accuracy. Fourth, we

employed KLD-sampling to be able to perform the mapping

task in real-time. The experimental datasets of this paper

can be found at our webpage: http://www.cogsys.cs.uni-

tuebingen.de/datasets/iros2013.

Comprehensive experiments were conducted to show the

effectiveness of our approach. By using our stereo antenna

setup and incorporating negative information, we are able to

localize RFID tags with a mean abs. localization error of

0.24m in 2D and 0.40m in 3D with 0.28m for height. As

compared to existing 2D sensor model based approaches,

our 3D sensor model improves the 2D mapping accuracy

by approx. 12.0% (from 0.401m to 0.353m). Additionally,

utilization of negative information reduces the mean abs.

mapping error by approx. 26.3% (from 0.38m to 0.28m) for

height. Moreover, with KLD-sampling, we are able to save

approx. 90% computation time, while the mean mapping

error increases by slightly two or three centimeters.

There are several possible extensions of this work: First, it

would be interesting to see if the 3D mapping accuracy can

be improved by rotating our stereo antennas or installing

more RFID antennas. Another direction could be the inte-

gration of an outlier-removal approach, which deals with the

ghost detections of RFID tags due to environmental effects

on RF propagation, to improve the mapping accuracy.
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