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Abstract— This paper presents high speed and high accuracy
visual servoing system. The algorithm has three major improve-
ments, which can be implemented in practical applications;
Firstly high-accuracy pose estimation by using stereo cameras,
secondly real time implementation issues with non-real-time
image processing platform and thirdly a consideration for in-
dustrial position controller. To resolve the issues, position-based
visual servoing (PBVS) is adopted and appearance model based
virtual visual servoing (VVS) is applied for pose estimation.
VVS approach does not compute the stereo matching but
directly compares the OpenGL rendered image and camera
image for each camera; estimate the position/orientation using
VVS independently for each camera; and provides a theoreti-
cally optimal compromise among those estimates. To enhance
estimation accuracy, a hybrid method of stereo trigonometry for
position estimation and weighted least squares for orientation
estimation is proposed to combine the information from the
stereo cameras. Operation speed is increased by using graphic
processing unit (GPU) acceleration and an on-line trajectory
generator which can accommodate the variable cycle of the
image processing and the fixed cycle of a common robot
controller. Finally, some experimental results illustrate the
effectiveness of the proposed framework.

I. INTRODUCTION

Product assembly has growing demand in consumer elec-

tronics. Because the lifetime of these products are very

short, modification of the production line is frequent. Robots

are the most promising solutions to make the line flexible

and worker-friendly. Robot teaching is to store the desired

positions in memory of the controller. This requires well-

trained operator to achieve high repeated accuracy of the

industrial robots. Therefore, to make robot teaching simple

is the key to realize the flexible production system. For

example, robot teaching is simplified by acquiring human

skills and transferring these data to robotic systems [1].

A vision-guided control, in which the manipulator moves

adaptively to its environment by using visual information,

is another candidate of enabling method for the flexible

production system. For example, when a visual servoing

is applied as the vision-guided control, robot teaching is

realized by preparing a reference image in which an object is

located in certain position [2]. Therefore this paper presents a

high speed/accuracy appearance model based visual servoing

with stereo cameras for practical applications to realize the

flexible production system.
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II. RELATED WORKS

Hager proposed a pioneering work of stereo visual ser-

voing without computing stereo matching [3]. The method

is robust against camera positioning and robot kinematics.

However, the task definition is feature dependent which is

not desirable for industrial application because the feature

selection is not trivial for the given tasks. In this sense,

the authors prefer a appearance model based approach. It

is much more intuitive for the user to define what should be

controlled.

The real-time object pose estimation is one of the key

components of the proposed control. The model-based ap-

proaches have been discussed widely in the past for the

real-time object pose estimation. The approaches are clas-

sified according to the estimation technique and the feature

selection. Error minimization by standard non-linear method

is applied to edges in a camera image of an object and a

model image of the object model in [4] and [5]. To enhance

stability against degenerate point data sets, the singular value

decomposition (SVD) is utilized to minimize errors between

edges [9]. The extended Kalman filter (EKF) is applied

to calculate the object pose from measurements of edges

[6], texture in reference area [7], the end points of straight

lines [8]. The virtual visual servoing (VVS) based on the

visual servoing algorithm is applied to error minimization

between the feature points, such as edges is presented in

[10] and [11]. Features which are extracted from object

model, such as edges, and model-free cues are integrated

in the iterated extended Kalman filter (IEKF) to obtain

unobservable rotations of spherical objects [12]. Appearance

learning by hand-segmented images is applied to articulated

object tracking [13]. Recently, the particle filter approach

using feature points, such as edges, is proposed to realize

robust estimation in [14], [15] and [16]. Robust photometric

and mutual information approaches are also presented in [17]

and [18].

Despite of a lot of research efforts, visual servoing systems

that can be used for practical applications such as industrial

use have seldom been realized in the past. Therefore, com-

pared to the related works, in this paper, we focus on issues

listed below.

• Enhancement of estimation accuracy of position in opti-

cal axis of camera and orientation using stereo cameras.

• Parallelism of estimation algorithm and interoperability

between model image generation and GPU calculation

to increase frame rates of image processing.

• Accommodation of variable cycle of image processing
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Fig. 1. System Configuration

and fixed cycle of a common robot controller.

The rest of the paper is organized as follows. In Section

III, implementation of visual servoing with stereo cameras

is described including proposals of GPU accelerated pose

estimation and variable cycle on-line trajectory generator.

Two experimental results regarding positioning accuracy and

tracking speed are shown in Section IV. Finally, we conclude

the paper in Section V.

III. POSITION-BASED VISUAL SERVOING WITH STEREO

CAMERAS USING APPEARANCE MODEL BASED VIRTUAL

VISUAL SERVOING

A. Visual Servoing Framework

The system configuration is depicted in Fig. 1. The system

is composed of a manipulator, stereo cameras (CameraR and

CameraL), a hand and two objects (ObjectM and ObjectF).

The ObjectM is grasped by the hand and moved by the

manipulator. While the ObjectF moves freely, the ObjectM

is visually controlled so as to be in same relative pose

depicted in a reference image. Σ, ΣL, ΣR, ΣH , ΣM and ΣF

are attached to a based of the manipulator, the CameraL,

the CameraR, the hand, the ObjectM and the ObjectF,

respectively. RL is the rotation matrix which transforms a

vector in Σ to that in ΣL. TL
R is the translation vector from

the origin of ΣL to that of ΣR; RL
R is the rotation matrix

which transforms a vector in ΣL to that in ΣR. TH
M is the

translation vector from the origin of ΣH to that of ΣM . pL
M/F

is the position of the origin of ΣM/F in ΣL; oL
M/F is the

orientation of ΣM/F in ΣL.

The block diagram of position-based visual servoing

(PBVS) is shown in Fig. 2. Considering compatibility to a

common robot controller, we choose PBVS in our system.

Therefore a variable cycle on-line trajectory generator is

needed to accommodate the differences between the image

processing cycle and the position control cycle. Speed and

accuracy of object pose estimation are keys to enhance PBVS

Position ControlTrajectory Generation

Image Processing

Fig. 2. Visual Servoing Block Diagram

performance. Control raw of PBVS is given as follows:
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The image processing starts with capturing images of

the objects by the stereo cameras. The current poses of

the objects are estimated from stereo camera images IL
and IR by the appearance model based pose estimator

which is implemented by using VVS. This is explained

in Sec. III-B.1 and Sec. III-B.2 in detail. The outputs of

the image processing block t
[

t∆p t∆o
]

, which are

relative displacements between the current and desired pose

of the hand, are calculated from the differences between

the current pose t
[

tp
L(c)
M

to
L(c)
M

]

and reference pose

t
[

tp
L(g)
M

to
L(g)
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]

of the ObjectM by multiplying the

transpose of the rotation matrix RL, the skew-symmetric

matrix S
(

TH
M

)

and the gain λ. Here, 0 is 3x3 zero matrix.

The reference pose of the ObjectM is obtained by adding

the current pose of the ObjectF t
[

tp
L(c)
F

to
L(c)
F

]

and the

relative position between the objects t
[

tpr
tor

]

which

is defined in advance. The average cycle of the image

processing T is also an output of the image processing

block for the variable cycle on-line trajectory generator to

generate trajectories which are divided into first accelera-

tion/deceleration section and second constant velocity section

considering the current pose t
[

tp(c) to(c)
]

and the rela-

tive displacement t
[

t∆p t∆o
]

of the manipulator. The

variable cycle on-line trajectory generator outputs the desired

pose t
[

tp(d) to(d)
]

with each cycles of the position

control following the trajectories. After generation of the

desired pose, the desired joint angles are calculated by the

inverse kinematics and fed to the manipulator.

B. GPU accelerated Appearance Model Based Object Pose

Estimation with Stereo Cameras based on Virtual Visual

Servoing

In this section, two appearance model based estimation

methods by using stereo cameras based on VVS are pre-

sented, one is weighted least squares and the other is the

hybrid method of weighted least squares for orientation es-

timation and the stereo trigonometry for position estimation.
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Real Space

Virtual Space

Fig. 3. Configuration of Real Space and Virtual Space of Stereo Cameras

Finally, GPU-accelerated SSD calculation is proposed to

shorten the image processing cycle.

1) Weighted Least Squares: Configurations of real space

and virtual space of stereo cameras are shown in Fig. 3.

In the virtual space, stereo cameras and the coordinates

frames are described as CameraL’, CameraR’, Σ
′

L and Σ
′

R,

respectively. To estimate an object pose in the real space

by the appearance model based method, intrinsic parameters

and relation between stereo cameras should be reproduced

in the virtual space. Commonly-used calibration method, for

example image processing software library OpenCV can be

used to obtain intrinsic parameters of a camera [19]. Intrinsic

parameters are described as follows:

Ac =





fku 0 uc

0 fkv vc
0 0 1



 . (3)

When an object model in the virtual space are rendered by

using 3D graphics software library OpenGL [20], intrinsic

parameters can be set by using glFrustum function. Argu-

ments of glFrustum function are as follows:

right = − uc

fku

zNear left = W−uc

fku

zNear

top = H−vc
fkv

zNear bottom = − vc

fkv

zNear.
(4)

Here, W and H are width and height of an image. The

relative distance TL
R and the rotation matrix RL

R between

stereo cameras can also be obtained by using OpenCV and

these values are assigned to those in the virtual space TL′

R′

and RL′

R′ . Therefore, the position and orientation of an object

model in the virtual space correspond to those of the object in

the real space. In the experimental system, relative distance

and rotation matrix are measured as follows:

tTL
R =

[

−270.51 −150.15 125.98
]T

(mm)

RL
R =





−0.82 0.10 0.57
−0.31 0.90 0.29
−0.48 −0.41 0.77



 .

Pose estimation by using weighted least squares based on

the steepest descent method is described as follows:
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IL and IR are the object image vector of the CameraL and

the CameraR. IL′ and IR′ are the model image vector of

the CameraL’ and the CameraR’. In this estimation method,

the steepest descent method is utilized to minimize the cost

function f which indicates difference between the object

image and the model image. η is a tuning parameter of step

size. k and k − 1 denotes the current and the former status.

The cost function is defined as a weighted summation of sum

of squared differences (SSD) between the object image and

the corresponding model image of stereo cameras. pR′

i and

oR′

i in (6) are calculated from pL′

i and oL′

i by applying RL′

R′

and translating TL′

R′ . Weights are calculated by using noise

variance of each cameras. Assuming that object velocity is

relatively slow compared to frame rate, variance of Gaussian

white noise of each cameras can be obtained by calculating

SSD of current and previous frames of camera images as

follows:

|Ij(k)− Ij(k − 1)|
2
≈ 2WHσ2

j , j ∈ {L,R} . (8)

2) Hybrid Method: Appearance change when an object

translates along z axis, which is parallel to optical axis,

is relatively small compared to other axes. This causes

estimation accuracy degradation of z axis. Therefore, in the

hybrid method, z position is calculated from those of x and

y by using trigonometry as described as follows:
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Fig. 4. Framework of GPU-accelerated SSD calculation
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Positions of x and y axes in the CameraL and the CameraR

are calculated by the steepest descent method. TL
R(i) denotes

a i-th row vector element of TL
R and RL

R(ij) denotes a i-th

row and j-th column matrix element of RL
R, respectively.

3) GPU-accelerated SSD calculation: SSD calculation is

implemented on GPU because cycle time can be shorten

by calculating subtraction and square in parallel with each

pixels. The framework of GPU-accelerated SSD calcula-

tion is shown in Fig. 4. Object images, that are captured

by stereo cameras, are transferred from CPU to global

memory on GPU. Sixteen model images are rendered at

once and transferred through pixel buffer object (PBO) to

global memory on GPU directly. Twelve images are used

for calculation of partial differentials of the SSD in (5)

as central difference. Another image is used to obtain the

noise variance as described above. Other two images are

mask images to extract the target objects of pose estimation.

The other image is used for evaluation of the difference

between the object image, in which the object is located

the former position and orientation, and the object image.

Squared differences are calculated in parallel with each

pixels. Reduction summation is applied twice to sum up the

squared differences in consideration of bank conflicts, loop

unrolling and synchronization of threads. The calculation

described above is applied to each of stereo cameras. CUDA

is utilized to implement the framework on GeForce GTX

690. Measurements of the image processing cycle is shown

in Fig. 5. The average image processing cycle is shortened

to 10 ms by applying the framework.

Fig. 6. Experimental System

C. Variable Cycle On-line Trajectory Generator

Cycle time of the image processing and display of the

results on a PC monitor could be varied depending on

the status of the PC as shown in Fig. 5. Therefore the

variable cycle on-line trajectory generator is necessary for

accommodation of the variable cycle of the image processing

and the fixed cycle of a common robot controller. The on-

line trajectory generator for a common robot controller is

also discussed in [21].

Assuming the variations from an average cycle are around

50 % with reference to the measurement, a cycle is divided

into two equal sections. Then a manipulator is accelerated or

decelerated in the first half and moved at constant velocity

in the second half. Besides, trajectory is configurated so as

that velocity changes as trapezoidal shape combined with

sine curve for a manipulator to be accelerated or decelerated

smoothly. The equation of the variable cycle on-line trajec-

tory generation, which generates the desired pose in Fig. 2 in

accordance with position control cycle, can be obtained by

setting the boundary conditions of the velocity and position

as follows:
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v1, ω1, v0 and ω0 are the current and the former transla-

tional and angular velocity, respectively. p
(c)
0 and o

(c)
0 are the

position and orientation of the hand when an output from the

image processing is refreshed. T is an average cycle of the

image processing, ∆t is a position control cycle. Typically
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Fig. 7. Object Image of Plug and Jack

Fig. 8. Object Model Image of Plug and Jack

∆t is 1 ms.

IV. EXPERIMENTS

In this section, two experimental results show the effec-

tiveness of the proposed approach in terms of speed and

accuracy.

A. Positioning Accuracy

Experimental system is shown in Fig. 6. The experimental

system consists of a 7-DOF manipulator, to which the low

degree of freedom multipurpose hand iGRIPP is attached

[22], stereo cameras, a plug and a jack as objects to be

positioned. Additionally, a 3D scanner is used to measure the

relative object pose for evaluation purpose. An object image

and an object model image of the plug and the jack are shown

in Fig. 7 and Fig. 8, respectively. An analytical solution of the

inverse kinematics is utilized to generate continuous motion

of the manipulator in Cartesian space [23].

A camera image and a 3D scanner image after positioning

are shown in Fig. 9. Position and orientation of the ObjectM

coordinated frame in the ObjectF coordinate frame is cal-

culated by fitting planes on to each surfaces of the plug

and the jack. Positioning accuracy by using the weighted

least squares and the hybrid method are shown in Table I.

Reference pose of the plug is calculated just one time after

pose estimation of the jack. The plug is positioned 5 times

for each methods under the same conditions According to the

results, the hybrid method is more accurate than weighted

least squares generally.

(a) Camera Image (b) 3D Scanner Image

Fig. 9. Camera Image and 3D Scanner Image after Positioning

Fig. 10. Relative Pose of CDs in Speed Measurement

B. Speed Measurement

In this section, the effectiveness of the proposed approach

in aspect of speed is shown. In this experiment, CDs are

utilized to validate speed and accuracy simultaneously. The

relative pose of the CDs is defined so as that edges of the

CDs are faced each other as shown in Fig. 10. The CD is

grasped by the hand and moved by the manipulator so as to

be same as the image shown in the reference image and the

other is gripped by a fixing device and moved by an operator

to measure tracking speed of the CD.

Extracted sequence images of the CDs are shown in Fig.

11. In this experiment, the CD which is gripped by the fixing

device is moved for about 14 seconds. Average translational

and angular velocity of the CD which is moved by the

manipulator in the CameraL coordinate frame is shown in

Table II. Frame rate of the image processing is around 100

frames per seconds (FPS). As shown in Fig. 11 and Table

II, accurate high-speed tracking motion is realized by the

proposed approach.

V. CONCLUSIONS

In this paper, high speed/accuracy appearance model based

visual servoing with stereo cameras is presented. The hybrid

method of stereo trigonometry for position estimation and

weighted least squares for orientation estimation to enhance

estimation accuracy is proposed and validated the effective-

ness by comparing positioning accuracy. The effective GPU

implementation of object pose estimation is proposed to

TABLE I

RELATIVE POSE MEASUREMENT RESULTS

x (mm) y (mm) z (mm) α (deg) β (deg) γ (deg)

Desired Value 10 10 10 0 0 0

Weighted Least Squares
Results(Average) 11.05 7.28 10.87 1.46 1.93 1.06

Errors 1.05 2.72 0.87 1.46 1.93 1.06

Hybrid Method
Results(Average) 10.63 8.10 10.86 1.09 1.64 1.57

Errors 0.63 1.90 0.86 1.09 1.64 1.57
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(a) 0 sec (b) 2 sec (c) 4 sec (d) 6 sec

(e) 8 sec (f) 10 sec (g) 12 sec (h) 14 sec

Fig. 11. Sequence Images of Speed Measurement

TABLE II

SPEED MEASUREMENT RESULT

x (mm) y (mm) z (mm) α (deg) β (deg) γ (deg)

Initial Pose 61 60 506 76 9 19
Final Pose −64 −92 440 32 52 73

Displacement −125 −152 −66 −44 43 54

vx (mm/s) vy (mm/s) vz (mm/s) ωα (deg/s) ωβ (deg/s) ωγ (deg/s)

Average Velocity −8.9 −10.9 −4.7 −3.1 3.1 3.9

increase frame rates of the image processing for the high-

speed visual servoing. Besides the variable cycle on-line

trajectory generator is proposed to accommodate the variable

cycle of image processing and the fixed cycle of a common

robot controller. The effectiveness of these approaches are

validated by measuring positioning accuracy and tracking

speed of an object when PBVS is working.
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