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Abstract— A method is proposed for gesture recognition and
humanoid imitation based on Functional Principal Component
Analysis (FPCA). FPCA is a statistical technique of functional
data analysis that has never been applied before for humanoid
imitation. In functional data analysis data (e.g. gestures) are
functions that can be considered as observations of a random
variable on a functional space. FPCA is an extension of
multivariate PCA that provides functional principal compo-
nents which describe the modes of variation in the data. In
the proposed approach FPCA is used for both unsupervised
clustering of training data and gesture recognition.

In this work we focus on arm gesture recognition. Human
hand paths in Cartesian space are reconstructed from inertial
sensors. Recognized gestures are reproduced by a small hu-
manoid robot. The FPCA algorithm has also been compared
to a state of the art algorithm for gesture classification based
on Dynamic Time Warping (DTW). Results indicate that,
in this domain, the FPCA algorithm achieves a comparable
recognition rate while it outperforms DTW in terms of efficiency
in execution time.

I. INTRODUCTION

Most modern sensors for motion analysis produce high-

resolution data at high sampling rate that are stored in

high-dimensional input vectors. These data have an intrin-

sic functional nature since curve fitting can be applied to

represent them as continuous functions. This work explores

the use of Functional Principal Component Analysis (FPCA)

for unsupervised clustering of arm gestures and for gesture

recognition. The proposed method has also been applied to

humanoid robot imitation. FPCA is a technique that belongs

to Functional Data Analysis (FDA) [24], which has not

been considered before in robot imitation. Functional Data

Analysis is a statistical methodology that enables quantitative

analysis on continuous multidimensional data. In FDA, data

samples (e.g. gestures), obtained from repeated observations,

are analyzed jointly and are characterized by real-valued

functions instead of vectors. FPCA is used to extract orthog-

onal functional principal components (FPCs) that reduce the

dimensionality of the input data by projection on the FPCs.

FPCA extends traditional multivariate Principal Component

Analysis (PCA) and it provides numerous advantages: FPCA

does not suffer from the curse of dimensionality, presents a

better discriminatory power and handles missing or irregu-

larly sampled curves with noisy observations. While PCA is

a very well known method to decrease the size of the input

data for fast classifications, FPCA has not been investigated

in previous works.

Figure 1 gives an overview of the proposed gesture recog-

nition approach. Training data are provided by several users

from motion capture in the form of multiple arm gestures of

different classes. Each gesture is defined by the hand path as

a discrete time sequence in Cartesian space that is computed

from inertial sensors. Discrete time sequences of gesture data

are converted to training functional data by basis function

expansions using B-splines (curve fitting). Then, FPCA is

performed on all the training data to determine a finite set

of functional principal components (FPCs) that explain the

modes of variation in the data. Training functional data are

also projected onto the FPCs, resulting in a finite set of func-

tional principal components scores that compactly describe

each input gesture (dimensionality reduction). Unsupervised

clustering of the training data is then performed, in the space

of the functional principal components scores, to organize the

training set into disjoint classes of gestures and to generate

a prototype gesture (exemplar) within each class.
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Fig. 1. Schematic diagram of the proposed gesture recognition method
based on FPCA and comparison with DTW.

The computed FPCs and the gesture prototypes are used

for recognition of new gestures. A gesture recognition al-

gorithm has been developed by applying FPCA. Each new

gesture to be recognized is first projected onto the FPCs

and then it is categorized as belonging to the class of the

closest prototype. Then, a small humanoid robot imitates

the gesture by performing the trajectory of the recognized

prototype. The proposed gesture recognition algorithm has

also been compared with a high performance recognition

algorithm based on Dynamic Time Warping (DTW). The

developed DTW algorithm operates in the domain of the

discrete time sequence data. Evaluation has pointed out that

in the considered experimental protocol the two algorithms

achieve a comparable recognition rate, but the proposed
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FPCA method is more efficient in terms of execution time,

which makes it especially suitable for gestures having long

duration or high sampling-rate.

The paper is organized as follows. Section II reviews the

state of the art regarding gesture recognition and imitation in

humanoid robots. Section III describes the proposed method

for gesture recognition based on FPCA, which is a general

approach that does not depend on the experimental setup

used for validation. Section IV illustrates the human arm

motion capture system and it describes the solution of

the correspondence problem for robot imitation. Section V

presents the experimental evaluation of the approach. The

paper closes in section VI summarizing the work.

II. RELATED WORK

This section presents a summary of previous works on

humanoid imitation and gesture learning. As anticipated in

the section I, to the best of our knowledge, no previous study

has considered FPCA for gesture recognition and robot im-

itation. Many authors have investigated the use of Dynamic

Time Warping for gesture recognition [33], [18], [2], [9],

[1], [27], [10]. The standard template-based DTW algorithm

for recognition, which will be recalled in section III, has

been applied with several variants. DTW has proven user-

independent and more robust than other statistical methods

like Hidden Markov Models, that require a large number

of training data and the selection of appropriate low level

features [7], [18], [9].

In [14], [31] a mimesis learning approach was proposed

using primitive symbols observation and Hidden Markov

Models to generalize and synthesize motion patterns. The

approach was extended in [17] to consider incremental

learning of motion primitives. Inamura et al. [13] proposed

a method for humanoid imitation of daily life behaviors

based on attention points, specified by voice commands,

such as motion constraints in manipulation tasks. In [11]

a probabilistic approach was presented for recognition and

reproduction of free-space movements for humanoid robots

based on adaptation of motor primitives. Calinon et al.

[5] developed a programming by demonstration model for

stochastic recognition and humanoid arm gesture production.

Shon et al. [28] proposed a nonlinear regression algorithm

for mapping motion capture data to a humanoid robot using

a latent variable space to reduce the high-dimensional ob-

servation space. In [12] parametric Hidden Markov Models

have been investigated for recognition and generation of

human movements that explicitly encode the goal of the

actions such as reaching and pointing motions. Zinnen et

al. [36] focused on the problem of recognizing gestures

in continuous data streams using turning points to identify

segments of interest in the human movements. Sigalas et al.

[29] presented a method for hand gesture recognition based

on neural networks classifiers and computer vision.

Other works have focused on the more specific problem of

generalization and synthesis of robot gestures over multiple

demonstrations [6], [19], [4], [32], [34]. In particular, in [6] a

method was presented for extracting the goal of a task from

human demonstration and determining the best imitation

strategy to satisfy the goal. Real-time strategies for humanoid

robot imitation have been investigated in [23], [25], [15],

[21], [16]. In particular, Menezes et al. [21] adopted a single

camera system for motion capture and a particle filtering

technique for imitation on a simulated humanoid robot. The

related topic of motion retargeting, i.e. motion adaptation

from one character to another with different kinematic struc-

tures, has been considered in computer vision and animation

[20], [35], [26], [30], [8], [22].

III. METHOD

A. FPCA of human arm gestures

In this work a human arm gesture is characterized

by the hand path in Cartesian space. The input training

set G consists of N gestures gi (i=1, . . . , N ) that are

recorded by different users. There are C classes of gestures

ch (h=1, . . . , C). Each gesture gi∈G belongs to one of

the classes and it is defined by a triplet of sequences

gi=(xi(tj), yi(tj), zi(tj)) of Cartesian coordinates of the

hand sampled at discrete times tj with j=1, . . . ,m. All

discrete time sequences of each gesture are converted to

functional data by curve fitting, e.g. the x-component xi(t)
of gesture i is expressed in functional form as a linear

combination of basis functions as follows

xi(t) =

K
∑

k=1

λikφk(t) (1)

where φk(t) are the basis functions, K is the number of basis

functions and λik are the expansion coefficients. In this work

a B-spline expansion has been adopted, which is suitable for

analysis of human motion data. Hence, the input training

set of gestures G can be expressed in its functional form

as G={(x1(t), y1(t), z1(t)), . . . , (xN (t), yN (t), zN (t))}. B-

spline expansion is computed through a functional regres-

sion model, for each input data, that incorporates a rough-

ness penalty [24]. The roughness penalty approach mini-

mizes the ordinary sum of square error residuals plus a

penalty term that imposes a smoothness constraint. The

penalty term is the integrated squared second derivative

of the estimated function, e.g
∫

[ẍ(t)]2dt for the xi(t)
component. Let (xi(t), yi(t), zi(t)) be the mean functions

of gesture gi. Functional data are centered by subtracting

the mean functions. Let (νxx(s, t), νyy(s, t), νzz(s, t)) be

the covariance functions of the centered data, e.g. for the

first component νxx(s, t)=(N − 1)−1
∑N

i=1
xi(s)xi(t). Let

(νxy(s, t), νyz(s, t), νxz(s, t)) be the cross-covariance func-

tions, e.g. νxy(s, t)=(N − 1)−1
∑N

i=1
xi(s)yi(t).

The Functional Principal Component Analysis (FPCA) of

the training motion data finds a finite set of R principal

component functions that represent most of the variance of

the input data. The functional principal components (FPCs)

satisfy orthogonal conditions [24]. Each functional princi-

pal component ξr with r=1, . . . , R is defined by a vector

of weight functions ξr=(ξrx(t), ξ
r
y(t), ξ

r
z(t)) solution of the
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eigenequation system

V ξr = ρrξr (2)

where V is called the covariance operator and ρr is the

eigenvalue. Equation 2 generalizes the standard eigenvalue

equation of multivariate PCA and it is expanded as
∫

νxxξ
r
xdt+

∫

νxyξ
r
ydt+

∫

νxzξ
r
zdt = ρrξrx(s)

∫

νxyξ
r
xdt+

∫

νyyξ
r
ydt+

∫

νyzξ
r
zdt = ρrξry(s)

∫

νxzξ
r
xdt+

∫

νyzξ
r
ydt+

∫

νzzξ
r
zdt = ρrξrz(s) (3)

In equation 3 the time dependence of the functions in the

integrals has been omitted for simplicity. FPCs are also called

eigenfunctions or harmonics. Each i-th trivariate gesture

function (xi(t), yi(t), zi(t)) can be projected onto all the

R functional principal components to obtain a vector si of

R functional principal components scores. The functional

principal component score sir of the i-th trivariate gesture

function projected onto the r-th functional principal compo-

nent is given by

sir =

∫

xi(t)ξ
r
x(t)dt+

∫

yi(t)ξ
r
y(t)dt+

∫

zi(t)ξ
r
z(t)dt

(4)

Thus, FPCA is used for reducing the dimensionality of

functional data (gestures) by projecting them onto a finite

number of functional principal components. The presented

FPCA model can also be generalized and applied to n-

dimensional input functions. FPCA enables unsupervised

clustering of the vectors of functional principal components

scores as explained in the following section.

B. Gesture clustering and recognition using FPCA

The proposed algorithm for classification of new gestures

based on FPCA operates in the space (of size R) of the

functional principal score vectors. Vectors si of training

gestures are clustered in C classes of gestures. Unsupervised

clustering is performed by the standard k-means algorithm.

K-means partitions the training set into C classes and it

extracts the cluster centers. Cluster centers are vectors of

size R. The total number of gesture classes C is given as

input.

After clustering, a prototype gesture (exemplar) is gen-

erated within each class. Prototype gesture pch of class ch
(h=1, . . . , C) is generated as the cluster center using the

l2-distance in the space of the functional principal score

vectors. For each class a corresponding prototype gesture

is also generated in the time domain, as the mean function

of all the gestures of the class (which have been previously

smoothed by the roughness penalty approach). The gesture

prototype in the time domain is needed for both the DTW

recognition algorithm and for gesture imitation. Of course

there are other strategies that have been proposed in literature

for prototype generation [6], [19], [4], [32], [34], which is not

the core of this work. A pre-processing technique can also

be applied for filtering out those gestures that are affected

by inconsistencies typical of human motion. This strategy

has been explored in our previous work [3] and it is quite

effective if the training set contains spurious trajectories.

The FPCs and the generated gesture prototypes are then

used for recognition of new gestures. The proposed method

for FPCA gesture recognition works as follows. Each new

gesture g to be recognized is converted in its functional

form and then it is projected onto the FPCs. Let s be

the vector of scores of g. Gesture g is then categorized

as belonging to the class c∗ of the closest prototype using

the l2-distance d between functional principal score vectors,

i.e. c∗=argminch d(s, pch). The recognized arm gesture is

then imitated by a small humanoid robot that reproduces the

trajectory of the corresponding prototype.

C. Gesture recognition using dynamic time warping

The proposed FPCA gesture recognition method has been

compared with a high-performance, state-of-the-art algorithm

based on Dynamic Time Warping (DTW). DTW operates in

the domain of the discrete time sequence data of Cartesian

coordinates and it requires, as well as the FPCA method,

the availability of prototype gestures. The standard DTW

algorithm performs a nonlinear alignment between two time

series data. The optimal alignment is found by minimiz-

ing a cumulative distance measure DTW (·) called cost

function. Let g=(x(tj), y(tj), z(tj)) be the new gesture

sequence to be categorized (with j=1, . . . ,m). Let also

pch=(xpch
(tj), ypch

(tj), zpch
(tj)) be the gesture prototypes

(with h=1, . . . , C) of the classes characterized, as well, by

their discrete time sequence data of length m. The gesture

recognition algorithm based on DTW performs the alignment

of gesture g with all the gesture prototypes and, then,

gesture g is categorized as belonging to the class c∗ of the

closest prototype c∗=argminch DTW (g, pch). In particular,

DTW finds the optimal alignment between g and a gesture

prototype pch by dynamic programming as the following

equation DTW (g, pch)=D(m,m) with

D(u, v) = d(u, v) +min







D(u− 1, v),
D(u, v − 1),
D(u− 1, v − 1)







(5)

where d is a distance function between two elements of the

two sequences that has been defined as

d(u, v) =

=
√

(x(tu)− xpch
(tv))2 + (y(tu)− ypch

(tv))2 + (z(tu)− zpch
(tv))2

(6)

The two gesture recognition algorithms are compared in

section V in terms of recognition rate and computational

time.

IV. EXPERIMENTAL SETUP

The experimental setup for the evaluation of the proposed

method consists of a motion capture system for recording

human arm gestures and a small humanoid robot for imitation

of the recognized gestures. Motion capture is performed by

tracking the orientation of the upper right arm and the lower

right arm using two Xsens MTx inertial motion sensors.
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Fig. 2. Configuration of the inertial sensors for arm motion capture.
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Fig. 3. Schematic diagram of the Bioloid right arm.

The Xsens MTx sensor incorporates a 3-axis accelerometer,

gyroscope and magnetometer. The two sensors are attached

to the user’s body parts as shown in figure 2. A calibration

phase is performed for each user, in which the lengths of

the upper and lower arm are measured. Due to the absence

of a third reference sensor (to be attached to the torso)

users are asked not to rotate when performing a gesture

and all measured joint angles are expressed with respect

to a calibration pose. The calibration pose is recorded at

the beginning of each session by asking the user to lay the

arm along the body. In the current setup orientation data are

sampled at 25Hz. The Cartesian coordinates of the hand of

the user are computed by forward kinematics.

A Robotis Bioloid robot is used for gesture imitation.

The Bioloid is a small humanoid (35cm tall, 1.95Kg of

weight) with a total of 18 degrees of freedom. Figure 3

shows a schematic diagram of the Bioloid right arm with

the joint reference frames. Joints are driven by Dynamixel

AX-12 motors and synchronized via a control unit based

on the Atmega128 microcontroller. Each robot arm has 3
degrees of freedom. In particular, there are two motors at the

robot shoulder instead of the three degrees of freedom of the

human shoulder. Therefore, the correspondence problem, i.e.

the problem of mapping human motion to the robot, has been

restricted to the imitation of the Cartesian hand path of the

user by the tool point of the robot arm. For motor control,

the reachable workspace of the human arm is scaled down

to the robot arm workspace. Joint angles of the humanoid

arm are computed through inverse kinematics.

1 2 3

4 5 6

7 8 9

Fig. 4. Example gestures for each class in a real-time simulation
environment.
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Fig. 5. 3D plot of a subset of gestures. Each class is assigned a color.
3D coordinates are in simulation units (actual length in meters is given by
multiplying simulation units by a scale factor of 0.1125).

V. EVALUATION

The proposed method has been evaluated on a dataset

of C=9 classes of gestures. The gesture classes are as

follows: “1-vertical waving”, “2-swing sword”, “3-tennis

forehand”, “4-horizontal B letter”, “5-infinite symbol”, “6-

vertical U letter”, “7-vertical ǫ letter”, “8-vertical B letter”,

“9-horizontal waving’. Figure 4 shows an example gesture

for each class in a real-time simulation environment that has

been developed as a graphical front-end.

Ten users have been recruited for building the training set

(six men and four women, average age of 26 years). Each

user performed 10 gestures for each class after a short trial

session. Thus the training set contains a total of N=900
observations. Each gesture has a duration of 4s, which

consists of a discrete time sequence of m=100 samples

(at 25Hz). Figure 5 shows a 3D plot of a small subset of
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FPC % of variance explained

FPC1 48.72%
FPC2 29.65%
FPC3 9.78%
FPC4 8.30%
FPC5 1.77%
FPC6 1.47%
FPC7 0.15%
FPC8 0.09%
FPC9 0.07%

TABLE I

PERCENTAGE OF VARIANCE EXPLAINED BY THE FPCS

class 1 2 3 4 5 6 7 8 9

1 100

2 100

3 99 1

4 100

5 93 7

6 100

7 97 3

8 100

9 1 99

TABLE II

CONFUSION MATRIX OF TRAINING SET CLUSTERS

the training gestures. A test set of 495 gestures has been

generated by eight users, four of which did not contribute to

the generation of the training set. Moreover, to evaluate the

robustness of the proposed algorithm 68 gestures of the test

set were performed by deliberately moving the arm at non

uniform speed with abrupt discontinuities. The variability in

gestures pose in both the training and test sets has been

estimated as 0.27m (by averaging per-class variances).

The functional principal component analysis of the train-

ing data was performed by computing the first R=9 func-

tional principal components (FPCs). Table I reports the

percentage of variance of the training set explained by the

nine FPCs. It turns out that the first four FPCs explain about

96.45% of the variance of the input data. All the clusters, as

explained in section III-B are automatically detected in the

9-dimensional space of the functional principal components

scores by the unsupervised k-means algorithm. Table II

reports the confusion matrix of the unsupervised clustering

phase of the training data (ground truth is known). The

clustering algorithm was able to organize the training data

into 9 classes with only 12 errors (98.7%). Figure 6 shows

a 3D plot where all the training gestures, in their functional

form, have been projected onto the first three FPCs. The nine

clusters are clearly visible even in the low dimensional latent

space of the first three FPCs.

After clustering, prototype gestures are generated within

each class. Figures 7 and 8 show all the clustered training

gestures for two classes and the generated prototypes. Tables

III and IV show the confusion matrices of the test set

obtained by the FPCA and DTW recognition algorithms.

Both algorithms achieve high and comparable recognition

rates. The FPCA algorithm yields a total of 20 recognition

errors over 495 tests (96% success rate) while the DTW
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Fig. 6. Projection of the training data onto the first three FPCs. Axes
represent the first three functional principal component scores si1,si2,si3
of each gesture i.
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Fig. 7. All gestures clustered in class “5-infinite symbol” (blue curves) and
the generated prototype gesture (red curve). 3D coordinates are in simulation
units (actual length in meters is given by multiplying simulation units by a
scale factor of 0.1125).
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Fig. 8. All gestures clustered in class “8-vertical B letter” (blue curves) and
the generated prototype gesture (red curve). 3D coordinates are in simulation
units (actual length in meters is given by multiplying simulation units by a
scale factor of 0.1125).

algorithm obtains a total of 10 recognition errors (98%
success rate). It must be remarked that the test set contains
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class 1 2 3 4 5 6 7 8 9

1 55

2 52 1 2

3 53 2

4 55

5 54 1

6 54 1

7 1 45 9

8 2 53

9 1 54

TABLE III

CONFUSION MATRIX OF TEST SET USING FPCA

class 1 2 3 4 5 6 7 8 9

1 55

2 55

3 55

4 55

5 55

6 55

7 3 49 3

8 3 1 51

9 55

TABLE IV

CONFUSION MATRIX OF TEST SET USING DTW
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Fig. 9. Comparison of FPCA and DTW execution times for gesture
recognition.

14% of gestures that have been performed at non-uniform

speed, which did not affect the performance negatively, thus

confirming the robustness of both recognition approaches.

The two algorithms have also been compared in terms

of execution time by recognizing gestures performed with

increasing durations, as shown in figure 9. The execution

time of the recognition phase of the FPCA algorithm is

rather independent from gesture duration. On the contrary,

the execution time of the DTW algorithm has quadratic time

complexity. Indeed, the high computational cost of the DTW

is a known drawback of this popular algorithm. In particular,

DTW requires about 2.5s to recognize a gesture containing

400 samples (16s of duration) while FPCA takes about

0.1s regardless of the number of samples. Experiments have

Fig. 10. Humanoid imitation experiment for a “infinite symbol” gesture
(order from left to right).

Fig. 11. Humanoid imitation experiment for a “vertical B letter” gesture
(order from left to right).

been performed in MATLAB on an Intel core i7@2.80GHz.

Figures 10 and 11 show the result of two robot imitation

experiments for an ‘infinite symbol” gesture and a “vertical

B letter” where the humanoid robot reproduces the prototype

gesture of the recognized class.

VI. CONCLUSIONS

In this work a novel method for gesture recognition has

been proposed. The approach is based on functional principal

component analysis, a statistical tool that extends standard

multivariate PCA when data consist of functional obser-

vations. FPCA extracts a finite set of functional principal

components that form an orthogonal basis. Input data are pro-

jected onto functional principal components for dimension

reduction. A gesture recognition algorithm has been devel-

oped in the latent space of functional principal components
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scores. The recognition rate of the proposed FPCA algorithm

is comparable to a state-of-the-art DTW algorithm. However,

the proposed approach is more efficient in execution time and

more appropriate for classification of long duration gestures

because it does not suffer from the curse of dimensionality.

Experiments of humanoid gesture imitation have also been

reported. In future work the gesture recognition and imitation

approach will be extended to bi-manual gestures.
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