
Recognition of Ballet Micro-Movements for Use in Choreography

Justin Dancs, Ravishankar Sivalingam, Guruprasad Somasundaram, Vassilios Morellas, and
Nikolaos Papanikolopoulos

dancs003@me.umn.edu, ravi@cs.umn.edu, guru@cs.umn.edu, morellas@cs.umn.edu,
npapas@cs.umn.edu

Department of Mechanical Engineering, Department of Computer Science
University of Minnesota
Minneapolis, MN 55455

Abstract— Computer vision as an entire field has a wide
and diverse range of applications. The specific application
for this project was in the realm of dance, notably ballet
and choreography. This project was proof-of-concept for a
choreography assistance tool used to recognize and record
dance movements demonstrated by a choreographer. Keeping
the commercial arena in mind, the Kinect from Microsoft was
chosen as the imaging hardware, and a pilot set chosen to
verify recognition feasibility. Before implementing a classifier,
all training and test data was transformed to a more applicable
representation scheme to only pass the important aspects
to the classifier to distinguish moves for the pilot set. In
addition, several classification algorithms using the Nearest
Neighbor (NN) and Support Vector Machine (SVM) methods
were tested and compared from a single dictionary as well as
on several different subjects. The results were promising given
the framework of the project, and several new expansions of
this work are proposed.

I. INTRODUCTION

Computer vision applications are wide and diverse. Po-
tential uses have been found from security to manufacturing
to even entertainment. As more hardware technology and
software algorithms are developed, applications for this new
technology will expand into new and different areas. One
such area is dance recognition, specifically for use in ballet
choreography.

This paper explores the realm of ballet and dance and
the use of computer vision to enrich the field, using the
Kinect from Microsoft to segment and track joint coordinates
of the body. Prior work in dance recognition was explored
and summarized below. Also, a contextual overview of ballet
and choreography is provided, as well as the motivation and
vision that began this work. The representation scheme and
the reasoning for it are then explained. Several methods of
classification are then compared, in both Nearest Neighbor
(NN) methods and Support Vector Machine (SVM) methods,
discussing the results of testing cross-validation as well as
new, different dancers on a trained library with a different
dancing set. Finally, future expansions of this project are
proposed, both improving the current classification scheme
as well as expanding its capabilities.

II. RELATED WORKS

According to Aggarwal et. al, computer vision applications
fall into three broad categories: 1) motion analysis segment-

ing and identifying a human body, 2) tracking human motion,
and 3) activity recognition of human motion [1]. The API
from the Kinect handles the first two categories in this work,
as the constraints of the Kinect are not a problem in the
context of ballet; the third task of activity recognition was
the primary objective to explore in this project.

There has been some previous work in the form of dance
recognition, although differing in one or more aspects to
the work detailed in this paper. Deng et al. used a form of
Segmented Single Value Decomposition, dubbed, SegSVD,
to recognize simple movements of varying length of a-
go-go dance movements [2]. Principal component analysis
(PCA) including functions like SVD is one approach to
recognition, simplifying the segments into a smaller set
of important features to use. Methods like PCA and SVD
can be most commonly used when multiple points on the
body are tracked and used for recognition to reduce to
a lower number of more significant features. In contrast,
another method of recognition is using a silhouette of a
subject to recognize movements, implementing a “tunneling”
system that compares the silhouette to a known silhouette
configuration of a recognizable move. A 3D example of this
can be found in the work of Peng et al. at Arizona State
University [3] [4].

Most notable in prior art is the work of Lee Campbell
and Aaron Bobick at MIT in 1995 [5], who attempted
a very similar project to the one described in this paper.
Their approach used angles and orientations assuming the
cartesian coordinates of joints, as well as a similar approach
to breaking ballet movements into segments. Their work used
the Multi-Trax system, which was a commercially available
system for 3D tracking at the time. This system used a
marker physically on the body, and was an expensive system
of capture.

Others have also used recognition and classification al-
gorithms similar to the work described in this project, for
differing reasons. Using PCA, Tsuruta et al. [6] used a
NN classifier to classify dance movements for a “dance
collaboration system” utilizing 12 cameras to capture the
subject. Although the algorithm is similar to algorithms
presented in our paper, the Kinect offers a more feasible
advantage for common use as it requires less setup and is
more cost effective to implement.

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1162

A large part of the action recognition methodology in this
work most closely resembles the work of Sivalingam et al.
out of the same lab as this work [7]. When trying a NN
algorithm and comparing results on segmented data from
the Kinect and the accompanying Application Programming
Interface (API), it was found that the trained classifiers
produced satisfactory results without any additional, more
complicated or computationally expensive algorithm. SVM
was also tried, and achieved moderate results given the
training set provided in this introductory work, which uses
known algorithms and classification methods on a new area
understudied in computer vision.

III. BALLET

According to the National Dance Education Organization,
there are approximately 32,000 dance studios currently in
the US, and 3.5 million children are currently taught dance
by professionals. In addition, there are 665 institutions that
offer dance major and minor programs in the US [8].

At the onset of this project, the eventual vision, and there-
fore scope, was in choreography. Choreography tools exist
on the market currently, like the Dance Designer program
offered by ChoreoPro [9]. Systems like this, however, require
dance experts to synthesize dances by sitting at a computer
and rely on visualization of the program to view and review
their work before training subjects to perform their choreog-
raphy. Dancers are typically kinesthetic learners; that is, they
learn by physically moving. Thus, choreography is typically
created by performing the dance themselves. In observing
dancers synthesizing choreography, it was noticed that most
approach the challenge of documentation in one of two ways.
One approach is to dance out a short segment, then stop and
document the segment by writing it down, then dance out the
next segment. This process is repeated until the final product
has been created. However, a person’s memory is limited, so
the need for intermittent stops and starts is disruptive and
time-consuming. The other approach to choreography is to
video record the dancer performing a dance to disseminate
later. This can also be time consuming, as the footage would
have to be manually processed later to better document what
is shown.

Computer vision algorithms could be used in this appli-
cation to automatically document the sequential moves of
a dancer. This could assist in choreography by recording a
dancer’s movements to disseminate to others in the future. In
addition, this concept could also aid in dance documentation,
as certain dance companies perform the same or similar
dances repetitively over the years. The goal of this work was
to serve as a proof-of-concept and to evaluate the feasibility
in varying aspects concerning this idea.

A major aspect of selecting ballet as a prime starting
point is in its structure. Compared to other forms of dance,
ballet is highly structured and well understood. Dancers and
instructors from different areas and different regions of the
world have the same basic understanding of each moves and
its name with only minor differences. Thus, documenting
choreography with names is useful for a wide variety of

dancers in this area. In addition, each movement in ballet can
be broken into several micro-movements. Each movement
starts with a position - typically 1st, 4th, or 5th - and a micro-
movement following that position, then expands into other
movements that identify the specific step of choreography.
Thus, it is possible to organize an extensive library of ballet
movements into a decision tree for classification.

This figure organizes the first two decisions in the tree,
leaving the third decision as a rapidly expanded set depend-
ing on the combination of the first two levels.

The question remained, then, if it was feasible to effec-
tively classify the micro-movements that would comprise
each step. Thus, a pilot study was performed to verify that
movements in ballet could be effectively classified. The
movements chosen were the tendu, the plié, the passé, and
the elevé. The plié was also chosen to be in first position and
fourth position. Finally, a turn was included in the library to
ensure that turns could be classified even with the hardware
limitation of the Kinect.

The hardware used in this work is the Kinect by Microsoft,
originally released for the Xbox 360 gaming platform. The
Kinect and the API in the Kinect Source Development Kit
(SDK) is a vision solution to human pose recognition and
skeletonization. More information on the Kinect can be
found in [10].

IV. PRE-PROCESSING

As the hardware was used as an out-of-the-box solution
for human segmentation and skeletonization, the raw inputs
for the action recognition task were 3-dimensional Cartesian
coordinates of each of the 20 joints in the skeleton.

A useful feature provided from the Kinect drivers from
Microsoft was the introduction of a floor sensing feature,
returning a planar equation for the location and angle of the
floor. Considering this tool, the assumption was made that
any use of this software or algorithm would require the floor
to be flat and level. Considering the realm of this project
was dance, this is an assumption assumed to be valid for
most places for which this concept might be applied. The
floor sensing feature was utilized to transform all points of
the skeleton from a coordinate system relative to the camera
plane to a coordinate system relative to the floor.

Considering the human body from a kinematics perspec-
tive, the important information to obtain from the skele-
tonization is similar to the important variables of a robotic
arm. The length of each body segment (arm, leg, hand, neck)
are framed by bone and therefore do not vary in length: thus,
the important variables that do change is the orientation of
each of these segments. Therefore, the coordinates of each
joint were converted to 3-dimensional spherical angles for
each segment of the body. Since the x, y, and z coordinates
of each joint are known, the vector ⟨ δx,δy ,δz ⟩ represents
the differences of the two connected joints in their x, y and
z components, respectively. This is used to create the two
angles that represent the 3D orientation of each vector, where
θjoint refers to the polar angle of the vector’s projection in
the X-Y plane and ϕjoint refers to the angle between the

1163

vector and the Z axis. Each segment connects two adjacent
joints, reducing the 20 joint coordinates into 19 segment
orientations representing the same configuration. The two
equations for these angles θ and ϕ are shown in Equations
(1) and (2). This effectively reduces 60 parameters (20 3-D
joint coordinates) into 38 (spherical angles of 19 segments).

θ = arctan
δy
δx

(1)

ϕ = arctan
δz√

δ2x + δ2y

(2)

After reviewing the atomic moves to be classified, it was
noticed that the distinguishing features of each move was
the placement and movement of the legs: thus, the only data
passed to the classifier was from the lower spine downward.
This lowered the number of features from each frame from
38 to 18 (or 19 line segments into 9). Expansion of data
may include arm data and arm movements: however, this
can be split into separate classification steps if the need is
discovered upon expanding the library of moves.

Finally, the goal of the project was action recognition, not
pose recognition: therefore, each action was vectorized into
one or more feature vectors by taking multiple frames and
concatenating them into a longer vector. The final algorithm
concatenated 9 frames into a feature vector. Additionally,
not all segments were the same size, and few were simply
9 frames long, so a “sliding window” concept was used
to concatenate 9 consecutive vectors, slide the window a
frame forward (dropping the earliest frame and adding a later
one), and concatenate those 9 frames. This was accomplished
in MATLAB using the im2colstep function provided in the
KSVD toolbox [11]. In this paper, we refer to each individual
vector as a segment, and the grouping of vectors from the
same action as a sequence.

In this work, each segment provided in the training set and
any test sets were cropped manually to include only the sig-
nificant parts of a dance move. This was done in simulation
of a sliding window concept: if a classification algorithm was
to run in real-time, not every frame or sampling of frames
would be significant. In ballet, there are frames of transition
between each dance segment, and the identifying segment of
each action is normally near the beginning. As this project is
a proof of concept and the algorithm was run off-line, each
segment was manually cropped to include just the identifying
pieces of a move, by cropping the frames to include just the
significant section. This was done to determine whether or
not an algorithm could classify a move successfully. If found
successful, a future step would be to classify multiple moves
in the same segment by determining a minimum correlation.
If that correlation threshold was not met, the classifier would
skip to the next group of frames.

V. CLASSIFICATION

This section describes varying methods of classification
with varying degrees of success in accuracy. Each algorithm

was tested using the same pilot set of training data and
classes, using examples from a single dancer performing the
specified moves.

The first method tested was basing decisions on the
Hausdorff distance. The “voting” nearest neighbor algorithm
calculated the distance of each training segment to each test
segment, and returns the class of the training segment with
the lowest distance for each test segment. With each test
segment having a proposed “nearest class”, the mode is taken
of the resulting classes. The class that has a training segment
nearest to the most test segments is determined to be the
proposed class of the test sequence. In the event of a tie, the
algorithm simply returns the first class. However, in all the
results shown, a tie is included as a missed classification.
The confusion matrix for the cross validation is shown in
Table I. There is no column for “tie,” as none were found.

TABLE I
CONFUSION MATRIX OF THE L1 VOTING NEAREST NEIGHBOR

ALGORITHM

elevé passé plié plié
in 4th

tendu turn
in
passé

elevé 15 0 0 0 0 1
passé 0 18 1 0 0 0
plié 0 0 11 0 1 0

plié in 4th 0 0 0 15 0 0
tendu 0 0 1 0 8 0

turn in passé 0 0 0 0 0 5

One drawback of of the “voting” algorithm was that
each segment and distance were equally weighted. One way
to mitigate this is to directly use the class and distance,
rather than just the nearest class of each segment. This was
accomplished using a Radial Basis Function (RBF), where
σ is a tuned parameter for the training set.

In addition, rather than using the best example of each
class, the algorithm uses the distances of all training seg-
ments for each class. To this end, the algorithm calculates
distances in the same way as the nearest neighbor algorithm;
however, it also uses the RBF previously shown on each
distance metric to produce a “weight.” Once the weight
matrix is found, the weights of each class are added together
to form sums. This is all performed at a segment level; once
the sums are found for each segment, each class’s sum for
each segment is multiplied together. With this method, if a
single segment shows a high sum for a class but every other
segment shows a low sum for that same class, the product
will be low, and only the class that shows a weighting that
is consistently high in each segment will have the highest
product and be selected for the proposed class.

To function at the algorithm’s best capacity, a sensitivity
study was performed using a blind search of parameter σ
over a range of values. This was done using leave-one-out
cross validation as the parameter to optimize. The highest
accuracy point was at σ = 0.5 with an accuracy of 96%, and
selected as the optimum value for the use of this algorithm.
This accuracy was run using the “cityblock” metric and the
Euclidean metric. The Euclidean distance sensitivity study

1164

shows a similar trend to the “cityblock” distance, but shifted,
with optimum values for σ being higher than its counterpart.
In future uses of this algorithm, the sigma value is the
optimum value from these respective sensitivity functions.

These algorithms were used in the beginning portion of
the project. The results of each are plotted in Table II for
each method. The accuracy metric refers to the accuracy
of data using leave-one-out cross validation on the entire
data set, numbering 76 sequences comprising a total of
1,262 segments. This accuracy is classified on the sequence
level, so misclassifications of a segment are not recorded
if the sequence is still classified accurately. Although the
differences are minimal, the later versions of the program
experiences a slightly higher accuracy using the L1 norm;
this being said, the difference is very minor and would show
either version to be comparable.

TABLE II
ACCURACY RESULTS OF NEAREST NEIGHBOR ALGORITHMS USING

LEAVE-ONE-OUT CROSS VALIDATION

Method Accuracy

L1 Hausdorff distance 2.67%
L2 Hausdorff distance 2.67%

L1 voting 94.67%
L2 voting 93.33%
L1 RBF 96.05%
L2 RBF 94.74%

The final classifier explored in the realm of this project was
the Support Vector Machine, or SVM, algorithm first used
by Vapnik [12]. As the SVM algorithm used was a binary
classifier, the algorithm recognized more than two classes
by employing six separate classification steps and a form
of “voting” hierarchy once again to make the final decision.
The algorithm actually employs six SVM classification steps
attempting to classify the same test segment only as “of a
class” or “NOT of a class.” These “yes” and “no” votes are
tabulated for each segment, and the class that has the most
votes in the entire sequences is determined to be the proposed
class. Similar to previous algorithms, a tie resulted in the
proposition of the first class in order; when this occurred, it
was counted as a misclassification in accuracy results.

The results of each kernel are shown in Figure III, once
again using leave-one-out cross validation. The linear kernel
performed exemplary with the training data provided; as seen
in Section IV the data exhibits clusters with small amounts
of overlap, thus determining boundaries for classification is
less complicated, and the penalizing aspect of the algorithm
wouldn’t need to be used as much.

Like the previous use of the radial basis function, the value
of σ needed to be optimized for the radial basis kernel of the
training set used. This optimization is shown in Figure 1. In
addition, all kernels also optimized for C, the weight of the
penalizing function. Interestingly, the value of C affected the
accuracy very little. The explanation for this, once again, lies
with the separability of the data after the conversion to the

TABLE III
ACCURACY OF KERNEL FUNCTIONS IN SVM USING LEAVE-ONE-OUT

CROSS VALIDATION

Kernel Accuracy

Linear 98.68%
Quadratic 96.05%

Polynomial Order 3 90.79%
Polynomial Order 4 52.63%

RBF 97.37%

representation scheme; as the data was well separated, few
data points would lie on the wrong side of a boundary, and
the penalization function would be used very little. Never
the less, the optimal value of C was used in each case. The
optimal value found for each method was very small, with
the exception of the RBF kernel. As the RBF is effectively
an inverse function, this is to be expected. The box constraint
used for every other kernel was 0.03125, or 2−5, with the
box constraint for the RBF function serving as 0.5, although
any value above 0.125 produced similar results.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1.00E‐05 1.00E‐03 1.00E‐01 1.00E+01 1.00E+03

A
cc
u
ra
cy

Sigma

Fig. 1. Sensitivity study of the radial basis function kernel in SVM.

All classification performances shown up to this point
have been leave-one-out cross validation with a dictionary
of a single dancing subject. However, unknown factors can
change when attempting to classify motions of another
dancer. Differences such as style of movement, speed, and
even unforeseen factors in their motions or ambient condi-
tions can produce undesirable results. Therefore, the above
described algorithms were tested using different dancers. The
dancers all were experienced in varying degrees with ballet,
and knew how to do the moves correctly. However, the
dancers performed the moves in the set without significant
coaching on technique or motion, and only the explanation of
what move to perform was provided. Each test segment was
manually cropped into their individual identifying actions in
a manner consistent with the processing of the training data
as explained in Section IV.

The results for each algorithm across the entire set of
dancers is shown in Figure 2. There are several factors
attributing to these accuracy values. In keeping with a
“hands-off” approach to coaching the dancers, the moves

1165

were named and only simple information was given to them
to ensure the correct move. Some dancers used a different
leg than the dancer used in training; thus, each of those
moves was misclassified. A fix to that problem is easily
accomplished with a more complete library, and would need
to be implemented for a more robust solution. In addition,
certain moves were interpreted vastly different than others:
the moves described in this pilot set were known, but combi-
nations of these moves were named differently, thus referring
to them as the sum of their parts was occasionally unfamiliar
to the subjects. However, the data is useful especially as a
comparison of methods and a test to the algorithm’s ability
to classify dance movements with unforeseen variations.

80.08%

71.14%

55.28% 56.10%

67.89%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

L1 Voting L2 Voting Linear SVM Quadratic

SVM

RBF SVM

A
cc
u
ra
cy

Method

Fig. 2. Accuracy comparison of methods using different dancing subjects.

The variations of accuracy over the methods were shown
to scale for each method according to the dancer involved.
A plot of the average accuracy of each dancer is shown in
Figure 3. The maximum, minimum, and average accuracy
are plotted. They roughly vary proportionally from dancer
to dancer; some dancers performed well in comparison to
the training set across all algorithms, others not as well. It
was noted that the two lowest dancers, 3 and 5, both did
movements fast, and the member that did movements the
slowest, 4, has the highest consistent accuracy. It is therefore
theorized that a major part of this discrepancy is the speed
at which movements are made. This would warrant a time
warping aspect of future versions of this classifier.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7

A
v

e
ra

g
e

 A
c
c
u

ra
c
y

Dancer #

Average

Max

Min

Fig. 3. Average, minimum, and maximum accuracy for each dancer.

A confusion matrix for the voting algorithm using the L1
norm is shown in Table IV, being the strongest algorithm

in both cross-validation and new subject testing. Some of
the largest misclassifications were the plié in 4th position
being classified as a plié in 1st position or as a tendu. This
is intuitive, as a plié in 4th position has one foot out in front
of the body like a tendu, but still exhibits the motions of a
plié. In addition, out of all the classes, the plié in 4th position
was least represented in the training data, having only two
source sequences that involved it.

TABLE IV
CONFUSION MATRIX OF THE L1 VOTING NEAREST NEIGHBOR

ALGORITHM

elevé passé plié plié
in
4th

tendu turn
in
passé

tie

elevé 39 0 0 0 4 0 2
passé 1 64 0 0 1 0 0
plié 0 0 43 1 1 0 1

plié in 4th 0 0 12 4 4 1 1
tendu 0 7 6 0 35 4 0

turn in passé 1 1 1 0 0 12 0

VI. FUTURE WORK/LESSONS LEARNED

There are several areas that could expand from the initial
work done in this area. When visualizing the future goals and
path that a project should take, care must always be taken to
keep the final project in mind. With this project, the overall
goal was to move towards the development of a recognition
tool for choreography. Thus, the program needs to be on-
line and easy for dancers to use effectively for recording the
moves in a dance.

In addition to other areas there are also several tasks that
can be done to bring this initial work to that goal, and
additional features that could be tied in to assist this vision.
First of all, the program needs to be brought on-line and
optimized. This will require the ability to do a recognition
task faster than 30 Hz if it was required to use every frame
of skeleton data returned by the Kinect API. Although the
algorithm described in this work is fast, any additions must
keep processing speed in mind as a design factor.

Minor advances could also be made in the methodology of
the classification and calibration programs. The Kinect has
an accelerometer built in to register the direction of gravity.
Using this instead of sensing the floor plane could provide
an added robustness against unleveled floors or obstructed
or partial views of the floor, assuming future versions of the
Kinect SDK include this functionality. The classification of
moves can also be expanded to a more macroscopic level.
In addition to the micro-move classifier used in this study,
the algorithm could be expanded to incorporate a decision
tree to recognize more complex movements. In this case, a
tree would use multiple classifier steps to classify parts of the
movement into their atomic actions and making classification
decisions based on the combination of results. This is the
visualized end goal of this type of classification.

Another future set of work to be completed before the final
project is realized is the expansion of the library of moves.
Most moves start with a position and/or a combination of

1166

these initial moves used in this study with slight variations,
thus the current set was effective for proof-of-concept work,
but not as a full library. The algorithm would become
more robust with added variations of each move included
in the dictionary, such as dance moves with the other foot,
significant stylistic changes in the same move, etc. Further
looks into structured or semi-structured decision making is
an interesting and promising path to take to create a larger
library. There are only so many ways to start certain moves in
ballet, and the pool of possible choices to identify a dance
move is drastically reduced if the first steps of that move
are identified early. In addition, an end-user product could
have a learning feature to add stylistic changes to the library
specific to the end user, and even create new moves specific
to the studio or persons using the product.

Several features could also be added to aid a dancer as a
choreography tool. Assuming most dances are put to music
and/or beat, the process of identifying the beat in a music and
synchronizing the dance movements to that beat would aid a
choreographer greatly, as the program could not only identify
each move, but assign the numbered count in the music
on where that move occurs. This could greatly aid dancers
recording choreography, as the output of the program could
almost be used without additional work. This could be done
by algorithms taking input from the Kinect’s microphone
array, or even allowing an option to play a song from the
CD tray of the computer and simultaneously running an
algorithm to “sense the beat” of the song.

This work doesn’t have to be limited to choreography, and
the Kinect’s capabilities and the ability to recognize actions
in structured areas like ballet has other potential uses as
well. In the realm of dance, this technology could be used in
diagnostics and coaching as well as choreography, and could
allow a computer to critique a dancer’s form if programmed
properly. Consequentially, technology like this could free
time in the schedule of instructors in a dance studio or even
allow a dance student to practice proper technique at home
with feedback. This idea doesn’t need to be limited to dance:
any areas that require prescribed movements of the body
could also benefit from this technology.

VII. CONCLUSION

Computer vision applications are wide and diverse and
include the topic of dance recognition. A potential new use of
computer vision was proposed as a choreography tool. This
project is a proof-of-concept, so a program that could rec-
ognize atomic ballet movements was created and explored.
The Microsoft Kinect and the Kinect SDK were used to
segment and track bodies and extract joint locations. These
locations were transformed by rotating the axes relative to
the floor, and altering the joint coordinates into link angles
describing their orientations. The recognition algorithm was
simple, but both major algorithms produced results above
90% using leave-one-out cross validation, and the NN al-
gorithm was found to successfully classify test results of
unknown subjects with unforeseen variations. Given these
results, the project can expand in multiple areas, including

further development in the recognition algorithm and the
GUI as well as expansion from choreography to technique
or other forms of dance. Overall, this work shows promise
to expand yet again to other exciting and useful applications.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank several people for their
contributions to this work. Thanks to Nick Walczak, Josh
Fasching, and Duc Fehr, and others in the University of
Minnesota Center for Distributed Robotics for their con-
tributions to this work. Thanks also to Sabrina Hermsen
for her shared expertise in dance and ballet and Britney
Dancs for her significant contributions as a test subject during
development work. The authors would also like to thank the
additional dancers that volunteered to provide data for testing
purposes. This material is based upon work supported by the
National Science Foundation through grants #IIP-0443945,
#CNS-0821474, #IIP-0934327, #CNS-1039741, and #SMA-
1028076.

REFERENCES

[1] J. Aggarwal and Q. Cai, “Human motion analysis: A review,” in Non-
rigid and Articulated Motion Workshop, 1997. Proceedings., IEEE,
June 1997, pp. 90 –102.

[2] L. Deng, H. Leung, N. Gu, and Y. Yang, “Recognizing dance motions
with segmental svd,” in Proceedings of the 20th International Con-
ference on Pattern Recognition (ICPR)(Istanbul, Turkey, 2010), 2010,
pp. 1537–1540.

[3] B. Peng and G. Qian, “Binocular dance pose recognition and body
orientation estimation via multilinear analysis,” in 2008 CVPRW’08
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops. IEEE, 2008, pp. 1–8.

[4] F. Guo and G. Qian, “Dance posture recognition using wide-baseline
orthogonal stereo cameras,” in 2006 FGR 2006 7th International
Conference on Automatic Face and Gesture Recognition. IEEE, 2006,
pp. 481–486.

[5] L. Campbell and A. Bobick, “Recognition of human body motion us-
ing phase space constraints,” in 1995 Proceedings., Fifth International
Conference on Computer Vision, June 1995, pp. 624 –630.

[6] S. Tsuruta, Y. Kawauchi, W. Choi, and K. Hachimura, “Real-time
recognition of body motion for virtual dance collaboration system,” in
17th International Conference on Artificial Reality and Telexistence.
IEEE, 2007, pp. 23–30.

[7] R. Sivalingam, G. Somasundaram, V. Bhatawadekar, V. Morellas,
and N. Papanikolopoulos, “Sparse representation of point trajectories
for action classification,” in Proceedings of the IEEE International
Conference on Robotics and Automation. IEEE, 2012.

[8] “Statistics: General us education and dance education,” National
Dance Education Organization. [Online]. Available: http://www.ndeo.
org/content.aspx?page id=22&club id=893257&module id=55774

[9] C. Burbank, “Dance designer - choreography tools for dance, cheer
and figure skating,” Choreo Technology LLC. [Online]. Available:
http://www.choreopro.com/

[10] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in 2011 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2011, pp. 1297 –1304.

[11] R. Rubinstein, “Ksvd box,” October 2009.
[12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learn-

ing, vol. 20, no. 3, pp. 273–297, 1995.

1167

