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Abstract— We propose and study the navigation with foraging
problem, where an agent with a limited sensor range must
simultaneously: (1) navigate to a global goal and (2) forage en
route as opportunities to forage are detected. Each foraging
act causes a deviation from the shortest path to the long-term
goal, with consequences for path length, mission duration, and
fuel usage. We analytically calculate and/or bound the expected
distance the robot actually travels, given the initial distance to
the the global goal. In particular, for either of two non-trivial
greedy strategies: (A) forage the point that minimizes goal-
heading deviation. (B) forage the closest point ahead of the
robot. Our results generalize to problems in higher dimensions.

I. INTRODUCTION

We define navigation with foraging as the hybrid problem

in which an agent with a limited sensor range must simul-

taneously: (1) navigate to a global goal and (2) forage en

route as opportunities to forage become available. Each act of

foraging increases the total distance that the robot must travel

(with obvious consequences to path length, mission duration,

and fuel usage). The problem is non-trivial, assuming that

the agent simultaneously works to achieve both objectives.

The cumulative acts of fulfilling many short-term foraging

objectives must result in the fulfillment of one long-term

navigational objective, and the two objective types occur at

significantly different time scales.

To further motivate the problem, we now describe several

scenarios in which navigation with foraging occurs:

• Scientific Exploration: a landing rover’s mission in-

volves visiting a distant crater while sampling interest-

ing chemical/geological features that are detected along

the way.

• Combat: an unmanned aircraft must visit a valuable

target and then return to friendly territory, while also

eliminating hostile targets that are detected along the

way.

• Search and Rescue: a rescue vessel (boat or helicopter)

must reach land before running out of fuel, but also

desires to rescue people along the way.

• Intelligence Gathering: a spy plane’s primary mission

is to photograph a known enemy installation and then

return to safety; however, it is also expected to photo-

graph other unexpected enemy activity that it detects.

• Salvage Operations: A sinking ship has jettisoned cargo

into the sea. The ship is the primary objective, but

1Michael Otte and Emilio Frazzoli are with the The Laboratory for
Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA, ottemw@mit.edu

2Nikolaus Correll is with the Department of Computer Science, Univer-
sity of Colorado at Boulder, Boulder, Colorado, USA.

global goal (point)

forage
point

sensor range

global goal (plane) friendly territory

hostile territory

forage point

sensor range

Fig. 1. Greedy navigation with foraging algorithms. Left: the agent forages
the point with the heading nearest to that of the long-term global goal. Right:
the agent forages the closest point. The global goal can either be a point
(Left) or a plane (Right).

salvaging the floating cargo is also desirable.

In this paper we focus on quantifying the cumulative

effects of foraging on path length1. In particular, we in-

vestigate two special cases of navigation with foraging:

(1) always forage the point that minimizes goal-heading

deviation, (2) always forage the closest point that has a

positive movement component vs. the goal. See Figure 1-

Left and Right, respectively. These are the two non-trivial2

pure-strategy extremes—i.e., they are respectively focused on

reaching the long-term goal or foraging as much as possible

without foregoing the other mission constraint.

We model this scenario as a first-order continuous-space

Markov processes, and develop tools that allow us to solve

for the expectation of the total distance traveled. All formula-

tions are derived with respect to arbitrary dimensionality, and

thus immediately generalize to higher dimensional spaces.

To the best of our knowledge, we are the first to investigate

navigation with foraging algorithms.

This paper is organized as follows: Section II contains

a survey of related work. Section III contains the analysis

of a single foraging act. Section IV considers foraging

while moving toward a boundary (e.g., a geopolitical border,

shoreline, etc.). Section V considers foraging while moving

toward a point. Both IV and V contain theoretical and

experimental results related to the particular scenarios they

address. Conclusions are presented in Section VI.

II. RELATED WORK

In [1] a predator-prey patch model is used to evaluate

which tasks an agent should perform, assuming tasks are

encountered randomly within a patch (a bounded subset of

the environment), and the agent may move between patches.

Tasks are defined broadly, and are arguably analogous to

our forage points. The main theoretical contribution of [1]

1Assuming constant speed, path length can be used to calculate the effects
of foraging on mission duration and fuel usage.

2In contrast, trivial pure strategies involve ignoring one of the two mission
requirements: (1) Move directly to the goal without foraging. (2) Always
forage the closest point (which will reach the goal with probability 0).
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is an analysis showing the subset of tasks that are expected

to maximize an agent’s long-term reward. There is no long-

term navigational objective, and tasks are ranked based on

a predefined (and static) expected return on foraging effort.

[2] explores a similar multi-agent scenario. In contrast to [1]

and [2], we consider a navigation with foraging scenario,

study how path-length is affected by task density (i.e., using

the language of [1]), and rank tasks based on their spatial

location vs. the long-term navigational goal.

Other previous work on agent based foraging has primarily

focused on communal and/or emergent foraging behavior in

artificial colonies. Ant-like foraging is a canonical problem in

the multi-agent robotic domain [3]. Common areas of focus

include: statistics of the time required to find food and/or

knowledge propagation within the colony as functions of

ant speed, memory, life span, communication modality (e.g.,

pheromone trail and/or contact based knowledge exchange),

and colony size. Early papers date back to the 1980s [4],

[5], and there has been a steady stream of work to date,

e.g., [6], [7], and [8]. Indeed, the field is so broad that it

is impossible to do it justice here. The main differences be-

tween ant colony foraging and our work can be summarized

as follows: Ant colony foraging is primarily concerned with

the emergent behavior of a multi-agent system, the effects of

communication, and a scenario where agents have the long-

term goal of discovering resources and relocating them to a

nest, i.e., a specific location to which the agents must also

return. In contrast, our work focuses on a single nomadic

agent (i.e., not assumed to return to the starting position), that

must balance opportunistic local foraging with global path

efficiency; we investigate how different algorithms, resource

density, and dimensionality affect long-term path length.

Navigation, itself, is also an entire sub-field of artificial

intelligence and another canonical robotics problem. How-

ever, from early works on bug algorithms [9], [10] and grid-

based planning [11], [12] to more modern random graph

techniques [13], [14], [15], nearly all previous navigational

work in robotics and artificial intelligence has focused on

navigation that avoids obstacles or other robots—usually

by path planning or motion-planning, with an emphasis on

planning. In contrast, our work is on navigation that seeks

local points of interest, and does not produce a detailed long-

term plan a priori.

Therefore, while it may be easy to misinterpret our work

as belonging to the path planning sub-field of navigation,

this is a critical error. Although the movement we investigate

arguably constitutes a path, that path is not planned in the

formal sense; rather, it emerges due to conflicting mission

requirements. In this respect, our work shares similarities

with reactive planning ideas [16], [17]. The two main dif-

ferences between our work and other reactive planning ideas

are: (1) We study a scenario in which local movement that

seeks random opportunities is chosen, partially, based on

the location of a static global objective, and (2) we are

able to compute analytical expressions for the expected total

distance the agent eventually travels.

Local navigation to successive waypoints along a prede-

ℓi,∗ = GreedyHeading(r, n, xi, ĝi)

1: Li = Random(r, n, xi, ĝi)
2: return arg minℓi,j∈Li

(φi,j)

ℓi,∗ = GreedyProximity(r, n, xi, ĝi)

1: Li = Random(r, n, xi, ĝi)
2: return arg minℓi,j∈Li

(‖ℓi,j − xi‖)

Fig. 2. Greedy foraging algorithms. r, n, xi are the sensor radius, number
of random local points considered at each iteration, and the agent’s current
location, respectively. ĝi is a unit vector that points at the goal from xi.
Li is a set of random points found at iteration i, where |Li| = n. The
subroutine Random(r, n, xi, ĝi) draws n points ℓi,j for 1 ≤ j ≤ n, such
that ‖ℓi,j − xi‖ ≤ r and ‖(ℓi,j − xi) · ĝi‖ > 0. The best member of Li,
as defined by the greedy algorithm, is xi+1. GreedyHeading() returns
the member of Li with the smallest angle φi,j away from the gi-axis.
GreedyProximity() returns the member of Li that is closest to xi.

termined sequence has also been studied (e.g., [18]); usually

with a focus on calculating and/or learning a locally optimal

planner or control policy for moving to the next waypoint.

The origin of the sequence is largely irrelevant to the local

plan or policy. In contrast, we investigate how conflicting

local and global objectives influence the resulting emergent

path.

III. LOCAL MOVEMENT

An agent desires to move to a global goal in a D
dimensional Euclidean space ℜD. However, it also desires to

forage en route by visiting “locally interesting” points that

it discovers along the way (i.e., “forage points”). The agent

is equipped with a 180-degree sensor with range r, that it

points at the long-term goal when searching for foragable

points. Movement happens in a sequence of iterations. In

each iteration the agent scans for n interesting points and

then moves to the “best” one—as defined by one of the

following two algorithms:

1) The agent moves to the point that requires the least

amount of angular deviation from the long-term head-

ing.

2) The agent moves to the point that is closest to its

current location (and also in front of the robot).

Scenarios (1) and (2) are depicted in Figure 1-Left

and -Right, respectively, and formalized in algorithms

GreedyHeading() and GreedyProximity() in Fig-

ure 2-Top and -Bottom, respectively. By construction, the

movement component along the desired heading is never

negative.

We assume that the n points are independent and iden-

tically distributed (i.i.d.) uniformly at random at each it-

eration3. We assume that the agent moves directly to the

appropriate forage point at each iteration4. We believe our

3This can happen in a number of interesting situations; e.g., whenever the
time required to study/collect/process an interesting point is much greater
than both the time required to move to it and the time in which the points
shift location; or when the act of moving to a point causes the other points
to redistribute randomly (for instance by “scaring them away”).

4Although rotating in place is impossible for many vehicles (e.g.,
airplanes), our results still provide a reasonable approximation when the
distance required to perform a rotation is small relative to the distance
between forage points.
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ĝi

Fig. 3. ℓi,∗ (green/light gray) is the ‘best’ point discovered from xi,
another point is ℓi,j (red/dark gray). The unit vector ĝi points at the goal
along the gi-axis. Angles away from ĝi and vectors from Xi to ℓi,∗ and
ℓi,j are also depicted, as is the D-ball Bi (dashed blue circle). Φi is the
hypersector (green/light gray) defined by φi measured from the g axis, the
goal is located along the gi axis, and xi is located at x = 0. B1/2 is the
portion of the D-Ball located in the positive gi-direction.

technique can be modified to handle many non-Euclidean

spaces, non-uniform distributions, and dynamics, but leave

these for future work.

Let Xi denote the location of the robot at iteration i.
The agent’s movement can be modeled as a first-order

continuous-space Markov process because the stochastic

process of movement from one foraged point to the next

depends only on the agent’s location at the former point—

and not the history by which it arrived there. Formally, if

the agent starts at X1 = x1 and then visits a sequence of

locations xi ∈ ℜD for all 1 ≤ i ≤ k+1 by making k moves,

then

P(Xi = xi|Xi−1 = xi−1, · · · , X1 = x1)

≡ P(Xi = xi|Xi−1 = xi−1)

To avoid confusion with the navigational notion of time, we

use the term “iteration” instead of “time” to describe the

basic index of movement.

We use the subscripts ‘◦’ and ‘⋄’ to denote “best” with

respect to GreedyHeading() and GreedyProximity(),
respectively. We use ‘∗’ as a proxy for ‘◦’ and ‘⋄’ in discus-

sion/derivations that apply to both GreedyHeading() and

GreedyProximity().
The rest of this section is devoted to understanding the

effect that a single foraging act has on path length. In

particular, we derive compact analytical expressions for the

robot’s expected movement, as a function of D, r, n, and

the particular algorithm being used. A key insight is that the

expected change in path length due to foraging at iteration

i is related to the expectation of trigonometric functions of

φi,∗, where φi,∗ is the angle between the optimal navigational

heading and the optimal forage heading.

Let Li be the set of foragable points that are available at

iteration i (when the robot is at Xi = xi), and let ℓi,∗ be

the “best” member of Li. We shall consider the expectation

of movement from xi to ℓi,∗, assuming the long-term goal

is further than r from xi (in the more interesting scenarios

in Sections IV and V we will drop this assumption). Let

the vector vi,j = ℓi,j − xi, and let ‖ · ‖ denote magnitude.

‖vi,j‖ = ‖ℓi,j − xi‖ < r for all ℓi,j ∈ Li.

Nomenclature note: we use variations of the letter ‘L’

to represent forage points to emphasize their “local” effects.

Similarly, we use variations of the letter ‘G’ for quantities

associated with the long-term “global” navigational goal.

Further, we use boldfaced uppercase to denote sets and

boldfaced lowercase to denote vectors.

Without loss of generality, assume that xi is at the origin

of a local coordinate system such that the gi-axis contains

the goal (see Figure 3-Left). By construction, we consider

only movement in the positive gi-direction. Let ĝi be a unit

vector located at xi that points along the gi-axis. Let gi,j be

the projection of vi,j onto the gi-axis (Figure 3-Center).

Bi is defined as the D-ball of radius r centered at xi.
Let B⊖

i refer to the half of the D-ball that exists in the

non-negative gi-direction. Li ⊂ B⊖
i . Let φi measure the

angular distance from ĝi, where −π/2 ≤ φi ≤ π/2. The

angle between ĝi and vi,j is φi,j , and the angle between

ĝi and vi,∗ is φi,∗.

Given a particular movement from xi to ℓi,j , the com-

ponent of that movement toward the goal is gi,j . Let

gi,j + si,j = vi,j , where si,j is the component of vi,j that

is perpendicular to gi,j .

We shall use Pn(·) and En(·) to denote the probability

density and the expectation of a quantity when |Li| = n,

respectively. Given our i.i.d. uniform sampling assumptions,

P (‖ℓi,j − xi‖) (proximity probability density) and P (φi,j)
(heading probability density) are statistically independent; as

a result, Pn (‖ℓi,j − xi‖) and Pn (φi,∗) are also statistically

independent. We now prove two lemmas based on this fact,

regarding the effects of a single foraging act on the global

path length.

Lemma 1: En(‖gi,∗‖) = En(‖vi,∗‖)En (cos (φi,∗))
Proof: Pn (‖ℓi,j − xi‖) and Pn (φi,∗) are

statistically independent; thus, so are Pn (‖ℓi,∗ − xi‖)
and Pn (cos (φi,∗)). Note ‖vi,∗‖ = ‖ℓi,∗ − xi‖.

The expectation operator supports multiplicativity

between statistically independent variables; therefore,

En (‖vi,∗‖ cos(φi,∗)) = En (‖vi,∗‖)En (cos (φi,∗)), and

‖vi,∗‖ cos(φi,∗) = ‖gi,∗‖, since −π/2 ≤ φi,∗ ≤ π/2.

Lemma 1 shows that En (cos (φi,∗)) relates the expecta-

tions of incremental movement toward the long-term goal vs.

the actual movement required for local foraging at iteration

i. This result is very intuitive—given that cos (φi,∗) is the

ratio between movement toward the goal vs. movement to

point ℓi,∗—however, the functional non-invariance of the

expectation operator requires that we prove it explicitly. The

following corollary provides a similar result for En(‖si,∗‖).
Corollary 1: En(‖si,∗‖) = En(‖gi,∗‖)En (tan (|φi,∗|))

Proof: Pn (tan (|φi,∗|)) and Pn (‖si,∗‖) are statistically

independent. The rest of the proof is similar to Lemma 1,

except that tan (|φi,∗|), si,∗, and gi,∗ are used in place of

cos (φi,∗), gi,∗, and vi,∗, respectively.

Table I shows values of En (cos (φi,◦)) and

En (tan (|φi,◦|)) for select D and n. Full derivations,

including En (cos (φi,⋄)) and En (tan (|φi,⋄|)), are treated

in the Appendix. However, we note that:

En (cos (φi,⋄)) = E1 (cos (φi,◦)) (1)

En (tan (|φi,⋄|)) = E1 (tan (|φi,◦|)) (2)

see the Appendix for more details.
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TABLE I

SPECIAL CASES OF En (cos (φi,◦)) AND En (tan (|φi,◦|))

En (cos (φi,◦))

D
n

1 2 3 4 n

2 2
π

8
π2

24(π−2)

π3
48(π2−8)

π4

3 1
2

2
3

3
4

4
5

n
n+1

En (tan (|φi,◦|))

D
n

1 2 3 4 n

2 ∞
log(16)

π
3(π2 log(4)−7ζ(3))

π3
4(π2 log(4)−9ζ(3))

π3

3 π
2

1 π
4

2
3

√
πnΓ(n−1

2
)

4Γ(1+n/2)

Γ(·) and ζ(·) are the gamma and Riemann zeta functions, respectively

ForageHeadingA(r, n, x1, d
plane
goal )

1: xi = x1
2: while xi 6∈ {xgoal} do
3: xi+1 = Greedy(r, n, xi, ĝ1)
4: if d

plane
goal −‖(xi+1 − x1) · ĝ1‖ > 0 then

5: xi = xi+1

6: else
7: xi = x ∈ xixi+1 ∩ {xgoal}

ForageHeadingB(r, n, x1, d
plane
goal )

1: xi = x1
2: while d

plane
goal − ‖(xi − x1) · ĝ1‖ > r do

3: xi+1 = Greedy(r, n, xi, ĝ1)
4: xi = xi+1

5: xi = xi +
(

d
plane
goal − ‖(xi − x1)ĝ1‖

)

ĝ1

Fig. 4. Notation is similar to Figure 3. x1 is the agent’s initial position.

The goal plane is at g1 = dplane
goal . At iteration i the agent’s location is xi,

and xi+1 is the best point as defined by the greedy algorithm. xixi+1 is the
line segment between xi and xi+1, while {xgoal} is a set containing all
points in the goal plane. In ForageHeadingA() the robot moves toward
a locally interesting point on the last iteration, but stops at the goal while
en route. In ForageHeadingB() the agent does not forage on the last
iteration, but moves directly to the goal hyperplane.

IV. DIRECTIONAL NAVIGATION WITH FORAGING

In this section we consider the case where an agent’s long-

term goal is to reach a hyperplane located at a distance

dplanegoal from the agent. For example, a geopolitical boundary

(such as country’s border) or geographic boundary (such

as shoreline). Without loss of generality, we assume the

agent’s initial global position x1 is at the origin and the goal

hyperplane is at g1 = dplanegoal .

The final movement to the goal can be addressed in two

different ways, depending on if the agent favors the short- or

long-term objective on the final move (see Figure 4). In algo-

rithm ForageHeadingA() the agent never forages the last

point that it detects, but moves toward it until reaching the

goal. In algorithm ForageHeadingB() the agent moves di-

rectly to the goal whenever it is closer than r (See Figure 5).

Both of these algorithms maintain the Markov property.

However, En (φi,∗) and En (cos (φi,∗)) remain unchanged

A simulated robot moving to a planer goal (20 trials)
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Fig. 5. A simulated robot navigates to a planer goal while also foraging.
Each sub-figure contains five paths from xi = [0, 0] to the goal at g1 =

dplane
goal = 10, given a particular combination of greedy algorithm, goal

behavior, dimension D, and n = |Li|, and sensor radius r = 1.
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d
plane
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Fig. 6. Path from x1 to a planar goal at x = L, and related quantities

for the final iteration of algorithm ForageHeadingA(),
while they are not the same for the final iteration of algorithm

ForageHeadingB(). That said, ForageHeadingA() and

ForageHeadingB() are identical on all but the last move;

thus, their differences vanish as r/dplanegoal → 0.

When the goal is a hyperplane at g1 = dplanegoal , all local
gi-axis are parallel due to symmetry. It is possible to define
all local coordinate systems such that the transformation
between them is a translation in the g1-direction. As a result,
statistics regarding the incremental movement between states
i and i + 1 are identical at all i such that 1 ≤ i < k. For
convenience, we define the global coordinate system to be
the local coordinate system at X1 = x1. Let P∗ be the
path taken by the agent. Formally, {x1, · · · , xk+1} = P∗
such that X1 = x1, · · · , Xk+1 = xk+1. Recall that vi,∗ is
the vector defined by the i-th movement along P∗. Given
our coordinate system, vi,∗ = xi+1 − xi (see Figure 6). Let
∆Xi denote the state transition at iteration i. Then for all i
such that 1 ≤ i < k (note i 6= k)

P(∆Xi = vi,∗|Xi−1 = xi−1)≡P(∆Xi = vi,∗)≡P(∆X1 = v1,∗).

Thus, understanding the behavior at i = 1 is equivalent

to understanding the behavior at all other iterations except

i = k. This simplifies the analysis. Further, we have already

evaluated the relevant movement for when i 6= k in the

previous section, i.e., when P(∆X1 = v1,∗) ≡ P(X2 =
x2|X1 = x1).
‖P∗‖ =

∑k
i=1 ‖vi,∗‖ is the cumulative length of P∗. The

rest of this section is devoted to calculating and/or bounding

the expected path length En (‖P∗‖) as simple functions of

En (cos (φi,∗)). Casual readers wishing to skip the details of

3153



the proofs should at least note the statements of Corollaries 2

and 3, as well as the favorable agreement between the

theoretical and experimental results (Figure 7).

Recall that gi,∗ is the projection of vi,∗ onto the gi-
axis. ‖vi,∗‖ and ‖gi,∗‖ are the magnitudes of vi,∗ and gi,∗,

respectively, and φi,∗ is the angle between vi,∗ and gi,∗,

and cos(φi,∗) = ‖gi,∗‖/‖vi,∗‖. Although the value of k
is random for any particular run of ForageHeadingA()
or ForageHeadingB(), our analysis only requires that

iteration k be the final movement to the goal. En (‖vk,∗‖) is

the expected distance that the agent moves during the final

iteration and En (‖gk,∗‖) is the length of the projection of

the final movement onto the g1-axis.

Theorem 1: En (‖P∗‖) =
dplane
goal −En(‖gk,∗‖)

En(cos(φ1,∗))
+ En (‖vk,∗‖)

for navigation to a planar goal with foraging.

Proof: By construction and the linearity of expectation

En (‖P∗‖) =
∑k

i=1 En (‖vi,∗‖). Substituting from Lemma 1

gives: En (‖P∗‖) = En(‖vk,∗‖) +
∑k−1

i=1
En(‖gi,∗‖)

En(cos(φi,∗))
. We

know that P(∆Xi = vi,∗) ≡ P(X2 = x2|X1 = x1) for

1 ≤ i < k, and so En (cos (φi,∗)) = En (cos (φ1,∗)). Also by

construction,
∑k

i=1 ‖gi,∗‖ = dplanegoal and so by the linearity

of expectation, and also that En(d
plane
goal ) = dplanegoal , we have

dplanegoal − En (‖gk,∗‖) =
∑k−1

i=1 En(‖gi,∗‖). Substitution

finishes the proof.

Corollary 2: En (‖P∗‖) =
dplane
goal

En(cos(φ1,∗))
for algorithm

ForageHeadingA().
Proof: Lemma 1 is also valid when i = k because stop-

ping the agent at the global goal (i.e., somewhere between

xk and ℓk,∗) does not change En (φk,∗) or En (cos (φk,∗))

Corollary 3:
dplane
goal −r

En(cos(φ1,∗))
+ r ≤ En (‖P∗‖) ≤

dplane
goal

En(cos(φ1,∗))
for algorithm ForageHeadingB().

Proof: By construction 0 ≤ En (‖gk,∗‖) ≤ r and

0 ≤ En (‖vk,∗‖) ≤ r.

Figure 7 shows statistics from experiments with a simu-

lated robot superimposed on the expected values predicted

by our analytical results. 10000 experiments are performed

per each algorithm combination. Various values of d and n
are used, while dplanegoal = 10 and r = 1. The expected values

and bounds are within 0.005% and 0.02% of the average

experimental path length, respectively. Note that we should

expect the bounds to approach an equality as dplanegoal /r → ∞
and/or n→ ∞.

V. POINT TO POINT NAVIGATION WITH FORAGING

We now consider the case where the long-term goal is a

point. The agent uses the ForageGoalPoint() algorithm

in Figure 8. Examples of paths taken by a simulated robot

using ForageGoalPoint() are shown in Figure 9.

Without loss of generality, we define the local coordinate

system at each Xi = xi such that xi is at the origin and

the goal point on the gi-axis. Let dgoal be the distance

between Xi and the goal. As in the previous section, we

use the local coordinate system at X1 = x1 as our global

coordinate system. However, it is important to note that

Simulated robot results vs. theoretical results (planer goal)
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Fig. 7. Observed statistics over 100000 experimental trials with a
simulated robot over four different combinations of algorithm, goal behavior,
dimension d, and local forage points n = |Li|. In all experiments sensor

radius r = 1 and dplane
goal = 10. Histograms show the distributions of

experimental path lengths and red-line depicts the mean value. Green line(s)
show the theoretically predicted expectations based on our analytical results
(exact value or upper and lower bounds, depending on algorithm).

ForageGoalPoint(r,n,x1,xgoal)

1: xi = x1
2: while ‖xgoal − xi‖ > r do
3: xi+1 = Greedy(r, n, xi, ĝi)

4: xi = xi+1

5: xi = xgoal

Fig. 8. Notation similar to Figures 3
and 4. xgoal is the long-term goal.

Simulated robot, point goal, X10

0 2 4 6 8 10
−1

−0.5
0

ForageGoalPoint(), GreedyHeading(), d=2, n=5

0 2 4 6 8 10
−1

0

1

ForageGoalPoint(), GreedyProximity(), d=2, n=5

Fig. 9. Paths taken
by a simulated robot
navigating from xi = [0, 0] to
xk+1 = [10, 0]. Five paths each
for GreedyHeading() (Top)
and GreedyProximity().
D = 2, n = |Li| = 5, r = 1.

gi,∗ is now defined as the projection of vi,∗ onto the gi-
axis (and not the g1 axis, in general). Unlike the previous

section, gi-axis and gj-axis are not parallel for i 6= j (with

probability 1). Although the Markov property is maintained,

the computation of an exact En (‖P∗‖) becomes difficult,

due to the loss of translational symmetry, and we must settle

for computing bounds instead. We begin with a relatively

tight lower bound, before moving on to calculate a loose

upper bound.

The basic idea is to show that the point-goal problem can

be transformed into the plane-goal problem of the previous

section, but that the transformation increases the effective

dplanegoal of the resulting plane-goal problem vs. the dgoal
of the original point-goal problem (see Figure 10). The

transformation involves a rotation at each Xi of the rest of

the problem. Thus, using dgoal instead of dplanegoal leads to a

lower bound on En (‖P∗‖). Casual readers should note the
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x1

xgoal

xi

xi+1
φi,∗

gi,∗

g1

vi,∗

dgoal

Fig. 10. Top: Path from x1 to a point goal at xgoal, and related quantities.
Middle: rotation of the sub-path {xi, · · · , xgoal} does not increase path
length. Bottom: performing rotation for all nodes such that gi,∗ is parallel
to the g1 axis for all i.

statements of Theorems 2 and 3, as well as the comparison

of theoretical to experimental results in Figure 12.

Lemma 2: Given a path P∗ = {x1, · · · , xk+1}, Rotating

the sub-path {xi, · · · , xk+1} around xi will not change

‖P∗‖ =
∑k

i=1 ‖xi+1 − xi‖ =
∑k

i=1 ‖vi,∗‖.

Proof:
∑k

i=1 ‖vi,∗‖ =
∑i−1

j=1 ‖vj,∗‖+
∑k

j=i ‖vj,∗‖. It

is obvious that
∑i−1

j=1 ‖vj,∗‖ remains unchanged because

xj for 1 ≤ j ≤ i are not affected by the rotation

of {xi, · · · , xk+1} around xi. Also,
∑k

j=i ‖vj,∗‖ remains

unchanged because no scaling occurs when {xi, · · · , xk+1}
is rotated around xi, and so ‖vj,∗‖ for all i ≤ j ≤ k is the

same before and after the rotation. (see Figure 10-middle)

Theorem 2: For point-to-point long-term navigation with

greedy foraging, En (‖P∗‖) ≥ r +
dgoal−r

En(cos(φ1,∗))
.

Proof: This is a consequence of the triangle inequality

and can be observed by examining a sequence of problems

that have equal path length. Starting at i = 2, and then work-

ing forward for i = {2, · · · , k}, each successive problem is

obtained by rotating the sub-path {xi, · · · , xk+1} around xi,
such that gi,∗ is parallel to the g1-axis, and points in the

positive direction (see Figure 10-bottom). Because rotations

are performed around xi, path length remains unchanged by

Lemma 2. Further, we have warped the path such that the

apparent location of the goal from every xi “was” along

the same heading during the calculation of ℓi,∗. However,

each rotation moves the apparent location of a planar goal

in a non-decreasing manner with respect to the g1-axis

(e.g., increases dplanegoal ), so dplanegoal =
∑k

i=1 ‖gi,∗‖ ≥ dgoal
by construction. Substituting this into the lower bound of

corollary 3 gives a slightly looser lower bound. We use corol-

lary 3 because ForageHeadingB() handles movement at

iteration k similarly to ForageGoalPoint().

We now calculate an upper bound on En (‖P∗‖) by find-

ing an upper bound on dplanegoal . Let ∆ixk+1 be the translation

of xk along the g1-axis due to the rotation of {xi, · · · , xk}
around xi, and let ψi be the angle of that rotation (see

Figure 11).
∑k

i=1 ‖gi,∗‖ = dplanegoal = dgoal +
∑k

i=2 ∆ixk+1.

Lemma 3: ∆ixk+1 ≤ ‖gi−1,∗‖ tan(φi−1)

Proof: It is easy to see (Figure 11) that ∆ixk+1 ≤ mi

when |ψi| ≤ π/2. Using similar triangles we also know that

mi ≤ ‖si−1,∗‖ = ‖gi−1,∗‖ tan(φi−1) iff |ψi| ≤ π/4, and for

xi−1 gi−1,∗

vi−1,∗
si−1,∗

xi
φi−1,∗

ψi

mi

gi−1

gi

∆ixk+1

xk+1

Fig. 11. The red (center) and blue (right-most) triangle are similar. ψi is
the angle used to rotate {xi, · · · , xk+1} around xi such that the gi-axis
is parallel to gi−1-axis, and ∆ixk+1 is the resulting shift in xk+1 along
the gi−1 axis. ∆ixk+1 ≤ mi by construction, and mi ≤ ‖si−1,∗‖ when
|ψi| ≤ π/4 (which is always).
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Fig. 12. Observed statistics over 100000 experimental trials with a
simulated robot. Dimension d = 3, forage points n = 4, sensor radius
r = 1, and dgoal = 10. Histograms show the distributions of experimental
path lengths and red-line depicts the mean value. Green lines show the theo-
retically predicted bounds on expectation based on our analytical results. The
upper bound is located at 58.2 in the left sub-figure, GreedyHeading(),
and is nonexistent in the right sub-figure, GreedyProximity().

the algorithms we are considering |ψi| ≤ π/4 always.

Theorem 3: En (‖P∗‖) ≤
dgoal

En(cos(φ1,∗))(1−En(tan(|φ1,∗|)))
,

given that En (tan (|φ1,∗|)) ≤ 1.

Proof: Using Lemma 3 with the definition of

dplanegoal gives dplanegoal ≤ dgoal +
∑k

i=2 ‖gi−1,∗‖ tan(φi−1).

Taking the expectation and rearranging5 gives:

En(d
plane
goal )≤En(dgoal)+

∑k
i=1En(‖gi−1,∗‖)En (tan (|φi,∗|)).

We observe that En (tan (|φi,∗|)) = En (tan (|φ1,∗|))

and En (dgoal) = dgoal and
∑k

i=2 ‖gi−1,∗‖ ≤ dplanegoal .

Substituting, we get the slightly looser En(d
plane
goal ) ≤

dgoal + En(d
plane
goal )En (tan (|φ1,∗|)). Rearranging gives:

En(d
plane
goal ) ≤

dgoal

1−En(tan(|φ1,∗|))
, but comes at the price that

we require En (tan (|φ1,∗|)) ≤ 1. Substituting this result

into the upper bound in corollary 3 finishes the proof6.

A critical insight from Theorem 3 is that convergence

is not guaranteed by our bound when En (tan (|φi,∗|)) ≥ 1.

Unfortunately, this means that the upper bound on En (‖P⋄‖)
is infinite for GreedyProximity(). On the other hand,

when using GreedyHeading() En (tan (|φi,∗|)) ≥ 1 only

happens when there are relatively few n vs. D; and because

En (tan (|φi,◦|)) → 0 and En (cos (φi,◦)) → 1 as n → ∞,

the upper bound on En (‖P◦‖) shrinks as n increases.

Figure 7 contains statistics on a large number of exper-

iments involving a simulated robot that are performed to

5recall the statistical independence of proximity and angle
6This is a slight abuse of notation, but recall that we made the substitution

dplane
goal = En(d

plane
goal ) in the derivation of Theorem 1, in the first place.

So the factor dplane
goal in Theorem 1 can be replaced by En(d

plane
goal ) before

the final substitution is made in the current proof.
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verify the accuracy/tightness of the results that we have

obtained. 100000 experiments are performed per each al-

gorithm combination and d = 3, n = 4, dplanegoal = 10, and

r = 1. The lower bound is less accurate than in the case

of a planer goal, but still within 6% of the average ex-

perimental value observed with GreedyHeading() and

12% for GreedyProximity()—it is expected to approach

0% as n → ∞. On the other hand, the upper bound

is very loose for GreedyHeading() and nonexistent for

GreedyProximity(). The latter happens because move-

ment with a positive goal-wise component does not neces-

sarily bring the agent closer to that goal; and provides an

argument to avoid using GreedyProximity() in the point-

goal scenario.

VI. CONCLUSIONS

We propose and study the navigation with foraging prob-

lem, where an agent must simultaneously (1) navigate to

a global goal and (2) forage en route as opportunities to

forage are detected. This problem has applications to combat,

scientific exploration, search and rescue, intelligence gath-

ering, and other areas. The problem is interesting because

achieving a long-term objective must happen in parallel

to achieving many small objectives. The latter each cause

a small deviation from the former, and the two types of

objectives occur at very different time scales.

We study two local foraging algorithms: (A) forage the

point that minimizes deviation from the heading of the long-

term goal, and (B) forage the closest point ahead of the agent.

We consider both planar and point long-term goals.

Both analytical and experimental results show that the

average length of the path decreases as global navigation

becomes more important vs. local foraging, i.e., (A) vs. (B).

This decrease is significantly more pronounced for scenarios

with point goals than for scenarios with boundary goals, and

is a consequence of the fact that boundary goals exist at

many locations while point goals exist at a single location.

Our analytical bounds are tight vs. experimental results in

the case of a planar goal, and for the lower bound in the case

of a point goal. On the other hand, our upper bound for the

point goal scenario is loose for (A) and nonexistent for (B).

The latter is a consequence of the fact that movement with a

positive component toward a point goal does not necessarily

reduce the distance to that goal.

The navigation with foraging problem we study is unique

from previous navigation and foraging problems. However,

it may be possible to extend our work in either of the latter

directions. For example, calculating the expected length of

a planned-path in a random environment would undoubtedly

be useful. Adding foraging as a secondary objective in the

context of re-planning algorithms (or vice versa) also seems

like a natural extension to this work.

APPENDIX

This appendix contains the derivation of En (cos (φi,◦)),
En (tan (|φi,◦|)), En (cos (φi,⋄)), and En (tan (|φi,⋄|)).

In general, En (cos (φi,◦)) 6= cos (En (φi,◦)) and

En (tan (|φi,◦|)) 6= tan (En (|φi,◦|)). However, the expec-

tations En (cos (φi,◦)), En (tan (|φi,◦|)), and En (φi,◦) can

be calculated from the probability density functions of

cos(φi,◦), tan(|φi,◦|), and φi,◦—which themselves can be

calculated using order statistics given the probability density

and distribution functions of cos(φi), tan(|φi|), and φi over

B⊖. For ease of notation, we shall drop the subscript ‘i’
for the intermediate steps of these derivations in which

we consider the quantities relevant to a single iteration of

GreedyHeading().

The distribution function Fφ of φ can be found using the

problem’s geometry. Given our assumptions, the probability

a point is sampled from any particular region of space is

proportional to the Lebesgue measure of that region. Let

Φ denote the hypersector of B that is bounded by the

revolution of φ around the g-axis, see Figure 3-Right (e.g.,

if D = 2 then Φ is a sector and if D = 3 then Φ is a

spherical cone, etc.). Let λB⊖ and λΦ represent the Lebesgue

measure of B⊖ and Φ, respectively. Thus, Fφ = λΦ

λ
B⊖

.

From [20], we know λB⊖ = rDπD/2

2Γ(D/2+1) , where Γ(·) is the

gamma function and λB = 2λB⊖ . From [21] we know λΦ =
λB⊖Isin2 φ

(

D−1
2 , 12

)

, where Isin2 φ

(

D−1
2 , 12

)

is the regular-

ized incomplete beta function Iz
(

D−1
2 , 12

)

evaluated at z =

sin2 φ. Thus, Isin2 φ

(

D−1
2 , 12

)

=
B(sin2(φ);D−1

2 , 12 )
B(D−1

2 , 12 )
, where

B
(

D−1
2 , 12

)

and B
(

sin2(φ); D−1
2 , 12

)

are the corresponding

beta function and incomplete beta function, respectively

[22]. Substituting the integral form of the beta functions

yields: Isin2 φ

(

D−1
2 , 12

)

=
∫ sin2(φ)
0 t(D−3)/2(1−t)−1/2dt
∫ 1
0
t(D−3)/2(1−t)−1/2dt

. Note

that φ ranges from 0 to π/2 in this calculation, with the

consequences that | sin(φ)| = sin(φ) and | cos(φ)| = cos(φ)
and tan(|φ|) = | tan(φ)| = tan(φ). Also note, cos(φ) is

monotonically decreasing vs. φ on the range φ = [0, π/2],
while tan(φ) is monotonically increasing on the range

φ = [0, π/2). This means that while ‘◦’ is being used to

denote the minimum value with respect to φ and tan(φ), it

will denote the maximum value with respect to cos(φ). The

decreasing cos(φ) vs. φ also implies that its corresponding

distribution function is Fcos(φ) = 1−Fφ, while the increasing

tan(φ) vs. φ means that Ftan(φ) = Fφ.

Probability density functions of φ and cos(φ) and tan(φ)
are fφ = F ′

φ and fcos(φ) = F ′
cos(φ) and ftan(φ) = F ′

tan(φ),

respectively, where F ′
φ and F ′

cos(φ) and F ′
tan(φ) are the

derivatives of Fφ and Fcos(φ) and Ftan(φ) with respect to

φ.

It is now possible to use order statistics to find

the probability density function of φ◦ and cos(φ◦).
Since φ◦ represents the minimum φ over a set of

size n, we are interested in the first order statistic of

φ. This is fφ◦
= n(1− Fφ)

n−1fφ. Likewise, fcos(φ)◦
is given by the n-th order statistic of cos(φ) as

follows: fcos(φ◦) = fcos(φ)
◦
= n(Fcos(φ))

n−1fcos(φ),
where fcos(φ◦) = fcos(φ)◦ comes from the fact that

cos(φ) is non-increasing on φ = [0, π/2]. Similarly,

ftan(φ)◦ is the first order statistic of tan(φ) as follows:
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ftan(φ◦) = ftan(φ)
◦
= n(1 − Ftan(φ))

n−1ftan(φ). Expected

values for φ◦, cos (φ◦), and tan (φ◦) can now be computed:

En (φi,◦) =
∫ π/2

0
φn(1− Fφ)

n−1fφdφ

En (cos (φi,◦)) =
∫ π/2

0
cos (φ)n(Fcos(φ))

n−1fcos(φ)dφ

En (tan (|φi,◦|)) =
∫ π/2

0
tan (φ)n(1− Ftan(φ))

n−1ftan(φ)dφ

Given D and n it is possible to solve for any En (φi,◦),
En (cos (φi,◦)), and En (tan (|φi,◦|)). A few cases are

presented in Table I.

We now consider En (cos (φi,⋄)), and En (tan (|φi,⋄|)),
which are relevant to GreedyProximity(). Note we re-

sume our use of the subscript ‘i’. Although it is possible to

derive En (cos (φi,⋄)) and En (φi,⋄) in a similar fashion to

En (cos (φi,◦)) and En (φi,◦), respectively, there is a much

easier way based on on the scale symmetry of spherical shells

and the statistical independence of angle and proximity.

Moving any point ℓi,j ∈ B⊖ directly toward or away from

xi changes ‖vi,j‖ = ‖ℓi,j − xi‖ but not φi,j , cos(φi,j), or

tan(φi,j). (we can ignore the measure 0 set where ℓi,j = xi
and φi,j is undefined, as well as the measure 0 set where

φi,j = π/2 and tan(φi,j) is undefined).

Let B⊖
i,r̃ denote the level-set of B⊖

i that is the half-

spherical shell located at radius r̃, where 0 < r̃ ≤ r. That is,

B⊖
i,r̃ =

⋃

x for all x such that r̃ = ‖x− xi‖. Let B⊖
i,r̃⋄

be

the particular level-set such that ℓi,⋄ ∈ B⊖
i,r̃⋄

. Given our i.i.d

uniform sampling assumptions, with probability 1 there is

only one member of Li∩B
⊖
r̃i,⋄

, and this member is ℓi,⋄. Thus,

the problems of calculating En (φi,⋄) and En (cos (φi,⋄))
and En (tan (|φi,⋄|)) for Li ⊂ B⊖

i are reduced to calculat-

ing En (φi,⋄) and En (cos (φi,⋄)) and En (tan (|φi,⋄|)) for

a single point ℓi,⋄ drawn randomly from B⊖
i such that

ℓi,⋄ ∈ B⊖
i,r̃⋄

where r̃⋄ = ‖ℓi,⋄ − xi‖. The scale symmetry of

B⊖
i,r̃ for 0 < r̃ ≤ r with respect to Pn(φi,j = φi|ℓi,j ∈ B⊖

i,r̃),
gives:

Pn(φi,⋄) = Pn(φi,⋄|ℓi,⋄ ∈ B⊖
i,r̃⋄

) = Pn(φi,⋄|ℓi,⋄ ∈ B⊖
i,r)

In other words, replacing r̃⋄ with any other value r̃ ∈ (0, r]
will yield identical results vs. En (φi,⋄) and En (cos (φi,⋄))
and En (tan (|φi,⋄|)) because it will not change φi,⋄ or

cos (φi,⋄) or tan (|φi,⋄|). For convenience, we use r̃ = r.

Again using scale symmetry and statistical independence,

we realize that any point ℓi,j ∈ B⊖
i can be projected directly

away from xi to the surface of B⊖
i without affecting φi,j

or cos (φi,j) or tan (|φi,⋄|). Therefore, calculating En (φi,⋄)
and En (cos (φi,⋄)) for a single point ℓi,⋄ drawn randomly

from B⊖
i such that ℓi,⋄ ∈ B⊖

i,r is the dual of calculating

En (φi,⋄) and En (cos (φi,⋄)) for a single point ℓi,⋄ drawn

randomly from B⊖
i . Finally, when only one point is drawn

from B⊖
i then, by construction, GreedyHeading() and

GreedyProximity() must return the same result. Thus

En (φi,⋄) = E1 (φi,◦), and En (cos (φi,⋄)) = E1 (cos (φi,◦)),
and En (tan (|φi,⋄|)) = E1 (tan (|φi,◦|)).
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