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Abstract— This paper presents practical vision-based colli-
sion avoidance for objects approximating a single point feature.
Using a spherical camera model, a visual predictive control
scheme guides the aircraft around the object along a conical
spiral trajectory. Visibility, state and control constraints are
considered explicitly in the controller design by combining
image and vehicle dynamics in the process model, and solving
the nonlinear optimization problem over the resulting state
space. Importantly, range is not required. Instead, the principles
of conical spiral motion are used to design an objective function
that simultaneously guides the aircraft along the avoidance
trajectory, whilst providing an indication of the appropriate
point to stop the spiral behaviour. Our approach is aimed at
providing a potential solution to the See and Avoid problem
for unmanned aircraft and is demonstrated through a series of
experimental results using a small quadrotor platform.

I. INTRODUCTION

Recent technological advances have seen unmanned air-

craft (UAS) emerge in the civilian sector, offering significant

economic and social benefits to an increasingly diverse set

of applications. Many of these require operation in the

national airspace during some or all flight phases, imposing

an additional set of requirements on aircraft capability [1]. Of

particular importance is a collision avoidance solution aimed

at replicating See and Avoid behaviour in conventionally-

piloted aircraft. In short, this is a form of decentralized

short term collision avoidance in which the pilot must

independently detect and avoid any unplanned hazard, be it

static or dynamic [2]. To ensure compliance with strict safety

standards, international regularity bodies1 require any auto-

mated system to demonstrate an equivalent level of safety

to manned aircraft [3]. This presents a set of challenging

problems regarding object detection and conflict resolution.

A natural choice for detection and tracking is the use of

passive, uncooperative sensors such as video cameras [4].

They can be fitted to any aircraft regardless of size, weight

and power restrictions, whilst providing comparable initial

detection distances to human pilots [5]. Initially, a distant

object appears as a small, low contrast, slow moving point

feature in the image until such time when the collision is

potentially unavoidable. As such, reliably estimating object

range is difficult. Lack of distinguishable shape, size and

growth rate in the image renders approaches based on visual

looming infeasible. Stereo vision will likely fail as the

ratio of camera baseline to object range is small. Passive
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ranging techniques induce predefined motion to estimate

range, which will decrease available avoidance time and po-

tentially degrade collision geometry [6]. Alternatively, using

relative angular rates to identify a collision threat has been

suggested, but results show considerable performance issues

[7]. However, relative angular position can be estimated and

tracked with greater consistency [8] [9].

The limitations on object detection restrict the feasible set

of conflict resolution approaches available. Without range,

a large number of well established schemes [10] become

inappropriate, prompting new methods. In particular, using

angular measurements directly as feedback strongly resem-

bles pilot behaviour, and is consistent with human visual

navigation in a collision scenario [11]. It makes sense then

to adopt such an approach for conflict resolution. To be

effective however, a number of issues still need to be

addressed when considering the See and Avoid environment.

A large camera field of view is required to ensure that the

target remains visible throughout the encounter. Using only

a single point feature restricts the degrees of freedom that

can be controlled, yet both vertical and lateral avoidance

is desirable to increase the potential miss distance. At the

same time, vehicle dynamics and actuator limitations need

to be considered. Lastly, we need a means to cease avoidance

behaviour and return to the original trajectory or reference

flight condition without relying on range.

In this paper we address these issues for conflict resolu-

tion, having assumed object detection. We derive a novel vi-

sion based collision avoidance controller using a combination

of spherical imaging, properties of conical spirals and visual

predictive control (image-based visual servoing using model

predictive control), resulting in the following contributions:

1) Extension of visual predictive control to spherical

imaging using a single point feature.

2) Novel visual predictive control design that exploits the

properties of conical spiral motion to ensure collision

avoidance without estimating object range.

3) First practical implementation of visual predictive con-

trol for aerial vehicles

The paper is organized as follows. In section II we provide

the problem background. In section III we explain the

problem preliminaries, including conical spirals and spherical

imaging. We derive the spherical visual predictive controller

for collision avoidance of single targets in section IV and

demonstrate the approach with a set of experiments using a

small unmanned quadrotor in section V. Lastly, section VI

presents conclusions and ongoing work.
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II. BACKGROUND & RELATED WORK

The use of visual information to control a robot to per-

form a specific task is referred to as visual servoing [12].

Position-based visual servoing (PBVS) relies on recovering

target pose estimates to derive feedback control in the task

space. Multiple image feature points of the same object are

required however, which violates our problem constraints.

Classical image-based visual servoing (IBVS) approaches

do not require pose estimation and provide an inexpensive,

reactive control solution with inherent robustness to range

and camera calibration errors. Feedback is derived directly

from the image, similar to how a pilot may use visual cues

to avoid collision, making it an attractive solution for See

and Avoid.

The fundamental differences for our problem are the

number of image features and observable image feature

velocity or optic flow. Firstly, three or more feature points

of the same object are typically required to control motion

in all six camera degrees of freedom (DOF). With only

a single feature point we may only control two DOF, so

approaches reported in [13] are inappropriate. Secondly, due

to the inverse relationship between range and feature velocity,

we are unable to reliably observe optic flow corresponding to

relative translational motion. This would require near and/or

large objects, so collision avoidance using such principles

alone would likely fail in our case [14].

The most applicable approach involves positioning the

object or point in the image at a constant non-zero angular

displacement from the optical axis. This induces circular or

spiral-like motion about the object, and has been demon-

strated in nature by insects and birds of prey [15]. The re-

sulting trajectories circumscribe the surface of a cone, giving

rise to the nomenclature conical spiral. Using variations of

the classical IBVS control structure, lateral avoidance [16]

[17] and more recently both lateral and vertical avoidance

[18] have been reported. Such approaches still suffer from

common drawbacks. In particular, using perspective or wide-

angle cameras constrains the visible region, and therefore

limits the set of conical spirals that can be followed. One way

to manage such visibility issues is to use a spherical camera

[19]. This was first exploited for aircraft, offering only lateral

or vertical avoidance [20]. This was extended in [21] for both

lateral and vertical avoidance and demonstrated experimen-

tally using a quadrotor. Unfortunately any approach based on

classical IBVS structure cannot explicitly consider vehicle

dynamics and actuator limitations in the control design.

To incorporate such state and control constraints, optimal

control based approaches such as visual predictive control

(VPC) can be used [22]. Based on well established nonlinear

model predictive control (NMPC) strategies [23], the struc-

ture is the same but the nonlinear optimization problem can

now be defined over the image space or both image and state

space. This allows consideration of not only state and control,

but visibility constraints directly in the control design. If

using a spherical camera, the visibility constraint could be

used to ensure particular regions of the sphere are avoided.

Additionally, robustness to measurement noise and small

model mismatch has been demonstrated whilst providing

decoupling effects. The approach lends itself naturally to our

problem environment, yet few have realised its potential. In

[24], angular position was used to avoid multiple objects

however the approach was not flown and accurate range

estimates were required.

As a final point, if indeed a stopping criteria is used,

range is often required to cease avoidance behaviour at an

appropriate point or time [16] [24]. Alternately, conditions

on the heading or altitude [18] [20] [21] can be used but

essentially decouple the stopping criteria from the visual

control. As such, the avoidance behaviour could potentially

stop before the reference image features are reached.

Considering the above, we cast the collision avoidance

task into the visual predictive control framework. However,

instead of relying on the control design to ensure visibility

constraints, a spherical camera model is used to circumvent

the issue and ensure the object remains visible. The state

vector and objective function are then designed to simul-

taneously guide the aircraft along a safe spiral trajectory,

whilst providing an indication of an appropriate point to stop

avoidance. The stopping condition is thus coupled with the

image features to avoid potential premature stopping.

III. PROBLEM PRELIMINARIES

A. Spherical Cameras

Spherical cameras provide a 4π steradian field of view

with each image feature coordinate (s) defined by an angle

of colatitude (σ ) and azimuth (γ), where σ ∈ [0,π) and γ ∈
[−π,π). For practical implementation, we consider a virtual

spherical camera aligned to the body axis such that s=(π
2
, 0)

corresponds to the optical axis. We then approximate a

section of the sphere with a real perspective camera. The

optical axis (z′c) of the real camera is shown in figure 1(a).

Using the unified imaging model [25] we can transform

image features from perspective, catadioptric or fisheye to

the unit sphere. In this case, assuming the spherical centre

coincides with the focal point, the conical angles can be

approximated by

σ ≈ arctan

(

v− h
2

f

)

+
π

2
(1)

γ ≈ arctan

(

u− w
2

f

)

+
3π

4
(2)

where f is the focal length, w is the image width, h is the

image height and u and v are the pixel locations of the point

in the x and y dimensions respectively.

B. Conical Spirals

A conical spiral describes motion about the surface of a

regular cone according to a set of logarithmic equations.

They are parametrized by a fixed set of conical angles,

namely bearing (α) and elevation (β ). The angles are mea-

sured in a spiral reference frame with respect to the apex

such that β ∈ [0,π) and α ∈ [−π,π). The spiral reference
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frame has its origin attached to the body frame, but is free

to rotate about its z axis only. Fixing β defines the particular

cone on which the trajectory will lie, except in the degenerate

case for β = π
2

. Fixing α determines the specific trajectory

on the cone. Some examples are shown in figure 1(b) and

1(c), with the equations of motion defined in [15]. Choosing

β 6= 0 and ‖α‖ ≥ π
2

can ensure lateral and vertical collision

avoidance for a static object, by forcing a divergent conical

spiral that moves away from the apex. Such a trajectory is

shown in black in figure 1, where the black square represents

the conical apex. To track the reference conical angles, a

transformation between the image features and conical angles

is thus required.

Consider a spherical camera rigidly attached to an aircraft

spiralling about an object, p. The image features change with

position and orientation but the conical angles will depend

only on position and yaw angle. The object can be expressed

in the camera frame by cp such that

cp =





X

Y

Z



=





r sinσ cosγ
r sinσ sinγ

r cosσ



= r cp̃ (3)

where a tilde denotes a coordinate set unscaled by the range

(r). In the spiral reference frame, equation (3) becomes

sp = bRs
cRb

cp+ cts (4)

r sp̃ = r bRs
cRb

cp̃+ cts (5)

where bRs and cRb define rotation matrices from body to

spiral and camera to body frames respectively. The camera

focal point and body centre of mass (and thus spiral frame

origin) are separated by the vector cts. Dividing through by

r and assuming r ≫‖cts‖ and cRs =
bRs

cRb, we obtain

sp̃ = cRs
cp̃ (6)

Expanding using spherical coordinates





cosβ ′ cosα
cosβ ′ sinα

sinβ ′



= cRs





cosσ cosγ
cosσ sinγ

sinσ



 (7)

where β ′ = π −β and

cRs =





cosθ sinθ sinφ cosφ sinθ
0 cosφ −sinφ

−sinθ cosθ sinφ cosθ cosφ



 (8)

Knowing our orientation in pitch (θ ) and roll (φ ), we

can solve for the conical angles (α, β ). Alternately, if we

measure the image features from a de-rotated image in pitch

and yaw then the conical angles are in fact the measured

image features, and we can control the conical angles directly

from visual feedback. As such, the reference image features

determine the type of conical spiral trajectory.

(a) Camera orientation (b) Conical angles

(c) Conical spirals

Fig. 1. Camera orientation and example conical spirals including converg-
ing (blue), diverging (black), degenerate case for β = π

2
(red) and special

case for circular motion (green).

C. Dynamics

To apply the visual predictive control framework and

include state constraints, the aircraft dynamics must be

augmented with the image dynamics to derive the process

model used for prediction. Using a point mass model and

black box identification for a small AscTec Hummingbird

quadrotor, a simplified set of decoupled linear equations

using 0th and 1st order approximations were found. The

dynamic equations in the body frame are given by

v̇z = −g+
uT

m
(9)

ω̇z = −λωz +λuω (10)

ψ̇ = ωz (11)

v̇x = −
T

m
uθ (12)

v̇y = −
T

m
uφ (13)

where [vx vy vz] denote translational velocity components, ωz

the angular velocity about the z axis and ψ the yaw angle.

The controls [uT uω uθ uφ ] define thrust, yaw rate, pitch and

roll commands. The empirically derived damping constant

λ = 5.9, m is the mass, g is the acceleration due to gravity

and T is the thrust. Partitioning the dynamics into the x and

y axis components and the z axis components, we define z =
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[vz ωz ψ] and z′ = [vx vy] where ′ in this case does not imply

derivative, but used for notational convenience. Similarly, we

define u= [uT uω ] and u′= [uθ uφ ] such that complete control

of the quadrotor is defined by û = [u u′].
The image dynamics relate the camera velocity (v) to the

image feature velocity (ṡ). For a spherical projection model

ṡ = L∗
s v (14)

where L∗
s defines the spherical image Jacobian using a fixed

reference range value (r∗) and is given by

L∗
s =

(

−cosσ cosγ
r∗

−cosσ sinγ
r∗

sinσ
r∗ sinγ −cosγ 0

sinγ
r∗ sinσ

−cosγ
r∗ sinσ 0

cosγ cosσ
sinσ

sinγ cosσ
sinσ −1

)

(15)

By aligning the camera and body frame, the camera and body

velocities are equal such that v = [vx vy vz ωx ωy ωz]
T , where

ωx and ωy are the roll and pitch angular velocity. For conical

spiral motion, we require a constant forward velocity and

zero y translational velocity. If we then measure the image

features from a de-rotated image, we can safely assume ωx ≈
ωy ≈ vy ≈ 0. In its expanded form, (14) then reduces to

σ̇ =
−cosσ cosγ

r∗
vx +

sinσ

r∗
vz (16)

γ̇ =
sinγ

r∗ sinσ
vx −ωz (17)

We can now augment (9) - (11) with (16 - 17) to define the

nonlinear state equations for the combined process model

ẋ = f(x,u) (18)

x = [z s] = [ψ vz ωz σ γ] (19)

where x denotes the system state and f the set of dynamic

equations. Notice that vx must be passed as a parameter

and controlled independently. Specifically, the remaining

quadrotor states (z′) are controlled using u′, which can be

derived from the reference x and y translational velocities.

As linearisation of the quadrotor dynamics was performed

around hover, a set of feed forward terms can then be used

to minimize any coupling effects using the current roll and

pitch angles.

IV. SPHERICAL VISUAL PREDICTIVE CONTROL

The basic idea behind many VPC and NMPC schemes

is the same. At each sampling time (k) an optimal control

sequence U = {ūk, . . . , ūk+N−1} is found by minimizing an

objective function (JN) over a finite horizon (N), subject

to the system dynamics and constraints. Only the first el-

ement of the control policy (ūk) is implemented before new

measurements are received. The process model is then re-

initiated with the new measurements, the horizon is moved

one step forward and the process repeats. The bar denotes

an internal variable, calculated over the prediction horizon

using the process model. This is required as the actual and

predicted states and controls can, and will in general, be

different to the real system.

The main differences between various formulations in-

clude how the process model (and thus state vector) is

defined, the objective function structure and associated con-

straint domain. In our case, the spherical image features

augment part of the quadrotor state vector and the opti-

mization is performed over the combined state and image

space. Having defined the process model (19), we can now

define our objective function, associated constraints and

resulting control problem. At each sampling time find ūk

that corresponds to JOPT such that

JOPT (xk, ūk) = min
U

{JN(x̄k, ūk)} (20)

s.t. x̄k+1 = f(x̄k, ūk), ∀k, . . . ,Np −1

x̄k = xk

where Np = k+N and

JN(x̄k, ūk) = E(x̄Np)+
Np−1

∑
k

F(x̄k, ūk) (21)

F(x̄k, ūk) = (x̄k ⊖x∗)T Q(x̄k ⊖x∗)+ ūT
k Rūk (22)

E(x̄Np) = (x̄Np ⊖x∗)T P(x̄Np ⊖x∗) (23)

The reference state is given by x∗ and ⊖ denotes the

modulo 2π subtraction required to bound the spherical image

feature error. The weighting matrices are defined such that

Q ≻ 0, R � 0 and P � 0 where ≻ and � denote positive

definiteness and semi-definiteness respectively. The terminal

penalty matrix (P) is used to penalize deviation from the

reference state at the end of the prediction horizon. Recalling

xk = [zk sk], the optimization is performed with respect to the

constraint domain K, defined by

K =











sk ∈ R
2 | smin ≤ sk ≤ smax (24a)

uk ∈ R
2 |umin ≤ uk ≤ umax (24b)

zk ∈ R
3 | zmin ≤ zk ≤ zmax (24c)

Visibility constraints (24a) are somewhat handled with the

application of a spherical camera, so are used to avoid

the polar regions and ensure the spherical image Jacobian

is always defined. The control constraints (24b) bound the

quadrotor thrust and yaw rate commands to an admissible

region. The state constraints (24c) ensure controls are issued

such that the quadrotor state lies inside a desirable region.

In the following sections, the sampling period is set to 0.04

and the control horizon is equal to the prediction horizon of

10. This is chosen for stability and computational reasons

[23].

A. Collision Avoidance

Traditionally, Q and R are used to provide a performance

trade off in reaching the desired state without excessive

control energy. By including the yaw angle in the state vector

and placing a small weight on the corresponding Q entry,

solving (20) forces the aircraft to implicitly prefer a spiral

trajectory. The objective function minimum is reached when

the aircraft reaches its initial heading whilst established on

the spiral trajectory, then increases as the spiral is continued.

So the objective function value provides an indication of

an appropriate point to stop spiral behaviour and resume

a normal flight, without estimating range. The remaining
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Fig. 2. Position, image feature error and yaw angle for γ∗ = 70◦ to 120◦ at
10◦ increments with σ∗ = 70◦ and ψ∗ = 0. Black dots mark JOPT , red dots
the object position with embracing circle a safety sphere of 0.5m radius.

entries in Q and R are kept comparatively low, having

enforced associated control and state constraints in (24b) and

(24c). Figure 2 show this concept in simulation for various

reference image features (s∗) where s∗ = [σ∗ γ∗].
Obviously the objective function will never reach zero

considering the image noise characteristics and flight dis-

turbances. This means the objective function value has to be

thresholded, either on the absolute value or the derivative. For

this paper, we apply a small threshold (ε) on the absolute

value and when reached, resume the initial flight condition

before object detection. In this way, the image features are

coupled to the stopping criteria and range is not required.

Although s∗ may be chosen freely, it should be selected

based on the objects image position upon initial detection.

We take a similar approach to [21] to ensure the object does

not cross in front of the aircraft. We select σ∗ 6= π
2

and

||γ∗|| ≥ π
2

to ensure a divergent conical spiral is flown.

V. RESULTS

For safety, repeatability and regulatory reasons, we pro-

vide experimental results for a small AscTec Hummingbird

quadrotor operating indoors. The ACADO Toolkit was used

to solve the nonlinear optimization using sequential quadratic

programming, with the advantage of directly generating

deployable embedded code optimized for our application

[26]. Simulations were first performed in MATLAB to verify

the control design and obtain approximate cost function

parameters and nonlinear constraint sets for the real platform.

A Vicon motion capture system was used to measure

the quadrotor position and yaw angle only, replacing a

typical GPS/INS system found on outdoor UAS. Two LQRI

controllers and EKF filters were derived to estimate and

regulate the lateral translational velocity based on (12)-(13).

Additional EKF filters were derived to estimate vertical

velocity and yaw rate. The image features were obtained

directly from camera feedback or estimated using a virtual

point. They are de-rotated at each iteration, keeping the

Fig. 3. Quadrotor control architecture. Recalling, z and z′ are the quadrotor
states and s the spherical image features. Controls are defined by u and u′.

process model in the controller accurate. The control design

is shown in figure 3.

Important to note, we do not use velocity estimates from

the Vicon only position. As such, Vicon feedback is not used

in the visual control except for the case where a virtual point

is required. This is due to field of view limitations using

a perspective camera to approximate a spherical imaging

section as shown in figure 1(a).

A. Spiral Tracking

A simple detection algorithm was used to detect a sta-

tionary object, with the centre of the detected region used

to approximate a point feature [27]. In this way detection

is relatively consistent with image processing delay and

noise present, helping to model a realistic scenario. Example

results using object detection and a virtual point are shown

in figure 4.

The spiral is tracked with reasonable accuracy in both

lateral and vertical planes in both cases, with smoother con-

trol resulting when a virtual point is used. The discrepancy

can be attributed to image processing delay and unmodelled

disturbances resulting in larger fluctuations in control. The

affect translates to small consistent oscillations about the

reference azimuth. Control constraints have been enforced,

keeping the quadrotor in a stable flight configuration in both

cases, despite image delay.
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Fig. 4. Position, controls and image features for γ∗ = 120◦, σ∗ = 80◦ using
a camera (black) and virtual point (blue). The green square denotes s∗ and
red dot object position. Only VPC controls, uω and uT are given for camera
(red and black) and virtual point (green and blue) respectively.
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Fig. 5. Position, objective function and feature error for γ∗ = 110◦, σ∗ =
80◦ and ε = 0.6.

B. Collision Avoidance

A virtual point was used for collision avoidance to ensure a

divergent spiral can be tracked from any initial position, and

therefore ensure collision avoidance. The quadrotor moves

at a fixed forward velocity of 0.2ms−1 with time to collision

between 10 and 20 seconds. The object initially appears

at a height of 0.5m and displaced laterally by 2.0m. The

desired range value (r∗) used in the controller is set to

2m. Clearly, scaling these dimensions by a factor of 100,

a realistic scenario can be created. In the remaining figures,

the red dot denotes the object position with embracing circle

a safety sphere of 0.5m radius.

Figure 5 and 6 show the avoidance behaviour for two

different threshold values with same reference image features

and Q, P and R matrices. In figure 7 different reference

image features and weighting matrices and used, resulting

in a different objective function threshold. In all cases the

green solid circles denote the first time at which the threshold

has been exceeded such that JOPT ≤ ε . When the green dot

appears at the end of the trajectory, then JOPT > ε and the

threshold has not been exceeded yet. In this case, continuing

the flight would force the quadrotor to spiral the object

continuously until JOPT ≤ ε , provided γ∗ ≥ 90◦. Otherwise

a collision may result if the quadrotor dynamics and state

constraints allow large velocities2.

To test the controllers’ inherent robustness to small distur-

bances, we simulate a set of dynamic objects with constant

velocity given by vt such that ||vt || ≤ ||v||. This is essentially

similar to adding a small disturbance to the translational

velocity components of the process model. Without altering

the process model, the results are shown in figure 8.

In most cases, the controller is able to reach the desired

image features for both static and dynamic objects, regardless

of the reference value. Avoidance is stopped at an appropriate

2Large velocities are required for a converging spiral to eventually reach
the object, otherwise a limit is reached and the object is circled.

Fig. 6. Position, objective function and feature error for γ∗ = 110◦, σ∗ =
80◦ and ε = 0.8.

Fig. 7. Position, objective function and feature error for γ∗ = 90◦, σ∗ = 70◦

and ε = 1.9.

time and could be improved with further tuning of the objec-

tive function threshold. Although a large number of diverse

collision avoidance scenarios would be required to optimize

the threshold, initial results demonstrate the approaches

feasibility and suggest a more conservative value should be

chosen considering the safety implications. The threshold

is largely dependent on the weighting matrices and not the

reference image features. As the matrices are directly related

to aircraft performance, one could imagine they would be

fixed for a given airframe. So only the threshold needs to be

tuned, regardless of the collision avoidance scenario.

VI. CONCLUSION & FURTHER WORK

In this paper we used a spherical camera model and

visual predictive control to derived an intuitive collision

avoidance controller, free of range estimation, applicable to

the See and Avoid problem. The design structure lends itself

naturally to the problem, managing platform constraints and

modest image delay and uncertainties. This in turn allows
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Fig. 8. Position, object range and feature error for γ∗ = 90◦, σ∗ = 70◦ and
ε = 1.9. All object trajectories start at (0, 0, −0.5) and are shown in red
in the two upper plots. There are 5 different object trajectories, including
head-on and crossing with the remaining including climb or descent. Each
are simulated at two separate vt values, resulting in 10 collision scenarios.

consideration of static and slow moving targets. Notably, the

first practical implementation of visual predictive control for

aerial vehicles has resulted.

Although we cannot always expect to satisfy the cost

threshold, tuning a single parameter reduces the development

work required and would allow us to use standard collision

avoidance performance metrics to provide a statistical anal-

ysis of the system performance.

Guaranteeing global stability is a difficult task for visual

predictive control. As with the classical approach, only

local asymptotic stability can be assured through appropriate

choice of prediction horizon. Explicitly designing for sta-

bility and robustness may highlight more stable regions of

the sphere. This may then influence the choice of reference

image features and thus provide better assurance the true

conical spiral is tracked. Current work includes applying such

design approaches to visual predictive control in addition to

delay compensation for improved control.
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