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Abstract— In this paper, we propose a new vision-based
controller to actively deform an unknown elastic object. Note
that most deformation controllers in the literature require a-
priori knowledge of the object’s deformation properties. In
contrast to this trend, we present a new Lyapunov-based
method that online estimates the unknown deformation Jaco-
bian matrix, avoiding any model identification or calibration
steps. To achieve the desired object’s deformation, we derive an
innovative dynamic-state feedback velocity control law using the
passivity-based framework. We present a detailed experimental
study to validate the feasibility of our deformation controller.

I. INTRODUCTION

The automatic deformation control of compliant objects

refers to applications where a mechanical system (typically a

manipulator) actively shapes a soft object into a desired form

[1]. In recent years, this compliant manipulation problem

is receiving considerable attention from the research com-

munity because of its economically important applications

in, for example, robotic surgery [2], home-robots [3], and

food industry [4]. Despite these research efforts, one of the

principal issues that still hinders the successful implementa-

tion of these tasks, is the difficulty to identify/estimate the

deformation properties of soft materials.

The active deformation control problem has been studied

by some research groups. The modelling and parameter

estimation of deformable objects is addressed in [1], [5], [6].

In [7], a two-phase control method (parameter identification,

then model-based control) is proposed to actively modify the

shape of a rheological material. In [8], the problem of the

simultaneous motion and one-dimensional deformation (i.e.

compression) of soft materials is addressed. A model-based

control method to indirectly position deformable points by

robotic fingers is reported in [9]. This indirect positioning

problem is also addressed in [10], [11]. In [12], a controller

to shape a known flexible body (modelled with finite element

method) by multiple manipulators is reported.

In one way or another, most control methods in the

literature (including the ones we mention above) require

a-priori knowledge of the object’s deformation properties

(e.g. visual/kinematic relations, dynamic models, or elas-

tic/rheological parameters). Recently, we have proposed in

[13] an entirely model-free controller that uses the Broyden

update rule [14] to estimate (on the fly) the deformation

Jacobian matrix. This numerical technique does not require
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prior identification of the object’s properties, however, it only

provides “numerical snapshots” of the unknown deformation

matrix. Then, it is clear the need to analytically develop a

new estimation method with guaranteed stability.

To contribute to this problem, in this paper we propose

a new vision-based control method to actively deform an

unknown elastic object. Our controller is uncalibrated since

it does not require a-priori knowledge of the object’s de-

formation properties or the camera’s setup. For that, our

new method adaptively estimates the unknown deformation

Jacobian matrix; we prove the stability of this algorithm with

Lyapunov theory. To smoothly deform the object, we propose

an innovative dynamic-state feedback velocity controller. We

present an experimental study to validate the feasibility of

this control method.

The rest of this paper is organized as follows. In Section

II, we derive the mathematical models. Section III introduces

the problem. In Section IV, we present our new deformation

controller. Section V reports the experimental results. Finally,

we give final conclusions and future work in Section VI.

II. MATHEMATICAL MODELLING

A. Manipulator model

For the serial robot manipulator under consideration, we

denote the vectors of joint and end-effector displacements

by q(t) ∈ R
g and x(t) ∈ R

3 (where g ≥ 3), respectively.

The differential relation between the joint and end-effector

velocities is given by the expression

ẋ(t) =
∂x

∂q
(q(t))q̇(t), (1)

where ∂x
∂q

(q(t)) ∈ R
3×g represents the Jacobian matrix of

the manipulator, which we assume to be exactly known.

We denote the manipulator’s control input by ω(t) ∈
R

g . Physically, this variable represents the bounded angular

velocity input to the joints. Without loss of generality, we

assume that the control architecture of this kinematically-

controlled system allows to exactly set the joint’s angular

velocity such that ω(t) ≡ q̇(t) is always satisfied.

B. Deformation model

In this paper, we address the automatic shaping problem of

compliant objects that exhibit elastic deformations only (i.e.

we do not address interactions with rheological materials). To

actively modify the object’s shape, we consider that the ma-

nipulator’s end-effector physically interacts with the object in

a fully constrained manner. This fully constrained situation

refers to the case where the motion (in any direction) of
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Fig. 1. Conceptual representation of the deformation model, where the
end-effector is virtually connected by spatial springs with the k points.

the end-effector results in a proportional deformation of the

body. It models, for example, tasks where the manipulator

rigidly grasps a soft material.

To characterise the deformation of the object, in our

method we make use k Cartesian points of interest conve-

niently located on the object’s surface. The i-th Cartesian

point is denoted by the vector ri(t) ∈ R
3. In our approach,

we locally approximate the coordinates of each point by

ri(t) = Ciδx(t), (2)

where we introduce the vector δx(t) = x(t) − x ∈ R
3 to

model the relative end-effector displacement, for x ∈ R
3

as a constant bias vector. The unknown constant matrix

Ci ∈ R
3×3, which we assume to be full rank, contains

the deformation parameters of the point ri(t). In total, there

are k × 9 independent deformation parameters relating the

displacement of the points ri(t) with x(t). To simplify

notation, we define the following total position vector

r(t) =
[
r⊤1 (t) · · · r⊤k (t)

]⊤
∈ R

3k. (3)

See Fig. 1 for a conceptual representation of this setup.

C. Camera model

To measure the object’s deformation, in our approach we

make use of an uncalibrated fixed camera that provides the

visual feedback of the scene. We define the visual feedback

of the Cartesian point ri(t) as follows

si(t) =
[
ui(t) vi(t)

]⊤
∈ R

2, (4)

where the coordinates ui(t), vi(t) ∈ R are measured in pixel

units. To simplify notation, we introduce the following total

vector of visual feedback

s(t) =
[
s⊤1 (t) · · · s⊤k (t)

]⊤
∈ R

2k. (5)

A conceptual representation of this setup is given in Fig. 2.

Instrumental for the online Jacobian matrix estimator that

we present in Section IV, is to derive a simple and linearly

parametrisable visual projection model. To this end, we

assume that, locally around the desired operating point, the

visual feedback point si(t) satisfies the affine projection

model [15]

si(t) = Mri(t) + b ∈ R
2, (6)
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Fig. 2. Conceptual representation of a fixed uncalibrated camera providing
the visual feedback of k visual points.

where the constant matrix M ∈ R
2×3 and vector b ∈ R

2 are

unknown. As we show later on in Section IV, the use of this

affine projection model does not impose severe constraints

to the iterative Jacobian matrix estimator that we develop.

Based on the deformation and projection models (2) and

(6), we now derive the following differential relation between

the manipulator’s motion and the total visual flow

ṡ(t) = Lẋ(t), (7)

for a constant matrix L ∈ R
2k×3 defined as

L =



MC1

...

MCk


 , (8)

which groups the deformation parameters of each point ri(t),
and the camera projection parameters (with the exception of

the “bias” b). We list the elements of L in the vector of

unknown parameters

θ =
[
L1,1 L1,2 · · · L2k,2 L2k,3

]⊤
∈ R

m, (9)

where m = 6k ∈ R, and Li,j ∈ R represents an element at

the i-th row and j-th column of the matrix L.

III. PROBLEM STATEMENT

To quantify the deformation of the object, in this section

we construct as a known function of the total visual feedback,

the following deformation feature vector

y(t) = y(s(t)) ∈ R
3. (10)

Similar to standard visual servo controllers (such as [16],

[17]), the independent coordinates of y(t) are composed of,

for example, point displacements, angles of a lines, centroids,

midpoints, curvatures of contours, line features, to name

a few cases (see [13] for detailed definitions of several

deformation features).

We differentiate (10) with respect to time to obtain the

expression

ẏ(t) = J(x(t))ẋ(t), (11)

where J(x(t)) ∈ R
3×3 represents the deformation Jacobian

matrix of the elastic object, which we define by

J(x(t)) =
∂y

∂s
(s(t))L. (12)
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Note that the matrix J(x(t)) is unknown since it is con-

structed with the unknown parameters θ.

For ease of presentation, we make a change in the bounded

velocity control input, such that

ẋ(t) = v(t) ∈ R
3, (13)

represents the new control input (i.e. the end-effector veloc-

ity) to the deformation plant (11). Since the manipulator’s

kinematics are exactly known, therefore, we can easily design

a joint kinematic controller ω(t) which moves the end-

effector at a desired velocity ẋ(t).
Problem. Given a desired constant deformation feature

vector yd ∈ R
3, design an uncalibrated (i.e. with no a-priori

knowledge of the deformation and projection parameters)

velocity control law v(t) which asymptotically minimises

the deformation error ∆y(t) = y(t)− yd ∈ R
3.

IV. CONTROLLER DESIGN

A. Online estimation of J(x(t))

To minimise the deformation error ∆y(t), we must first

estimate how the velocity control input actively changes the

shape of the object. In other words, we must identify the un-

known deformation mapping ẋ(t) 7→ ẏ(t). This directional

information is provided by the object’s deformation Jacobian

matrix.

For ease of presentation of our online estimator, let us in-

troduce the vector of adaptive parameters θ̂(t) ∈ R
m (whose

explicit update rule is presented shortly). With this adaptive

vector available and with the real-time visual measurement

of the deformation flow ẏ(t)1, we compute the following

flow estimation error

e(t) = z(t)− ẏ(t) ∈ R
3, (14)

for an estimated flow vector z(t) ∈ R
3 defined as

z(t) =
∂y

∂s
(s(t))L̂(t)ẋ(t), (15)

where the matrix L̂(t) ∈ R
2k×3 is constructed with the vector

of adaptive parameters θ̂(t). By substituting (11) and (15)

into (14), we obtain a linearly parametrisable expression for

the flow error [18]

e(t) =
∂y

∂s
(s(t))

(
L̂(t)− L

)
ẋ(t),

= W(s(t), ẋ(t))∆θ(t), (16)

where ∆θ(t) = θ̂(t) − θ ∈ R
m represents the parameters’

estimation error, and W(s(t), ẋ(t)) ∈ R
3×m represents

a known regression matrix whose computation does not

dependent on the true parameters. Considering the definition

of θ in (9), we compute the matrix W(s(t), ẋ(t)) with the

simple expression

W(t) =
∂y

∂s
(s(t))




ẋ⊤(t) 01×3 · · · 01×3

01×3 ẋ⊤(t) · · · 01×3

...
...

. . .
...

01×3 01×3 · · · ẋ⊤(t)


 . (17)

1Note that low-pass filtering may be needed in order to use this signal.

Proposition 1: For smooth, slow, and continuous defor-

mation tasks, the parameter adaptation rule

˙̂
θ(t) = −ΓW⊤(s(t), ẋ(t))Kθe(t), (18)

where Kθ > 0 ∈ R
3×3 and Γ > 0 ∈ R

m×m represent

positive-definite symmetric tuning matrices, guarantees the

following two conditions:

(i) A numerically stable adaptation of the parameters θ̂(t).
(ii) The asymptotic minimisation of the flow error e(t).

Proof: We present a sketch of this proof.

(i) Considering (16), the adaptation rule (18) can be equiv-

alently re-written as

˙̂
θ(t) = −ΓW⊤(t)KθW(t)∆θ(t). (19)

To prove the stability of (18), we propose the positive-

definite Lyapunov function

Q(t) =
1

2
∆θ

⊤(t)Γ−1∆θ(t) ∈ R,

> 0, (20)

whose time derivative along trajectories of (18) satisfies

Q̇(t) = −∆θ
⊤(t)W⊤(t)KθW(t)∆θ(t),

= −e⊤(t)Kθe(t),

≤ 0. (21)

This expression shows that Q̇(t) is negative semidefi-

nite. From the Lyapunov’s direct method [19], we prove

that the adaptation of the parameters is stable, i.e., the

vector θ̂(t) is bounded.

(ii) From (21), we know that Q(t) is monotonically de-

creasing, i.e. Q(t1) ≥ Q(t2) ∀t1 ≤ t2. Note that since

we assume smooth and slow (bounded) input/output

motion, simple computations show that Q̈(t) is also

bounded. These conditions imply that as t → ∞ then

Q(t)→ c and Q̇(t)→ 0, for a scalar c ≥ 0 ∈ R. From

(21), we see that Q̇(t) ≡ 0⇒ e(t) ≡ 03×1. Therefore,

we conclude that as t→∞ then e(t)→ 03×1 [19].

In our new method, we adaptively compute an estimation

of the unknown deformation Jacobian matrix by

Ĵ(t) =
∂y

∂s
(s(t))L̂(t) ∈ R

3×3. (22)

This method contrast with our previous purely numeric

approach [13] in that we online compute a vector of adap-

tive parameters θ̂(t), and not iteratively obtain “numerical

snapshots” of the whole matrix J(x(t)) as in [13].

Remark 1: Note that the m×m “dissipation-like” matrix

W⊤(t)KθW(t) in (21) is not full rank. Therefore, we

can not guarantee that (18) asymptotically estimates the m-

dimensional (recall m = 6k) vector of true parameters θ.

In our method, the objective of the adaptation rule (18) is to

construct a 3×3 matrix Ĵ(t) that closely approximates (with

no prior model calibration) the measured deformation flow

ẏ(t) ≈ Ĵ(t)ẋ(t). (23)
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Remark 2: Note that the online estimation algorithm re-

quires the real-time measurement of the visual flow and the

manipulator’s end-effector velocity. For slow tasks, these

quantities can be accurately obtained by using simple nu-

merical differentiation methods along with low-pass filtering

of the obtained flow signal.

Remark 3: The affine projection model (6) locally ap-

proximates the visual feedback points si(t) with a constant

vector of parameters θ. Note that in this paper we only

consider slow deformation tasks, therefore we can still use

the same affine model to approximate si(t) for wider elastic

deformations. In this situation, the parameters that approxi-

mate the visual feedback are expected to change slowly, thus
d
dtθ ≈ 0m×1 is a reasonable assumption for these types of

motions.

B. Velocity controller

To control the behaviour of the system (11), we propose

the dynamic-state feedback control law [13]

v(t) = Ĵ−1(t)p(t), (24)

where the vector p(t) ∈ R
3 represents a smooth numerical

state, which we compute as

ṗ(t) = −
∂U

∂y

⊤

(∆y(t))−Kpp(t), (25)

for U(∆y(t)) > 0 ∈ R as a positive-definite potential

energy functional designed with a unique equilibrium point

at ∆y(t) = y(t)− yd = 03×1, and Kp = K⊤
p > 0 ∈ R

3×3

as a damping-like feedback matrix.

Proposition 2: For an exact estimation of the deformation

Jacobian matrix (i.e. for J(x(t)) = Ĵ(t)), the velocity control

input (24) enforces asymptotic stability of the deformation

error vector ∆y(t).
Proof: Substitution of (24) into (11) enforces the

closed-loop dynamical system

[
ẏ(t)
ṗ(t)

]
=

[
03×3 I3×3

−I3×3 −Kp

] [∂H
∂y

⊤
(t)

∂H
∂p

⊤
(t)

]
, (26)

with a Hamiltonian-like function

H(∆y(t),p(t)) = U(∆y(t)) +
1

2
p⊤(t)p(t) ∈ R,

> 0. (27)

This positive-definite scalar qualifies as a Lyapunov function

for the dynamical system (26), since its time-derivative

satisfies

Ḣ(∆y(t),p(t)) ≤ 0. (28)

To prove asymptotic convergence of the deformation error

∆y(t), we invoke the Krasovskii–laSalle principle [19].

Remark 4: The velocity control input computed with (24)

provides smooth trajectories to the robot manipulator. Note

that the dynamic-state feedback control action p(t) (which is

basically a numerical integrator driven by the potential error

Compliant
object

Fig. 3. The experimental setup, where the Stäbli robot manipulator
physically interacts with an unknown compliant object.

and damped by its own feedback) helps to remove noise from

the visual measurements.

Remark 5: We can interpret the closed-loop dynamics

(26) as a non-conservative Hamiltonian system [20]. This

way, the desired closed-loop deformation behaviour is de-

fined by the potential energy function U(∆y(t)) and the

dissipation matrix Kp. We can physical interpret the state

variables y(t) and p(t) as the canonical (visual) displace-

ments and momenta, respectively.

Algorithm 1 presents the implementation of our uncali-

brated deformation controller, where small error > 0 ∈ R

represents the minimum admissible error.

Algorithm 1 Uncalibrated deformation controller

1: repeat ⊲ Control loop

2: Measure signals x(t) and s(t)
3: Adapt parameters d

dt θ̂(t)← (18)

4: Compute state d
dtp(t)← (25)

5: Compute controller v(t)← (24)

6: Solve v(t) for ω(t) and command motion

7: until Error ‖∆y(t)‖ < small error

V. EXPERIMENTAL VALIDATION

A. Setup

The robotic system used for our experimental study is a

6-DOF TX-60 Stäubli robot manipulator (see Fig. 3). This

manipulator has an open architecture controller running the

real-time operative system VxWorks. To program the motion

of its joints, our system counts the Low-Level Interface that

allows to explicitly set the angular velocity on each of the

joints in real-time (see [13] for details about our real-time

control implementation). Visual feedback is acquired with a

USB Logitech camera; we use the OpenCV Lucas–Kanade

algorithm to track the visual points during the experiments2.

In our experimental study, the end-effector is rigidly

attached to common household cleaning sponges (whose de-

formation properties are fairly approximated with an elastic

deformation model). In our formulation, we only consider the

control of the end-effector 3-DOF Cartesian displacements,

2For that, we place artificial markers on the object’s surface.
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Fig. 4. Snapshots of the initial and final configurations of the performed
3-DOF deformation experiments.

therefore, we perform these experiments with a constant

orientation of the manipulator’s end-effector.

B. Case of study

We test the proposed control method with two different

3-DOF deformation tasks. The first task is defined by con-

structing the vector y(t) = [y1(t), y2(t), y3(t)]
⊤ ∈ R

3 in

terms of the following pixel displacement coordinates

y(s(t)) = [s⊤1 (t), u2(t)]
⊤, (29)

where u2(t) represents the horizontal displacement of s2(t).
The second task is defined by constructing the coordinates

of y(t) in terms of the following angular displacements

yi(t) = arccos(oi · li(t)) ∈ R, i = 1, 2, 3 (30)

for an arbitrary unit reference vector oi ∈ R
2, and a state-

dependent vector li(t) =
si(t)−si+1(t)

‖si(t)−si+i(t)‖
∈ R

2. See Fig. 4 for

a graphical representation of these deformation features.

In this experimental study, we implement the potential

control action

∂U

∂y

⊤

(∆y(t)) = sat(3∆y(t)), (31)

where sat(·) : R3 7→ R
3 is a vectorial saturation function

satisfying −α < sat(·) < α, for α > 0 ∈ R
3 as a

constant bound vector. We respectively use α = [7, 7, 7]⊤

pixel and α = [0.1, 0.1, 0.1]⊤ radian for our two cases of

study. For both cases, the dynamic-state feedback action p(t)
is computed with a damping matrix Kp = 5I3×3.

To implement the proposed online estimator (18), we

remove noise from the signals ẏ(t) and ẋ(t) by using a

first-order low-pass filter. We compute Ĵ(t) with the tuning

gain matrices Γ = 50000Im×m and Kθ = I3×3
3.

3Different values in Kθ help to tune the estimator’s response for
deformation coordinates with different scale units (e.g. mixing px with rad).
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C. Results

Fig. 4 shows snapshots of the initial and final configura-

tions of two deformation experiments. The magnitude of the

error coordinates ∆yi(t) for the point-based and angle-based

experiments are respectively shown in Fig. 5–6. From these

figures we see the effect of our saturated potential control

action ∂U
∂y

(∆y(t)), i.e., an error trajectory that approximates

a straight line. The resulting curves of the relative end-

effector displacements δx(t) are shown in Fig. 7.

In Fig. 8–9 we present graphical comparisons of the

measured deformation flow ẏ(t) and the flow estimated by

z(t) = Ĵ(t)ẋ(t). (32)

These figures show that our method closely approximates the

output deformation flow, and removes noise from the visual

measurements.

In the accompanying video, we illustrate the performance

of the control method with several uncalibrated 3-DOF

deformation tasks.

VI. CONCLUSIONS

In this paper, we have proposed a new method to visually

servo control the deformation of an unknown elastic object.

To avoid identifying the deformation model and camera’s

parameters, we have first presented a new online algorithm

that adaptively estimates the unknown Jacobian matrix of the

elastic object. Next, we have derived a dynamic-state feed-

back velocity control law to smoothly perform the desired

deformation.
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numerically estimated flow z(t), of the point-based deformation experiment.
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Fig. 9. Comparison of the visually measured deformation flow ẏ(t) and the
numerically estimated flow z(t), of the angle-based deformation experiment.

Slow motion of the manipulator is required by the control

method that we have presented. In our experimental study,

we have achieved good results with a visual flow of around

4 pixel/second. We must remark that slow motion does

not impose severe constraints to many real-life applications,

e.g. in surgery. As future research, is the consideration of

the nonlinear perspective camera model. We are currently

formulating an online estimation algorithm that fully exploits

the perspective projection model.
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