
A Fast Motion Planning Algorithm for Car Parking Based on Static

Optimization

Patrik Zips, Martin Böck, Andreas Kugi

Abstract— This paper presents a fast optimization based
algorithm for car parking. The challenge arises from the non-
holonomic characteristics of the car and the close distance to
the obstacles. The presented approach utilizes the Minkowski
sum to account for obstacle avoidance. The geometric path
planning problem is decoupled from the kinematic problem
and discretized with respect to the path parameter by means of
a Runge-Kutta discretization. For the discrete path segments,
an optimization problem is formulated to calculate the path
independent of the parking scenario. This static optimization
problem can be solved numerically in a very efficient way. The
performance of the algorithm is evaluated in several simulation
scenarios.

I. INTRODUCTION

One topic of recent research in automobile industry is

autonomous driving, which is especially challenging in urban

environments, where narrow corridors, tight turns and unpre-

dictable moving obstacles like other cars have to be handled.

A special topic within this area of research is automatic

parking control, which is not only useful for autonomous

driving vehicles, but also in conventional cars as parking

assistance system.

In the last decades, a number of different approaches have

been developed to tackle this problem. Many of these con-

cepts rely on the ideas of Reeds and Shepp that the shortest

path for a car which goes forwards and backwards in obstacle

free environment is composed of minimum curvature arcs

and lines due its non-holonomic constraints [1]. By stringing

together such lines and minimum curvature arcs a path into

a parking spot can be constructed, see, e.g., [2], [3]. In [4]

every possible combination of a predefined number of line-

arc-line cycles is computed and one of all calculated paths

is chosen on the basis of a cost criterion.

Instead of calculating all possible paths and choosing one

of them, the optimal path defined by a cost criterion can

be directly obtained by solving an optimal control problem

subject to the dynamic constraints of the car [5], [6]. Hereby

not only the geometric path can be calculated, but also

control inputs like acceleration and steering angle change

are provided at the drawback of higher computational costs.

The main challenge within this approach is to properly

incorporate the obstacles into the mathematical formulation.

One possibility to account for the obstacles is given by the

so called navigation function, see, e.g., [7], [8]. This function

describes the environment by a potential field, where the

global minimum of this field corresponds to the target point

The authors are with the Automation and Control Institute,
Vienna University of Technology, 1040 Vienna, Austria (e-mail:
{zips,boeck,kugi}@acin.tuwien.ac.at).

and obstacles are modeled by a high potential. This function

is then added to the cost function. As the obstacles are not

included as hard constraints, there is in general no guarantee

that the path is collision-free.

Another approach is to discretize the obstacles to obtain

boundaries composed of a finite number of points [9]. Every

point has a potential field value which depends on the vehicle

position. As long as no collision occurs these values are

set to zero, otherwise a value greater than zero is assigned.

The values of all points are summed up in one inequality

constraint which has to be lower or equal zero. Only if no

point collides with the vehicle this inequality holds.

A different approach to handle the non-holonomic nature

of the car was proposed by Laumond et al. Thereby, first

a holonomic path is computed for a given environment and

then this path is followed under consideration of the non-

holonomic constraints [10]. Due to the fact that a car is

small-time-controllable [5] this is always possible, but often

results in highly maneuvering paths in particular in narrow

environments. There are different methods to follow a holo-

nomic path. In [11] the differential equations of the car are

transformed into a chained-form system and sinusoidal inputs

are applied. In [12] a local continuous curvature planner

using clothoids in combination with a shortest feasible path

metric is used to obtain the non-holonomic path.

In this paper, we propose a new optimization based

algorithm focused on car-parking problems with low com-

putational costs for real-time applications. We consider three

different parking scenarios, which, together with the kine-

matic car model, are presented in Section II. A method for

planning the path by solving a static optimization problem

is presented in Section III. Simulation studies for different

parking scenarios showing the practical feasibility of the

algorithm are carried out in Section IV.

II. PROBLEM STATEMENT

In this paper, we deal with three common parking sce-

narios, namely parallel, garage and angle parking. These

scenarios and the corresponding notations are shown in Fig.

1, where the shaded polygons represent obstacles like other

cars. The lines to the left and right side of each scenario

are boundaries, which shall not be violated like, e.g., the

kerbstone or the lane separator of the street.

The algorithm has to find a feasible path from a given

starting configuration to a parking position. The path shall

have a reasonable length and must not collide with any

obstacle or exceed a boundary. Moreover, the same motion

planner shall be able to plan a path for all three scenarios.

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2392

xxx

yyy
aaa

b
b

b

dS
dSdS

α

α

α

Fig. 1. Notation for parallel, garage and angle parking.

A. Obstacles

Without loss of generality we concentrate on convex

polygonal obstacles. Every non-convex polygon can be sub-

divided into multiple convex polygons, which is usually

referred to as convex decomposition [13]. Non-polygonal

obstacles can always be included in a slightly larger polygon.

B. System Dynamics

In the following, the kinematic model with Ackerman

steering, as shown in Fig. 2, serves as basis for the math-

ematical description of the car behavior. Thereby the tire

slip angle is neglected, which is justified by the low velocity

during parking maneuvers. Hence the car can be described

by one front and one rear wheel. The motion of the car

is characterised by the coordinates (x, y) of a reference

point PR, which is located at the center of the rear axle,

as well as the orientation θ of the longitudinal axis of the

car. The non-holonomic kinematic differential equations in

these generalised coordinates q = [x, y, θ]T read as

ẋ

ẏ

θ̇

 =

v cos(θ)
v sin(θ)
v
L
tan(δ)

 = ft(q,uA). (1)

Here uA = [v, δ]T describes the control input with the

velocity v and the steering angle δ, and the parameter L

denotes the wheelbase. The geometric path planning can be

decoupled from the kinematic velocity planning by Path-

Velocity-Decomposition [14]. To this end the velocity can

be written as v = D ds
dt , with the path position s. Thereby,

D ∈ {−1, 1} refers to the driving direction of the car, with

D = 1 for velocities v ≥ 0 and D = −1 for v < 0. Thus

(1) can be rewritten as

x′

y′

θ′

 =

D cos(θ)
D sin(θ)
Dul

 = fs(q, ul, D), (2)

y

x x

y

θ

v

δ

PR

L

Fig. 2. Kinematic model of the car.

where (·)′ denotes the derivative with respect to s and

ul = tan(δ)
L

is the new control input. The Path-Velocity-

Decomposition simplifies the problem, as the time is ne-

glected within the path planning, resulting in lower compu-

tational costs.

III. MOTION PLANNING

The parking task can be formulated as an optimal control

problem (OCP) of the form

min
ul(s),D(s)

J(ul(s), D(s)) =

∫ s1

s0

l(q, ul, D)ds (3a)

s.t. q′ = fs(q, ul, D), q(s0)=qS ,q(s1)=qP (3b)

hP (q) ≤ 0 (3c)

|ul| ≤ ulmax
, (3d)

with an appropriate cost function l(q, ul, D). Note that (3b)

corresponds to the kinematic model (2), where qS and qP

denote the generalized coordinates of the car related to the

starting position and the desired parking position, respec-

tively. Furthermore, the control input ul is constrained by

the maximum steering angle δmax with ulmax
= tan (δmax)

L

and D ∈ {−1, 1} describes the driving direction. To account

for collision avoidance each polygon is transformed into an

inequality constraint hPj
by means of the Minkowski sum

[15]. All polygon inequality constraints are combined in

hP (q) = [hP1
(q), . . . , hPP

(q)]T .

In general, calculating the optimal solution of the mixed-

integer optimal control problem (3) is computationally de-

manding. Especially the determination of D(s), i.e. the

direction switching points along the path, is numerically

challenging. These facts make a real-time solution of the

OCP (3) under reasonable effort impossible.

Therefore, we propose an alternative real-time capable mo-

tion planner, which relies on a constrained static optimization

problem. To determine an appropriate cost function for the

optimization problem, the parking algorithm is divided into

two phases. Based on these phases the weighting terms for

the cost function as well as two rules for direction changes

are determined.

A. Principle of the algorithm

The parking algorithm is separated into two phases which

correspond to two different tasks. The first phase, henceforth

referred to as phase A, is responsible for steering the car

to the parking spot. For this a suitable path between two

predefined points must be found, mostly in an obstacle-free

environment.

Phase B handles the parking maneuver itself, where typ-

ically small but precise position and orientation changes

in narrow environments have to be achieved. The change

between phase A and B is characterised by the so called

phase switching point, which will be explained in more detail

later in this section.

The path planning is carried out in backward direction

from the parking position via the phase switching point to

the starting position. Thus the first task is to find a suitable

2393

path from the parking position to the phase switching point,

from where it is ensured that the car is able to leave the

parking spot.

This task is trivial for garage and angle parking as the

car only has to drive straight ahead or backwards. For

parallel parking it is more challenging, because the algorithm

has to find a way in a narrow environment by switching

between driving forwards and backwards. Therefore, we will

at first concentrate on a suitable strategy for parallel parking.

There are two possible methods for a car to get out of

a narrow parallel parking spot. First it can use its small-

time-controllability property to drive nearly sidewards by

driving forwards and backwards with small steering efforts

[5]. Second it can change its orientation in the parking spot

far enough to be able to drive straight ahead out of the

parking spot. As the latter method results in smoother paths

and less maneuvering, we strive for imitating this behavior.

Consequently in this phase, the path planner has to change

the car orientation θ to a suitable value while avoiding

collisions with obstacles.

The second task in reverse path planning is concerned

with the path from the phase switching point to the starting

position. Usually, this is straightforward and does not require

more than one direction change.

For determining the path of each phase, the same con-

strained static optimization problem will be formulated,

which only differs in the weighting of the cost function.

Furthermore, a strategy for calculating the phase switching

point and for direction changes will be proposed. The basic

idea of the whole parking algorithm is based on mimicking

the behavior of a human driver.

B. Discretization and static optimization problem

In a first step, the differential equation (2) is discretized

with respect to the path parameter s by means of a Runge-

Kutta discretization of second order

k1i = ηifs (qi, uli) (4a)

k2i = ηifs

(

qi +
1

2
k1i , uli

)

(4b)

qi+1 = qi + k2i +O
(

η3i
)

, (4c)

with the step length ηi ∈ [ηmin, ηmax]. Note that the step

length is constrained by a minimum and maximum value,

ηmin and ηmax, respectively. Neglecting the error term in

(4) this yields the difference equation

qi+1 =

xi+1

yi+1

θi+1

=

xi +Dηi cos
(

θi +D
ηiuli

2

)

yi +Dηi sin
(

θi +D
ηiuli

2

)

θi +Dηiuli

= f(qi,ui, D), (5)

with D ∈ {−1, 1} for negative and positive velocities,

respectively. The new control input u = [ul, η]
T consists

of the steering input ul and the step length η.

In contrast to (3), the optimization problem will not

be formulated for the whole path at once but only for

one incremental step. This procedure is then applied in a

recursive manner. In each iteration it is decided whether

a direction change of the car is deemed necessary and if

the phase switching point is reached. The next subsection

will detail how these switching points are chosen by the

algorithm.

The constrained static optimization problem to be solved

in each iteration takes the form

min
ui

lOi
(qi+1) (6a)

s.t. qi+1 = f (qi,ui, D) (6b)

hP (qi+1) ≤ 0 (6c)

umin ≤ ui ≤ umax, (6d)

with the cost function

lOi
(qi+1) = rθe

2
θi+1

+ eTPi+1
RePi+1

. (7)

Thereby, ePi
= [xi − xS , yi − yS]

T denotes the distance of

the car at iteration step i to the starting position1 [xS , yS]
T

and eθi = θi − θO refers to the difference between the car

orientation and a predefined target angle θO. The parameter

rθ > 0 and the positive semi-definite matrix R serve as

weighting terms in the cost function. The constraint (6b) cor-

responds to (5), (6c) accounts for collision avoidance and the

control input ui is constrained by umin = [−ulmax
, ηmin]

T

and umax = [ulmax
, ηmax]

T .

In every iteration step the position and the orientation of

the car with respect to the cost function (7) is improved.

The cost function is designed to fulfill the previously defined

tasks in phase A and phase B by assigning suitable values to

the weighting terms rθ and R as well as to the target angle

θO.

This can be accomplished by examining in more detail the

role of phase A and B in the parking algorithm. In phase B,

the algorithm should provide a path such that the car is able

to leave the parking spot. Therefore, the car orientation θ is

most important whereas the weighting matrix R can be set

to zero or to a considerably small value. The target angle θO
depends on the respective parking scenario.

For garage and angle parking the car orientation shall be

held constant and for left and right parallel parking decreased

and increased, respectively. A target angle θO, which may be

used for all scenarios, is the angle α between the boundary

below the car and the x-axis as plotted in Fig. 1, i.e. in phase

B θO = α.

As already mentioned in the previous subsection, in phase

A the parking algorithm has to find a suitable path from the

phase switching point to the starting position. Therefore, in

phase A the target angle is set equal the starting angle θO =
θS . The choice of the weighting parameters is important

for finding the switching points for the necessary direction

changes as will be described in the next subsection.

1Remember that the path is planned in reverse direction from the parking
to the starting position.

2394

xxx

yyy

(I) (II) (III)

Fig. 3. Phase switching point for parallel (I), garage (II) and angle parking
(III) for left parking spots.

C. Switching points

Next we want to define suitable switching points to change

between the phases and for direction changes. First we

will present a condition for the phase switching point and

afterwards two rules for direction changing.

1) Phase switching point: From the phase switching point

the car shall be able to leave the parking spot and drive

towards the starting position. As a condition we propose that

the front corner of the car on the side of the parking spot

has to pass the artificial connection line of the inner edge

of the outer obstacle boundaries. This is illustrated in Fig.

3 for a left parallel, garage and angle parking scenario. In

our notation shown in Fig. 1, this condition can be written as

xCFL
≥ b for parking spots to the left of the car and xCFR

≤
b to the right of it. Thereby, xCFL

and xCFR
describe the

x-position of the front left and front right corner of the car,

respectively.

2) Switching points for direction change: Calculating

optimal positions for direction switching points is a complex

task [5], [16]. Therefore, we introduce two heuristic rules,

which basically mimic the behavior of a human driver.

Clearly this strategy does not yield optimum paths in the

sense of (3) but has the advantage of considerably low

computational costs.

The first rule, mainly concerning phase B, is to switch

direction, if there is not enough free space in driving direc-

tion to make a step with the minimum step length ηmin.

This means the optimization problem (6) has no feasible

solution subject to the constraints. At this point the direction

is switched, i.e. D in (5) is set to −D, and the optimization

problem is solved again. If this yields no solution the

algorithm does not find a feasible path into the parking spot.

The reason for this is either that the parking spot is too small

or that the parking position is too close to the kerbstone. To

avoid the latter case, the desired parking position can be

placed sufficient far away from the kerbstone.

The second rule is primarily designed for phase A. Here

switching points may be important for the car to reach the

starting position. An example is shown in Fig. 4 for garage

parking. The starting position cannot be reached from the

parking position in one draw. The best way is to drive out

of the parking spot to the left and change direction when the

orientation angle θ is sufficient large. At this point the choice

starting
position

switching
point

Fig. 4. Vehicle needs to switch direction while driving to the parking spot.

of the weighting terms for phase A gets evident. First the x-

position and the orientation angle θ must be close enough

to the starting position and afterward the y-position can be

easily reached by driving straight for- or backwards.

In optimization terms, the cost function will decrease until

the θ- and x-deviation to the starting position are sufficiently

small and an increase of the y-deviation causes an increasing

cost function. At this point lOi
> lOi−1

, the direction is

switched and the optimization problem solved again.

The condition for the phase switching point as well as

the second rule for direction changes are the reasons why

the path is planned backwards. If the algorithm would plan

forwards, coordinates for all switching points need to be

defined in advance instead of these two simple conditions.

D. Parking algorithm

Algorithm 1 shows the complete parking algorithm for a

parking spot on the left side, whereby rθA and RA denote

the weighting terms for phase A and the superscript ∗ refers

to the optimal values. Thus l∗Oi
= lOi

(q∗

i+1) and q∗

i+1 =
f(qi,u∗

i). The starting and parking positions qS and qP

are assigned beforehand. The algorithm stops if the current

position is in an ǫ neighborhood of the starting position. For

a parking spot to the right the if condition in line 8 has to

be changed to xCFR,i ≤ b.

Although it is a local planning algorithm, global conver-

gence for specific geometric conditions can be shown. For

the sake of conciseness we omit the detailed proof at this

point but refer to forthcoming publications. Nevertheless, the

simulation studies presented in the next section prove the

feasibility for typical parking scenarios.

IV. SIMULATION STUDIES

To verify the performance and path finding capability of

the algorithm, several simulation scenarios are investigated.

The dimensions of the car are chosen similar to a mid-sized

commercial vehicle. The parameters are shown in Table I,

whereby lc represents the length and wc the width of the

car.

The maximum control input ul is therefore given by

ulmax
= tan(δmax)

L
= 0.37. The step length is limited to

η ∈ [1 · 10−3m, 0.2m]. The maximum step length should not

exceed a certain value as collision checks only occur at the

start and end point of an optimization step.

2395

Algorithm 1 Parking algorithm

1: q0 = qP {parking position}
2: θO = α {target angle}
3: rθ = 1,R = 0 {weighting terms}
4: D = 1 {direction = forward}
5: u0 = [0, ηS]

T {initial guess}
6: lO0

=∞, i = 0
7: repeat

8: if xCFL,i ≥ b then

9: θO = θS , rθ = rθA ,R = RA

10: end if

11: u∗

i = argminui
lOi

(qi+1)
12: s.t. qi+1 = f(qi,ui, D)
13: hP (qi+1) ≤ 0
14: umin ≤ ui ≤ umax

15: if l∗Oi
> l∗Oi−1

or hP (q
∗

i+1) > 0 then

16: D = −D
17: else

18: qi+1 ← f(qi,u∗

i , D)
19: i← i+ 1
20: end if

21: until ||q− qS || ≤ ǫ

TABLE I

PARAMETERS OF THE CAR.

lc wc L δmax

4.7m 1.8m 2.7m 45
◦

The optimization parameters for both phases and all three

scenarios are shown in Table II. To improve convergence

behavior for garage and angle parking the first element of R

in phase B is set to R1,1 = 0.1 although it also works with

R = 0.

For obstacles at the border of the configuration space C
only the boundaries in the interior of C are considered. A

convex decomposition is performed by checking the angles

between two adjacent boundaries inside the obstacle. If the

angle is convex, these boundaries are summarized to one

polygon. If a nonconvex angle appears, a new polygon is

added to the list. An example for a parallel parking spot is

show in Fig. 5, whereby Roman numerals are used to name

the polygons. This method does not yield closed polygons

for all boundaries but nevertheless suitable inequality con-

straints.

The static optimization problem is solved using the SQP-

algorithm of the numeric software package SNOPT [17]. All

simulations are carried out in MATLAB on an Intel Core i7

TABLE II

OPTIMIZATION PARAMETERS FOR PHASE A AND B.

Phase A Phase B

rθ 4 1

θO θS α

R

(

30 0

0 1

) (

0.1 0

0 0

)

IIIIII

convexconvex

nonconvex

Fig. 5. Convex decomposition for a parallel parking spot.

TABLE III

PARKING SPOT DIMENSION AND SIMULATION RESULTS.

scenario a/m b/m dS/m α tc/ms Niter

parallel 1 6 2.2 4 0
◦ 6 34

parallel 2 5.1 2.2 4 0
◦ 9 46

garage 2.3 5 7 0
◦ 10 72

angle 2.26 4.7 5 45
◦ 8 54

3.4GHz machine.

The left part of all illustrated simulation figures shows

the trajectory of the reference point PR and the right part

the path of the car with its boundary drawn. All simulation

scenarios with the corresponding parking spot dimensions,

the calculation time tc and the number of iterations Niter of

the algorithm are summarized in Table III.

We start with demonstrating two scenarios for parallel

parking. The first one is a rather large parking spot, in which

the car can drive into without changing direction. The second

scenario is concerned with a very small parking spot to

demonstrate the capability of the algorithm. We choose the

parking spot just 40cm larger than the car length, which is

less than 7cm larger than the diagonal of the car.

In both scenarios the algorithm finds a feasible path. The

first scenario just needs a computation time of tc = 6ms

and is depicted on the left hand side of Fig. 6. The second

scenario is shown on the right hand side of Fig. 6. The

algorithm has to switch directions of the car multiple times

but still manages to find a feasible trajectory within tc =
7ms. The maneuvering in the parking spot is shown in more

detail in the enlarged subfigure. This scenario shows the

effectiveness of the proposed algorithm.

Next we consider a garage parking scenario. As already

explained before, the parking itself in this case is rather

trivial. To demonstrate the behavior of the algorithm in the

obstacle free space, we choose a starting position, from

where the car cannot get into the parking spot in the desired

orientation without changing the direction. The calculated

path is obtained in tc = 10ms calculation time and shown

on the left hand side of Fig. 7. By increasing rθ for this phase

the steering effort could be reduced with the drawback of a

longer path. In this context it should be noted that only the

starting and the parking position are defined, but no point

for direction switching.

Finally, we show an angle parking scenario. Although

this constitutes an easy parking scenario, it demonstrates the

generality of the proposed algorithm. The definition of the

target angle θO = α ensures that a feasible path for driving

directly into the parking spot is found, as shown on the right

hand side of Fig. 7. Again the calculation time with tc = 8ms

2396

0 2 4 6

6

8

10

12

14

16

x

y

0 2 4 6

6

8

10

12

14

16

x
y

0 2 4 6

6

8

10

12

14

16

x

y

0 2 4 6

6

8

10

12

14

16

x

y

Fig. 6. Parallel parking scenarios.

0 2 4 6 8 10 12
4

6

8

10

12

14

16

x

y

0 2 4 6 8 10 12
4

6

8

10

12

14

16

x

y

0 5 10

2

4

6

8

10

12

14

16

x

y

0 5 10

2

4

6

8

10

12

14

16

x

y

Fig. 7. Garage and angle parking scenario.

is very short.

V. CONCLUSION

In this paper, a fast optimization based motion planner for

car parking is proposed. The path is discretized by means of

a Runge-Kutta discretization and calculated by recurrently

solving a local static optimization problem. The weighting

terms for the optimization are determined by dividing the

path planning into two phases: one for the parking itself

and one for driving to the parking spot. The choice of

the switching points between these phases and for direction

changes is based on heuristic rules mimicking the behavior

of a human driver.

Simulations for different scenarios show the feasibility of

the proposed algorithm. Without any modifications parallel,

garage and angle parking problems can be solved. The path

planning can be carried out within a few milliseconds even in

narrow environments. It can therefore also be implemented in

model predictive control schemes which account for moving

obstacles.

REFERENCES

[1] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards.” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 367–393, 1990.

[2] M. F. Hsieh and U. Özgüner, “A parking algorithm for an autonomous
vehicle,” in Proc. IEEE Intelligent Vehicles Symposium, Eindhoven,
Netherlands, Jun. 2008, pp. 1155–1160.

[3] K. Lee, D. Kim, W. Chung, H. W. Chang, and P. Yoon, “Car parking
control using a trajectory tracking controller,” in Proc. Int. Joint Conf.

SICE-ICASE, Busan, Korea, Oct. 2006, pp. 2058–2063.
[4] D. Kim, W. Chung, and S. Park, “Practical motion planning for

car-parking control in narrow environment,” IET Control Theory

Applications, vol. 4, no. 1, pp. 129–139, Jan. 2010.

[5] J. Laumond, S. Sekhavat, and F. Lamiraux, “Guidelines in nonholo-
nomic motion planning for mobile robots,” in Robot Motion Planning

and Control, J.-P. Laumond, Ed. Berlin: Springer-Verlag, 1998, pp.
1–54.

[6] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[7] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” in Proc. 5th Int. Conf. on

Advanced Robotics, vol. 2, Piscataway, NJ, Jun. 1991, pp. 1012–1017.
[8] I. Hussein and A. Bloch, “Optimal control of underactuated nonholo-

nomic mechanical systems,” IEEE Trans. Autom. Control, vol. 53,
no. 3, pp. 668 –682, Apr. 2008.

[9] K. Kondak and G. Hommel, “Computation of time optimal movements
for autonomous parking of non-holonomic mobile platforms,” in Proc.

Int. Conf. on Robotics & Automation, vol. 3, Seoul, Korea, May 2001,
pp. 2698–2703.

[10] J.-P. Laumond, P. Jacobs, M. Taix, and R. Murray, “A motion planner
for nonholonomic mobile robots,” IEEE J. Robot. Autom., vol. 10,
no. 5, pp. 577 –593, Oct. 1994.

[11] S. Sekhavat and J.-P. Laumond, “Topological property for collision-
free nonholonomic motion planning: the case of sinusoidal inputs for
chained form systems,” IEEE J. Robot. Autom., vol. 14, no. 5, pp.
671–680, Oct. 1998.

[12] B. Müller, J. Deutscher, and S. Grodde, “Continuous curvature trajec-
tory design and feedforward control for parking a car,” IEEE Trans.

Control Syst. Technol., vol. 15, no. 3, pp. 541–553, May 2007.
[13] H. Liu, W. Liu, and L. Latecki, “Convex shape decomposition,” in

Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San
Francisco, CA, Jun. 2010, pp. 97–104.

[14] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The
path-velocity decomposition,” The Int. Journal of Robotic Research,
vol. 5, no. 3, pp. 72–89, Sep. 1986.

[15] T. Lozano-Perez, “Spatial planning: A configuration space approach,”
IEEE Trans. Comput., vol. C-32, no. 2, pp. 108–120, Feb. 1983.

[16] F. Jean, “Complexity of nonholonomic motion planning,” Int. Journal

of Control, vol. 74, no. 8, pp. 776–782, May 2001.
[17] P. E. Gill, W. Murray, and M. A. Saunders, Users Guide for SNOPT

Version 7: Software for Large-Scale Nonlinear Programming, Dept.
of Mathematics, University of California, San Diego, CA, Feb. 2006.

2397

