
A 4-Point Algorithm for Relative Pose Estimation of a Calibrated

Camera with a Known Relative Rotation Angle

Bo Li, Lionel Heng, Gim Hee Lee and Marc Pollefeys

Computer Vision and Geometry Group, ETH Zürich

Abstract— We propose an algorithm to estimate the relative
camera pose using four feature correspondences and one
relative rotation angle measurement. The algorithm can be
used for relative pose estimation of a rigid body equipped
with a camera and a relative rotation angle sensor which can
be either an odometer, an IMU or a GPS/INS system. This
algorithm exploits the fact that the relative rotation angles of
both the camera and relative rotation angle sensor are the same
as the camera and sensor are rigidly mounted to a rigid body.
Therefore, knowledge of the extrinsic calibration between the
camera and sensor is not required. We carry out a quantitative
comparison of our algorithm with the well-known 5-point and
1-point algorithms, and show that our algorithm exhibits the
highest level of accuracy.

I. INTRODUCTION

Vehicle platforms equipped with a camera and either an

odometer, IMU, or yaw rate sensor have been widely used

in the areas of computer vision, robotics, and automatic

control. For years, research has focused on using these low-

cost sensors to localize the vehicle as well as reconstruct the

vehicle’s environment. This research is also referred to as

visual SLAM in robotics.

One key step of visual SLAM is to estimate the relative

camera pose between each frame pair. One commonly used

method is feature-based estimation in which a subset of

image feature correspondences is selected to estimate the

fundamental matrix or essential matrix between two frames.

The relative rotation and translation can then be extracted

from the matrix. A series of “n-point” (n-correspondences)

algorithms has been proposed for this objective. If the camera

has unknown intrinsics, the fundamental matrix can be

estimated by the 8-point algorithm or 7-point [1] algorithm.

If the camera has calibrated intrinsics, either the 6-point

[2], [3] algorithm or 5-point [4], [5], [6] algorithm can

be used to compute the essential matrix. Based on these

algorithms, robust estimation methods such as RANSAC

or LMedS are used to generate the best estimate from a

set of point correspondences containing both inliers and

outliers. The performance of “n-point” algorithms is signifi-

cantly affected by the quality of the feature correspondences

detected from images. It is well-known that an algorithm

using fewer point correspondences requires fewer iterations

for robust estimation. For the case of a calibrated camera, the

minimal solution requires 5 point correspondences to solve

for the 5-DoF relative pose. In [4], [5], the 5-point algorithm

shows the best estimation performance compared to the 6-

point, 7-point, and 8-point algorithms. For visual SLAM and

structure-from-motion problems, the 5-point algorithm is the

most commonly used algorithm for a calibrated camera.

However, the 5-point algorithm is not always guaranteed to

have a stable estimation. On a vehicle with a forward-looking

camera, relative pose estimation is more difficult for the

5-point algorithm compared to a side-looking camera. The

main difficulties are the lower stability of the algorithm for

forward motion compared to sideways motion, and the larger

depth of features seen by a front camera which makes the

estimation less accurate. Readers can find some discussion

about the performance of the 5-point algorithm in [4], [5].

To improve the estimation accuracy, research has focused

on exploiting extra information from other sensors or from

specific motion models. For example, [7] obtains two rotation

angles from the IMU, and uses a 3-point algorithm to esti-

mate the relative pose of a micro aerial vehicle. This method

requires that the extrinsic calibration between the camera

and the IMU is known. In [8], a novel 1-point algorithm is

proposed. The algorithm assumes that the vehicle follows the

general Ackermann steering model. The 1-point algorithm

can compute stable relative pose estimates very quickly;

however, it requires the camera to be located along the

rear axis of the vehicle. In [9], another 3-point algorithm

is proposed for relative pose estimation. This method uses a

generalized camera but only applies to 3-DoF planar motion.

If the vehicle platform has either an odometer or GPS/INS

system, and its pose with respect to the camera’s frame is

known, we can directly obtain the camera’s relative pose

from the odometer pose Ho as H−1HoH , where H is

the transform between the camera and odometer frames.

However, in practice, estimating H is not easy. This problem

is known as the hand-eye calibration [10], [11]. Moreover, for

accurate estimation of relative transforms, hand-eye calibra-

tion algorithms require accurate visual odometry estimation.

This visual odometry estimation also requires feature-based

relative pose estimation algorithms such as the 5, 6, 7, and

8-point algorithms.

Our approach is similar in spirit to [7], [8], [9]; in this

paper, we propose an algorithm to improve the relative pose

estimation using relative rotation angle measurements. The

algorithm uses four feature point correspondences found

from an image pair and one rotation angle from any relative

rotation sensor such as an odometer, IMU, or GPS/INS.

In the algorithm, the camera can be mounted anywhere on

the platform; the advantage is that no extrinsic calibration

is required. Since the rotation angle sensor readings are

very stable and accurate in general, the proposed algorithm

significantly improves the accuracy of relative pose estimates

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1595

compared with existing methods.

The rest of the paper is organized as follows. Section

II establishes notations and formulas used in the proposed

method. Section III presents the formulation of the 4-

point relative pose problem, and section IV presents two

algorithms to solve the problem. The performance of the

algorithm is studied in section V; we use simulations to

compare our results with those from the 5-point algorithm,

and quantify the algorithm’s improvement over the 5-point

algorithm. Furthermore, the algorithm is compared with the

5-point and 1-point algorithms on two real-world datasets

obtained with our vehicle platform.

II. PRELIMINARIES

Image points from the first and second frames are denoted

by homogeneous vectors p1 = (x1, y1, 1)
⊤ and p2 =

(x2, y2, 1)
⊤ respectively. The intrinsic matrix of the camera

is denoted as K. Since the proposed algorithm requires K

to be known, we hereby assume that p1 and p2 are always

premultiplied by K−1.

Denote R and t as the relative rotation and translation

between the first and second frame. The essential matrix

corresponding to R and t can be denoted as

E = [t]×R (1)

where [t]× denotes the skew symmetric matrix:

[t]× ≡





0 −t3 t2
t3 0 −t1
−t2 t1 0



 (2)

An ideal image point correspondence (p1, p2) satisfies the

constraint:

p2
⊤Ep1 = 0 (3)

Rodrigues’ rotation formula Given a 3D unit rotation

axis vector r = (rx, ry, rz)
⊤ and a rotation angle θ, it is easy

to find the corresponding rotation matrix using Rodrigues’

rotation formula.

R(θ, r) = (cos θ)I + (1− cos θ)rr⊤ + (sin θ)[r]× (4)

where I is a 3× 3 identity matrix.

Theorem The relative rotation angle of the camera and

that of the relative rotation sensor are equal.

This is a known fact for rigid motion. Denote the relative

motion of the rotation sensor as Rs and ts, and the transform

between the camera and the sensor as R and t. We know

that the camera rotation can be denoted as Rc = R−1RsR,

which is independent of the translation. Here, we use the

quaternion representation to provide a simple proof to show

that the rotation angle of Rc and Rs is the same. Denote qs,

qc, and q as the corresponding quaternions respectively. We

have

qc =q−1qsq

=

(

cos
θ

2
− (xi+ yj + zk) sin

θ

2

)

·

(

cos
θs

2
+ (xsi+ ysj + zsk) sin

θs

2

)

·

(

cos
θ

2
+ (xi+ yj + zk) sin

θ

2

)

(5)

where θ and (x, y, z)⊤ is the rotation angle and rotation axis

of a quaternion q. Consider the real part of qc, as qreal
c . By

some simple deduction, we can obtain

qreal
c = cos

θs

2
(6)

Since qreal
c = cos θc

2
by definition, the relative rotation angles

θc and θs are equal. This means that the relative rotation

angle reading from the sensor can be directly used as the

relative rotation angle of the camera without knowing the

extrinsics.

III. PROBLEM FORMULATION

Substituting (4) into (1), we express the essential matrix as

a function of the rotation angle, rotation axis and translation:

E(θ, r, t) = [t]×
(

cos θI + (1− cos θ)rr⊤ + sin θ[r]×
)

(7)

where r is a 3D unit vector and t is assumed to have unit

norm since it is up to scale. With the assumption that we

know θ from the sensor reading, the number of DoFs for

the relative camera pose is reduced from 5 to 4. By using 4

image point correspondences, we can solve for r and t for

the minimal case.

Thus, we form the equation system for solving for the

relative camera pose:

pi2
⊤

E(θ, r, t)pi1 = 0 for i = 1, 2, 3, 4 (8)

||r||2 = 1 (9)

||t||2 = 1 (10)

where r = (rx, ry, rz)
⊤ and t = (tx, ty, tz)

⊤ are six

unknowns.

IV. SOLUTION

Solving polynomial systems for minimal problems in

computer vision has become a focus of recent research.

However, for an equation system with a high degree and

many unknowns, it is often difficult to obtain an efficient

closed-form solution. The equation system (8) includes 4

cubic polynomials with the highest monomial in the form of

t⋆r⋆r⋆, where ⋆ denotes any arrangement of ‘x’, ‘y’, ‘z’. (9)

and (10) are two quadratic polynomials. Compared with the

minimal problem for both the 5 and 6-point algorithms, the

above system has more variables and a higher degree, both

of which makes it more difficult to solve. In this section, we

propose two different solvers for our equation system. The

first one is a closed-form solution based on the Groebner

basis. The second one is an efficient numerical solution.

1596

A. Closed-Form Solver

The Groebner basis provides a useful technique for solv-

ing general polynomial systems. In this paper, we use an

automatic solver generator [12] to generate the Groebner

basis solver for our problem. This generator works by first

generating a series of polynomials from the original problem.

Their coefficients are denoted in a coefficient matrix. Next,

the coefficient matrix is eliminated. An action matrix can

then be formed using elements of the elimination result. The

eigenvectors of the action matrix consist of solutions to the

original problem. Taking the 5-point algorithm for example,

this involves a 10×20 coefficient matrix and a 10×10 action

matrix. This is similar to the solver used in [5].

We first simplify our problem by replacing (10) with

tz = 1. This is easy to understand since t is only defined

up to scale. Thus, we remove one unknown and only have

five unknowns r = (rx, ry, rz)
⊤ and t = (tx, ty, 1)

⊤ and 5

equations (8, 9) to solve. Note that this simplification may

cause numerical failure if tz is extremely small comparing

with tx and ty . In practice, this simplification does not cause

a numerical failure because even if the camera is moving on

the xy plane, tz always has some small deviation from zero,

which is sufficient for the solver to work stably. Directly

solving the system without this simplification can avoid the

problem of numerical failure, but makes the solution much

more complex.

Inputting the simplified equation systems to the automatic

solver generator, we obtain a coefficient matrix of size 270×
290. The action matrix is of size 20× 20 which implies the

problem has 20 complex roots. We use all the real roots as

possible solutions for r and t.

This closed-form solver is elegant and easy to use. How-

ever, we point out two drawbacks. Firstly, decomposing

or eliminating a coefficient matrix of size 270 × 290 can

be computationally expensive. Secondly, in some extreme

cases, the correct root may not be a real number due to

data noise. This can be illustrated by the following small

example. Consider the problem: (x− 1)2 = 0.01 where the

roots are x = 0.9 and x = 1.1. In the case of noisy data,

there is a case where we solve (x− 1)2 = −0.01. Then, the

root will be x = 1 ± 0.1i, which is not a real number. By

taking the real part of the root, we can approximately obtain

a real solution. However, for more complicated polynomial

systems, this sometimes can lead to a large deviation of the

estimated result from the actual result.

B. Numerical Solver

To avoid the drawbacks of the Groebner basis solver, we

hereby propose a numerical solver for our problem using the

gradient descent method. This solver can quickly solve the

problem and obtain real roots.

We reformulate equation (8) as:

f i
1(rx, ry, rz)tx + f i

2(rx, ry, rz)ty + f i
3(rx, ry, rz)tz = 0

for i = 1, 2, 3, 4 (11)

where f i
⋆ is a polynomial whose terms include rx, ry and

rz . We can stack f i
⋆ as a matrix:

F (rx, ry, rz)t ≡









f1
1 f1

2 f1
3

f2
1 f2

2 f2
3

f3
1 f3

2 f3
3

f4
1 f4

2 f4
3













tx
ty
tz



 = 0 (12)

Since we know that t is up to scale, the rank of F must be

2. This means that the determinant of all 3× 3 submatrices

must be 0. This is equivalent to the following equations.
∣

∣

∣

∣

∣

∣

f1
1 f1

2 f1
3

f2
1 f2

2 f2
3

f3
1 f3

2 f3
3

∣

∣

∣

∣

∣

∣

= 0 (13)

∣

∣

∣

∣

∣

∣

f2
1 f2

2 f2
3

f3
1 f3

2 f3
3

f4
1 f4

2 f4
3

∣

∣

∣

∣

∣

∣

= 0 (14)

Combining (13), (14) and (9), we have a new equation

system that has three unknowns: rx, ry , rz . (13) and (14) are

of degree 5. Since (10) implies that (rx, ry, rz)
⊤ is on the

surface of a unit sphere, we parameterize (rx, ry, rz)
⊤ in 2D

space and use the gradient descent method to find the roots

from a set of initial guesses. This gradient descent-based

method is inspired by [13], which uses a similar method

for solving the 5-point algorithm. Our initial guesses are

drawn from uniform sampling on the surface of a unit sphere.

Note that for the minimal case, there is a small chance that

the correct root is missed in the gradient descent method

as mentioned in [13]. We can minimize the probability

that convergence fails by increasing the number of initial

guesses. For our implementation, we find that 100 samples

are sufficient for convergence to the correct solution for

r. We found out from doing 10000 simulations that the

probability of missing the correct root is less than 0.001. In

addition, when the solver is embedded in a robust estimation

framework, for example, RANSAC, a failure to converge can

entirely be avoided due to the multiple iterations in robust

estimation. In our simulation tests, we did not encounter a

convergence failure.

After rx, ry , rz are solved, F is then obtained and t is

the null vector of F . Note that multiple roots r exist for the

equation system, and for each possible solution (r, t), (r,−t)
is a possible solution too.

C. Robust Estimation

Similarly in the cases of the 5, 6, 7, and 8-point algorithms,

a robust estimation framework can be used for the 4-point

algorithm to find the optimal relative pose from a set of both

inlier and outlier point correspondences. Taking the widely-

used robust estimation framework RANSAC as an example,

in each iteration, 4 points are randomly sampled to generate

hypotheses for the relative camera pose estimate. From

the above discussion, we know that multiple relative pose

hypotheses may exist. By checking the reprojection error

such as the Sampson error for the whole point set, candidate

solutions are rejected until only two candidate solutions (r, t)
and (r,−t) remain. One of these two candidate solutions

1597

is rejected by checking if the reconstructed 3D points have

positive depth. This is also called the cheirality check in [4].

In contrast to the 5-point algorithm, the 4-point algorithm

requires a lower number of iterations to achieve the same

confidence level. Consider a point set with w = 50% inliers;

in each iteration, the probability of selecting 4 inliers is

w4 = 6.25% while the probability of selecting 5 inliers

is w5 = 3.125%. The number of iterations required for

RANSAC is log 1−p
log 1−wn

where n is the number of point

correspondences and p is the confidence level. To get an

estimate with a confidence level of p = 0.99, the 4-point

algorithm requires 71 iterations while the 5-point algorithm

requires 145 iterations.

V. EXPERIMENTS

A. Implementation Details and Timing Issues

We implemented both the Groebner basis solver and

numerical solver for our 4-point algorithm. In the Groebner

basis solver, we use the sparse QR decomposition implemen-

tation from the Eigen1 library to eliminate the coefficient

matrix. In the numerical solver, we use Powell’s hybrid

method from the GNU General Scientific Library (GSL)2.

Powell’s hybrid method retains the fast convergence of

Newton’s method but is more reliable. We also implemented

a 5-point algorithm based on the solver in [4]. The 5-

point solver implementation uses the uni-variable polynomial

solver from the OpenCV3 library. The three implementations

are available online 4.

Figure 1 shows the computational times for the two 4-point

solvers and 5-point solver. The measured computational time

is for the minimal case. The reader can easily see that the

closed-form Groebner basis solver is the most computation-

ally expensive. The numerical solver is slightly slower than

the 5-point algorithm. Considering that additional constraints

make the relative pose estimation problem more complex, the

extra computational cost for the numerical solver is small;

the numerical solver is still fast enough for real-time use.

We would like to also point out a further optimization for

the numerical solver. The computation of the coefficients in

(13) and (14) involves a series of extremely large polynomi-

als generated by Maple; computing the coefficients take up

approximately 70% of the computational time incurred by

the current implementation. We can reduce the computation

time by re-arranging the terms in the polynomials.

B. Performance under Noise

We use simulation data in this section to test the per-

formance of the 4-point and 5-point algorithms. We do not

consider the 6, 7 and 8-point algorithms as the 5-point algo-

rithm is known to outperform these algorithms for the case

of a calibrated camera. Therefore, in this section, we only

compare our algorithm with the 5-point algorithm. Detailed

1https://bitbucket.org/eigen/eigen/
2http://www.gnu.org/software/gsl/
3http://opencv.org
4https://sites.google.com/site/prclibo/four-point

Min Mean Max
0

0.005

0.01

0.015

0.02

0.025

s
e

c

4−pt gb

4−pt nm

5−pt

Fig. 1. Computation time for the minimal case for the various relative
pose estimation algorithms. 4-pt gb stands for the closed-form Groebner
basis solver. 4-pt nm stands for the numerical solver using gradient descent.

TABLE I

EXPERIMENT SETTINGS FOR SIMULATION DATA.

Minimal Distance 10

Depth 10

Baseline 1

Image Size 350× 350

Field of View 60◦

Error Measurement Translation deviation angle

Error Estimator Lower quartile (minimal case)
Mean (RANSAC case)

Tests per Noise Level 1000 (minimal case)
100 (RANSAC case)

comparisons between the 5, 6, 7 and 8-point algorithms can

be found in [4], [5].

We structure our experiment setup in line with existing

research by using similar simulation settings such as image

size, field of view, and point distance from [4]. The settings

are summarized in table I and figure 2. The two algorithms

are tested with forward and sideways motions. The relative

pose estimation error is measured by the angle between the

ground truth translation and estimated translation vectors.

This error measurement is based on the fact that the transla-

tion estimation is much more sensitive to noise compared to

the rotation estimation; see [14] for details. In general, for

both the 4-point and 5-point algorithms, the rotation error

is less than 0.1◦. We approximate the image feature noise

as a zero-mean Gaussian noise distribution with a varying

range of standard deviations. For the minimal case test, four

and five point correspondences are generated for the 4-point

and 5-point algorithms respectively. For the RANSAC case

test, we use 50 point correspondences to run a RANSAC

framework to generate the best estimation. 1000 tests were

executed for each noise level in the minimal case test. 100

tests were executed for each noise level in the RANSAC test.

Figure 3 plots the relative pose error against the standard

deviation of the feature noise distribution. In figures 3a and

3b, we plot the lower quartile of the relative pose error

at each noise level for the minimal case tests. In figures

3c and 3d, we plot the mean error at each noise level

for the RANSAC tests. The test criterion were selected to

be consistent with those in [4]. From the plots, we can

clearly see that the 4-point algorithm outperforms the 5-point

algorithm.

1598

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Noise (px)

T
ra

n
s
la

ti
o
n
 e

rr
o
r

(d
e
g
)

4−pt

5−pt

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Noise (px)

T
ra

n
s
la

ti
o
n
 e

rr
o
r

(d
e
g
)

4−pt

5−pt

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Noise (px)

T
ra

n
s
la

ti
o
n
 e

rr
o
r

(d
e
g
)

4−pt

5−pt

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Noise (px)

T
ra

n
s
la

ti
o
n
 e

rr
o
r

(d
e
g
)

4−pt

5−pt

(a) (b) (c) (d)

Fig. 3. Translation error in degrees against noise standard deviation in pixels. (a) Minimal cases, forward motion. (b) Minimal cases, sideways motion.
(c) 50 points, forward motion. (d) 50 points, sideways motion.

Fig. 2. Experiment settings for simulation data. The two dashed cameras
mark the locations to which the camera moves with forward and sideways
motion respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

σ
o
=0

σ
o
=0.02

σ
o
=0.04

σ
o
=0.06

Noise (px)

T
ra

n
s
la

ti
o

n
 e

rr
o

r
(d

e
g

)

4−pt w/ varying odo noise

5−pt

Fig. 4. Translation error in degrees against noise standard deviation in
pixels. The standard deviation σθ of the relative rotation angle measurement
noise ranges between 0 and 0.06. 50 points are used to execute a RANSAC
scheme for each test.

We perform another test to show how the noise from

relative rotation angle measurements influences the 4-point

algorithm. We assume here that the relative rotation angle

θ is measured as (1 + e)θ by the sensor, where e follows

a zero-mean Gaussian distribution. In this test, we select

the standard deviation σθ values to be 0, 0.02, 0.04, and

0.06. For each of the 4 noise levels, we generate a plot of

translation error against the noise level. We also use the

same settings with the above RANSAC tests except that

the translation direction is arbitrary and the relative rotation

angle is between −10◦ and 10◦. The plot is shown in figure

4. We find that with the error e smaller than 0.04, the 4-point

algorithm gives a better result than the 5-point algorithm. In

practice, the error of the relative rotation angle measurements

provided by the rotation sensor is much smaller, and hence,

the 4-point algorithm outperforms the 5-point algorithm in

general.

C. Real-World Performance

In this section, we compare the 4-point algorithm with

the 5-point and 1-point algorithms which are two well-known

algorithms for relative pose estimation for a vehicle platform.

Here, we use the numerical solver for the 4-point algorithm

as the numerical solver has a significantly shorter compu-

tational time than the Groeber basis solver. Our platform

is a VW Golf outfitted with a camera, odometry and an

iTrace GPS/INS system. The camera is mounted at the front

of the vehicle and its intrinsics are calibrated beforehand.

In addition, the camera pose with respect to the odometer

and GPS/INS is known. We use these extrinsics to generate

reference camera trajectories from GPS/INS and odometry

data. The visual odometry generated by the 4-point algorithm

assumes no knowledge of the extrinsic calibration between

the camera and relative rotation angle sensor. In following

discussions, we use the words GPS/INS and odometry to

refer to the camera trajectories generated from GPS/INS and

odometry respectively. The plotted trajectories are shown in

figures 6 and 7. The GPS/INS trajectory is shown with other

trajectories in each image as ground truth for comparison.

We compare the algorithms on two datasets collected with

our platform. The first dataset is a single loop trajectory

consisting of 2000 keyframes with a keyframe distance of

0.4 m. The second dataset is taken from multiple loops in

a more challenging environment; 2800 keyframes are used

with the same keyframe distance of 0.4 m. Figure 5 shows the

aerial imagery of the scenes where the datasets are collected.

1599

Fig. 5. Aerial imagery of the scenes used for the real-world experiments.
Left: The parking lot where the first dataset with 1400 frames is collected.
Right: The parking lot where the second dataset with 3000 frames is
collected. The GPS/INS trajectory of the vehicle is plotted in gray.

ORB [15] feature correspondences detected from image data

are passed as input into the compared algorithms. We provide

the results from the 4-point algorithm using both the heading

from the odometer readings and the rotation angle from

the INS readings. Since we only compare the relative pose

estimation results in this paper, the scale information between

each pair of frames is directly obtained from the GPS/INS

data for all the compared algorithms. Furthermore, only the

relative pose between consecutive frames is estimated, and

no bundle adjustment in any form is used.

From the plots, we clearly see that the 4-point algorithm

using relative rotation angle measurements from INS data

generates a trajectory closest to the ground truth. The 4-point

algorithm using relative rotation angle measurements from

odometry data generates a similar trajectory but with more

drift due to the higher inaccuracy of odometer readings. The

trajectories computed by the 5-point and 1-point algorithms

have larger drifts. For the 5-point algorithm, if the image

feature quality is low, the relative pose accuracy is signif-

icantly degraded. For the 1-point algorithm, the trajectory

is very smooth due to the Ackermann steering assumption;

however, the 1-point algorithm only works as long as the

camera is located on the vehicle’s rear axis. Our front camera

configuration does not adhere to the rear axis requirement,

leading to a continuous bias for each frame.

VI. CONCLUSIONS

In this paper, we show that by using relative rotation angle

measurements from a relative rotation sensor with unknown

extrinsics, the relative camera pose can be estimated from

only four image feature correspondences. In both simulated

and real experiments, the algorithm shows significant im-

provement in terms of accuracy over the 5-point and 1-point

algorithms. Intuitively, the 4-point algorithm outperforms

the 5-point algorithm as the 4-point algorithm is far more

likely to find a good initial estimate for the relative pose

from RANSAC given the same number of iterations, and

the use of relative rotation measurements narrows down the

space of possible solutions. Similarly, the 4-point algorithm

outperforms the 1-point algorithm; the assumption by the 1-

point algorithm that the camera lies along the vehicle’s rear

axis is violated. There is room for further optimization of

the implementation in terms of speed.

One limitation of the 4-point algorithm is that if large

instantaneous changes in rotation are observed, we require

the rotation sensor to be synchronized with the camera. Such

synchronization may be difficult to implement.

Our 4-point algorithm can be used for any platform with

a camera and a rotation sensor. For example, our 4-point

algorithm can be used on mobile phones for which computer

vision and augmented reality applications are increasingly

becoming popular. The internal gyroscope sensors provide

relative rotation angle measurements which are similar to

those from odometry and INS. In addition, the 4-point

algorithm is also applicable to robotic systems such as micro

aerial vehicles which move in 3D space.

The main advantage of the 4-point algorithm is that no

knowledge about the extrinsics is required, and thus, an

extrinsic calibration is not needed. This non-requirement can

be extremely useful for hand-eye calibration implementations

in which rotation angle information can be used to improve

the visual odometry estimates, and thus, the resulting hand-

eye transform.

VII. ACKNOWLEDGEMENT

The second author was funded by the DSO National

Laboratories Postgraduate Scholarship. In addition, this work

was supported in parts by the European Community’s Sev-

enth Framework Programme (FP7/2007-2013) under grant

#269916 (V-Charge) and 4DVideo ERC Starting Grant Nr.

210806.

REFERENCES

[1] R. Hartley and A. Zisserman, Multiple view geometry in computer

vision. Cambridge Univ Press, 2000, vol. 2.

[2] H. Stewénius, D. Nistér, F. Kahl, and F. Schaffalitzky, “A minimal
solution for relative pose with unknown focal length,” Image and

Vision Computing, vol. 26, no. 7, pp. 871–877, 2008.

[3] H. Li, “A simple solution to the six-point two-view focal-length
problem,” Computer Vision–ECCV 2006, pp. 200–213, 2006.

[4] D. Nistér, “An efficient solution to the five-point relative pose prob-
lem,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 26, no. 6, pp. 756–770, 2004.

[5] H. Stewénius, C. Engels, and D. Nistér, “Recent developments on
direct relative orientation,” ISPRS Journal of Photogrammetry and

Remote Sensing, vol. 60, no. 4, pp. 284–294, 2006.

[6] H. Li and R. Hartley, “Five-point motion estimation made easy,” in
Pattern Recognition, 2006. ICPR 2006. 18th International Conference

on, vol. 1. IEEE, 2006, pp. 630–633.

[7] F. Fraundorfer, P. Tanskanen, and M. Pollefeys, “A minimal case
solution to the calibrated relative pose problem for the case of two
known orientation angles,” Computer Vision–ECCV 2010, pp. 269–
282, 2010.

[8] D. Scaramuzza, “1-point-ransac structure from motion for vehicle-
mounted cameras by exploiting non-holonomic constraints,” Interna-

tional journal of computer vision, vol. 95, no. 1, pp. 74–85, 2011.

[9] G. H. Lee, F. Fraundorfer, and M. Pollefeys, “Motion estimation for
self-driving cars with a generalized camera,” in Computer Vision and

Pattern Recognition, 2013.

1600

−100 0 100
−400

−350

−300

−250

−200

−150

−100

−50

0

50

G/I

Odo

���� � ���
����

����

����

����

����

����

����

���

�

��

�	

�
��

−100 0 100
−400

−350

−300

−250

−200

−150

−100

−50

0

50

G/I

4 Odo

0 200 400

−500

−400

−300

−200

−100

0

100

200

G/I

1

−200 0 200

−400

−300

−200

−100

0

100 G/I

5

Fig. 6. Visual odometry results on single loop data with 2000 frames. All axis values are expressed in meters. We use the GPS/INS (G/I) trajectory as
ground truth as shown in each image for comparison. From left to right: 1) Wheel odometry plot. 2) Visual odometry by 4-point algorithm with numerical
solver and using relative rotation angle measurements from the INS readings. 3) Visual odometry by 4-point algorithm with numerical solver and using
relative rotation angle measurements from odometry readings. 4) Visual odometry by 1-point algorithm. 5) Visual odometry by 5-point algorithm.

−50 0 50

−120

−100

−80

−60

−40

−20

0

G/I

Odo

−50 0 50

−120

−100

−80

−60

−40

−20

0

G/I

4 INS

−50 0 50

−120

−100

−80

−60

−40

−20

0

G/I

4 Odo

0 50 100

−120

−100

−80

−60

−40

−20

0

G/I

1

−50 0 50

−120

−100

−80

−60

−40

−20

0

G/I

5

Fig. 7. Visual odometry results on multiple loop data with 2800 frames. All axis values are expressed in meters. We use the GPS/INS (G/I) trajectory
as ground truth as shown in each image for comparison. From left to right and top to bottom: 1) Wheel odometry plot. 2) Visual odometry by 4-point
algorithm with numerical solver and using relative rotation angle measurements from the INS readings. 3) Visual odometry by 4-point algorithm with
numerical solver and using relative rotation angle measurements from odometry readings. 4) Visual odometry by 1-point algorithm. 5) Visual odometry by
5-point algorithm.

[10] R. Y. Tsai and R. K. Lenz, “A new technique for fully autonomous and
efficient 3d robotics hand/eye calibration,” Robotics and Automation,

IEEE Transactions on, vol. 5, no. 3, pp. 345–358, 1989.
[11] Y. C. Shiu and S. Ahmad, “Calibration of wrist-mounted robotic

sensors by solving homogeneous transform equations of the form ax=
xb,” Robotics and Automation, IEEE Transactions on, vol. 5, no. 1,
pp. 16–29, 1989.

[12] Z. Kukelova, M. Bujnak, and T. Pajdla, “Automatic generator of
minimal problem solvers,” Computer Vision–ECCV 2008, pp. 302–
315, 2008.

[13] D. Batra, B. Nabbe, and M. Hebert, “An alternative formulation for
five point relative pose problem,” in Motion and Video Computing,

2007. WMVC’07. IEEE Workshop on. IEEE, 2007, pp. 21–21.
[14] T. Y. Tian, C. Tomasi, and D. J. Heeger, “Comparison of approaches

to egomotion computation,” in Computer Vision and Pattern Recog-

nition, 1996. Proceedings CVPR’96, 1996 IEEE Computer Society

Conference on. IEEE, 1996, pp. 315–320.
[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient

alternative to sift or surf,” in Computer Vision (ICCV), 2011 IEEE

International Conference on. IEEE, 2011, pp. 2564–2571.

1601

